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Abstract
Objectives: To develop separate and joint statistical models in the Bayesian framework for
longitudinal measurements and time to death event data of HIV/AIDS patients.
Study design: Longitudinal study.
Place and Duration of Study: The population of study includes all HIV/AIDS patients who had
been under follow up of Antiretroviral Therapy (ART) from January 2006 to December 2012 at
Shashemene Referral Hospital in Ethiopia.
Methodology: The posterior model was analyzed using Gibbs sampler by sampling from the
distributions of the parameters given the data. Convergence of each sample was maintained.

*Corresponding author: E-mail: ayele taye@yahoo.com

www.sciencedomain.org


Results: The results indicated that the joint model was not significant indicating that the CD4 count
did not have significant effect on the patient’s survival time. The results of both the separate and
joint analyses were consistent. The separate model was better interims of goodness of fitness than
the joint model, while the final joint model was found to be simpler (less complex) model than the
separate models. In the longitudinal sub-model, the predictors: linear time, squared time, sex, and
tobacco addiction were statistically significant at 0.05 level of significance. For the survival sub-
model, knowledge of ART and condom use were significantly related with time to death.
Conclusion: The Bayesian Joint model provides results consistent with that of the separate models.

Keywords: ART; Bayesian; CD4 count; Joint model; Longitudinal model; Survival model.
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1 Introduction

Often longitudinal and survival data are generate together with related covariates over periods of
time. A typical example is a clinical trials from which CD4 lymphocyte counts as a biomarker of
disease progression is measured intermittently and time to death event of a patient is recorded under
Antiretroviral Therapy (ART) follow-up at a health institution. In such cases, there are often possible
early dropouts or failures to occurrence of the event by the end of study period [1]. Data analysis
can mainly focus on either the longitudinal data or the survival data or both. When the analysis
focuses on longitudinal data, we often need to address informative dropouts since dropouts are very
common in such studies. When the analysis focuses on survival data, we often need to incorporate
time-dependent covariates such as CD4 counts since the times to event may be associated with the
covariate trajectories. It is interesting to investigate the association between the two processes. The
joint models are can handle to the association between the longitudinal and the survival data [2]. The
joint models can accommodate complexities in data observed simultaneously.

In this study, we employ the joint modeling approach developed by [3]. We applied the Bayesian
joint and separate modelling of the patterns of CD4 changes and time to death event to mainly
characterize the relationship between the two data. The central research questions are: What are
the factors for determining the longitudinal evolution of CD4 cell count of HIV/AIDS patient under ART
follow up? What are the risk factors for death? How strong is the association between the disease
progression and the time to death of the HIV/AIDS patients? The objective of the study was to analyze
and model disease progression as measured by biomarker and time to death of HIV/AIDS patients
based on data from Hospital records. The results of such study is useful in the developing an effective
strategy for ART and monitoring system.

2 Methods

The population of our study includes all HIV/AIDS patients with ages 16 years and older and under
ART follow-up from January 2006 to December 2012 at Shashemene Referral Hospital, Ethiopia.
Secondary data were collected from 354 HIV/AIDS patients’ records at the Hospital, after determining
appropriate sample size and applying simple random sampling technique. Patients with age 16 years
and older were included, while those patients with age below 16 years or those who started ART
before January 2006 or after December 2012 were excluded. The ethical clearance was obtained
from the Hospital.
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Response variables: Two response variables are considered in this study. The first response
variable is longitudinal CD4 count. Number of CD4 counts per mm3 of blood were measured approxi-
mately every 6 month. Square root transformation of the CD4 cell counts used as observation for the
response variable. The second response variable is the survival outcome, which is time in months to
a death event for a patient calculated by subtracting date of ART start from date of the event.

Predictor variables: predictors considered for the longitudinal response are observation time,
sex of patient, tobacco addiction, functional level, alcohol addiction and number of opportunistic
infections; and those for survival response are condom use, number of living room, knowledge, TB
status and number of opportunistic infections.

Separate models for the longitudinal and survival data, and the joint model are subsquetly defined
here below. The Bayesian joint model is then derived.

2.1 Longitudinal Model

The longitudinal data, CD4 counts, are measurements on the response variable taken from same
individuals over several observation times. These set of observations on a subject tends to be
intercorrelated [4]. Let us denote CD4 count as Yij of the ith patient and jth observation time,
where i = 1, 2, 3, , n; j = 1, 2, 3, , a.

Two sources of variations are expected for the longitudinal data: within-subject and between-
subjects variations. Analysis of within-subject variation allows studying of changes over time, while
analysis of between-subjects variation allows understanding differences between subjects. We apply
the linear mixed effects models. The linear mixed effects models (LMEM) are widely used in which
random effects are introduced to incorporate the between subjects variation and within subject corre-
lation in the data. It is given as:

Yij = µi(sij) + W1i(sij) + εij (2.1)

where εij ∼ N(0, Vi), log(Vi) ∼ N(µv, σ
2
v). The error term εij is random and has normal distribution

with mean zero and subject-specific variance, Vi which is random by itself. Th variance Vi is assumed
to follow log-normal distribution with mean µv and variance σ2

V

2.2 Survival Model

The survival time T is random variable defined on non-negative real numbers. We apply the Weibull
model as a parametric distribution model of T . That is, we assume that the survival time for the ith

subject follows the Weibull distribution:

Ti ∼Weibull(p, µi(t)), log(µi(t)) = XT2i(t)β2 + W2i(t) (2.2)

where with parameters p > 0 and µi(t) function of time t, the vectors of predictors X2i(t) and β2 are
the corresponding regression coefficients. Note that the predictors in this model can have elements
in common with those in the longitudinal model. The form of W2i(t) is similar to W1i(s), including
subject-specific covariate effects and an intercept representing a frailty. The event intensity or hazard
at time t is given as

λi(t) = ptp−1µi(t) = ptp−1exp
{

XT2i(t)β2 + W2i(t)
}

(2.3)

which is monotone in t (decreasing if p < 1, increasing if p > 1) and reduces to the exponential
(constant in t) hazard if p = 1.
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2.3 Joint Model
The joint modeling approach given by [3] is used in the current study. It is assumed that the association
between the longitudinal and survival processes arises through a stochastic dependence between
W2i and W1i . Then the joint model constituted of two linked submodels: the longitudinal process
measurements model and the survival process model. The joint model links longitudinal model (1)
and survival model (2) by taking

W1i(s) = U1i + U2i ∗ s (2.4)

and
W2i(t) = γ1U1i + γ2U2i + γ3(U1i + U2is) + U3i (2.5)

where form of the association function, W2i(t), is similar to W1i(s), including subject specific covariate
effects and an intercept. We adopt the usual joint modeling assumption that the W2i(t) induce all of
the association between the two processes. The longitudinal submodel is the linear mixed effects
model that includes subject specific heterogeneous variance with each patient receiving random
intercept and linear slope terms. The form in W1i(s) is linear in time s, which is motivated while
exploring the longitudinal data. The parameters, γ1, γ2 and γ3 respectively measure the association
between the two submodels induced by the random intercepts, slopes and longitudinal term at the
event time W1i(t). Note that the pair of latent variables (U1i,U2i) has a mean-zero bivariate Gaussian
distribution N(0,Ψ), while the frailty term U3i) distributed as i.i.d. N(0, σ2

3) independent of (U1i,U2i).
The subject specific variance Vi has a lognormal distribution log(Vi) ∼ (µv, σ

2
v) as defined earlier.

Regarding the association function, W2i(t), a variety of several latent processes are considered. The
final model or form of W1i(s) and W2i(t) with their latent association are selected using Deviance
Information Criteria (DIC).

2.4 The Bayesian Joint Model
The Bayesian approach can be thought for the parameter estimation of the joint model. The standard
maximum likelihood method involves integrating out latent variables from the log likelihood function
which is difficult when the parameters are of high-dimensional [5]. The Bayesian method can overcome
such difficult as it can be computed by generating Markov chains with the Gibbs sampler. Bayesian
joint models have been studied by several researchers including [6],[7].

The Bayesian model is defined as the product of likelihood function and prior distribution, and
hence it can incorporate additional prior information through prior distributions. Here we assume the
association between longitudinal response Y and survival response T are conditionally independent
given the random effects Ui’. So the full joint distribution can be specified as:

f(Y,T, δ|θ1,θ2) =

∫
f(Y|θ1,Ui)f(T, δ|Y,θ2,Ui)f(Ui)dUi (2.6)

The Likelihood Function

The likelihood function for the full joint distribution of the longitudinal continuous response and time
to event variable is given as.

L(Y,T, δ|θ1,θ2) =

n∏
i=1

∫
f(Y|θ1,Ui)f(T, δ|Y,θ2,Ui)δiX(1− F (T, δ|Y,θ2,Ui))1−δif(Ui)dUi (2.7)

where

• Ui = {U1i,U2i,U3i} represents the shared underlying effects;

• θ1 =
{
β1,Ψ, µv, σ

2
v

}
are the population parameters as defined in the linear mixed effects

model;
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• θ2 =
{
β2,γ, σ

2
3

}
are the population parameters as given in survival model;

• f(.) and F (.) denote density and distribution functions, respectively.

Prior Distribution

Prior specification for the parameters is important in the Bayesian approach. Thus the regression
parameters β1 and β2 are assumed to be random variables and having normal distributions with
mean zeros and constant variances. The shape parameter p in the Weibull model and the association
parameters γ1, γ2 and γ3 in the joint model are assumed to follow gamma distributions. Moreover, the
shared effects are assumed to have normal distributions with mean zeros and constant variances.

Posterior Distribution

The Bayesian model is defined as the product of likelihood function and prior distribution including
normalizing constant. The joint posterior distribution for all the unknown parameters θ and random
effects U is then given by:

f(θ,U|Y,T) =
f(Y,T|θ,U)π(θ,U)∫

f(Y,T|θ,U)π(θ,U)d(θ,U)
(2.8)

where

• f(θ,U|Y,T) is the required posterior probability distribution;

• f(Y,T|θ,U) is the likelihood function; and

• π(θ,U) is the prior probability density

Then the Bayesian inference is based on samples drawn from the posterior distribution using the
Gibbs sampler. Estimate of the posterior distributions including posterior means and variances of the
parameters given the data are obtained based on the samples generated. Here the simulation was
conducted using the WinBUGS software.

3 Results
The objective of this study was to model the longitudinal measurements of CD4 counts per mm3 of
blood and the associated time to death using the Bayesian joint modelling approach. The average
number of baseline CD4 counts was 156.58 per mm3 of blood with standard deviation of 92.535. The
results of the analysis showed that from the 354 patients included in the study, about 5.9% of them
were dead while 94.1% were censored.

3.1 Results for Analysis of Linear Mixed Effects Model
The results are displayed in Table 1. It shows that among the covariates included in the longitudinal
model, observation time, squared observation time, gender, and tobacco addiction were statistically
significant at 5% level of significance. However, functional level, alcohol addiction and number of
opportunistic infections were insignificant. This is based on whether or not the 95% posterior credible
intervals for each estimate includes zeros. The estimates, β12 = 2.149 and β13 = −0.118 indicate
that the average CD4 counts of the patients may have the parabolic shape of increasing and then
decreasing over time with maximal point. In the Table 1, the estimated mean subject-specific precision

is (1/σ̂2
v) = 2.158 with 95% credible interval (1.596, 2.897). Hence, it supports the assumption of

heterogeneous variance for the repeated CD4 measurements. Use of the linear mixed effect model
that incorporate subject-specific variances is justified.
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3.2 Results of Analysis for the Weibull Model

For the Weibull model, all the five variables: number of living room, TB status, condom use, knowledge
of ART and number of opportunistic infections were significant under separate model analysis and so
all were selected to be included in the survival model. The model used was:

log(µ(timei)) = β21 + β22tbi + β23knowi + β24condi + β25oisi + β26romi (3.1)

The results are displayed in Table 2. It can be seen that TB status, knowledge of ART and condom
use are statistically significant at 0.05 level of significance. In Bayesian sense, the 95% posterior
credible intervals for coefficients of TB status, knowledge of ART and condom use exclude 0 while
that of number of living room and number of opportunistic infections include 0.
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3.3 Model Selection for the Joint Models
The literature on model selection for joint models is quite limited. In practice, the best longitudinal
model can be selected based on the analysis of observed longitudinal data, and the best survival
model can be selected based on the analysis of survival data, using standard model selection
procedures for these models. Then, we specify reasonable link between the two models such as
shared random effects. As mentioned above, we have chosen the precise nature of the two sub
models; the longitudinal to be LME model with subject-specific variances and the survival model to
be Weibull. Hence, their association is selected via the DIC (Deviance Information Criterion) and a
hierarchical modeling generalization of the AIC (Akaike Information Criterion). Taking θ∗ and Y∗ as
the entire collections of model parameters and data, respectively, DIC is computed as:

DIC = D̄ + pD (3.2)

whereD is deviance and pD is effective number of parameters. Here, the fit of a model is summarized
in the first term by the posterior expectation of the deviance, D̄ = Eθ∗|Y∗ [D] while the complexity of
the model is captured in the second term by the effective number of parameters pD as in [8]. The pD
is defined

pD = Eθ|Y [D]−D(Eθ|Y
[
θ̄
]
) = D̄ −D(

[
θ̄
]
) (3.3)

Small value of D̄ indicates goodness of fit, while small value of pD indicates a parsimonious model.
Hence small values of the sum (DIC) indicates preferred models. Several joint models with different
form of latent processes are explored in order to identify the joint model that fit data well. In all
cases, the results are based on three parallel MCMC sampling chains of 50,000 iterations each,
following a 25,000 iteration burn-in period. By default, WinBUGS provides the components of DIC for
the two submodels (i.e., the terms in the log-likelihood arising from longitudinal and survival model
components) to evaluate their relative contributions to the total DIC score; hence the DIC for the
longitudinal and survival sub models are denoted as DIC1 and DIC2, respectively.

Table 3 displays D̄, pD and DIC scores where the linear mixed effects model that incorporates
patient-specific CD4 variability is used for the longitudinal submodel and Weibull model used for
survival submodel are joined by taking different forms of the latent processes Wi1(s) and W2i(t). The
simple joint models M1 and M2 with no random effects for longitudinal submodel is fitted first, which
have a large (poor) total DIC. Next, random intercepts are introduced in the longitudinal submodel.
The incorporation of random intercepts in the longitudinal submodel improves DIC1 and also the
total DIC. Models M3 to M6 include random intercepts in Wi1(s), which results in high improvement
in DIC1 for the longitudinal submodel and the total DIC scores. Then, different latent associations
through the random intercepts and random variances are introduced. Models M7 to M12 have both
random intercepts and slopes in the longitudinal submodel which results in a substantial decrement
in DIC1. But, the incorporation of a frailty term, U3i, in Wi2(t) increased the value of DIC2 in general
as compared to models which does not include frailty term. Hence, the inclusion of frailty term does
not seem to improve the total DIC at all.
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Generally, Model M9 emerges with the smallest effective number of parameters (less complex
or more parsimonious model) among the candidate models. Model M7 has the smallest total DIC
(fits the data well) among all other models. Since W2i(t) = 0 in model M7, the data set used for this
paper does not support the use of joint model to relate a patients survival time to the characteristics
driving the patients longitudinal data pattern. This is clinically not reasonable, since high CD4 count
represents better health status; patients with CD4 counts that are low or more rapid decline would be
expected to have poorer survival. As it is evident from the output of the joint model M9, the use of
joint model is apparently not justified for these data, as indicated by the increase in the DIC score and
the insignificance of the association parameter γ2 with 95% posterior credible interval (-0.174,0.161)
that includes zero.

The posterior estimates of the regression coefficients β1 and β2 with their 95% confidence
intervals for final joint model M9 are summarized in Table 4. Here the results in both separate and
joint analyses are the same for longitudinal data. In the longitudinal submodel linear and quadratic
time, sex and tobacco addiction are statistically significant, and knowledge of ART and condom
use are significant in the survival submodel. However, the posterior estimates of the association
parameter γ2 in the joint analysis is insignificant, indicating that the CD4 counts is not associated with
the hazard of death.

When evaluating the overall performance of both the separate and joint models in terms of model
goodness of fit, the separate model performs better. However, the joint model is found to be better
in terms of the effective number of parameters. The effective number of parameters of the separate
M7 and joint model M9 are 633.365 and 633.078, respectively, while the posterior means of the

1041



Buta et al.; BJMMR, 5(8): 1034-1043, 2015; Article no.BJMMR.2015.114

deviance functions are 15139.60 and 15141.50. The corresponding DICs for the separate and joint
models are 15773 and 15774.600, respectively. Hence, the posterior mean of the deviance function
of the separate model is smaller, which results in smaller totalDIC score, than that of the joint model.
Therefore, the separate model fits the data better than joint model M9.

Regarding to the submodels, the DICs of the longitudinal submodel in the separate and joint
models are 12359.60 and 12359.30, respectively, which is some what lager in the separate model.
The respective DICs of the survival submodel in the separate and joint models are 3413.350 and
3415.290, the survival submodel has smaller DIC value. In general, the separate model is preferred
as it has a smaller total DIC than the joint model. The statistical insignificance of the association
parameter γ1 is also another evidence that the separate model is better than the joint model.

Assessing Chain Convergence
In all of the joint models, three parallel MCMC sampling chains, 50000 iteration each and 25000
burn-in, with different starting values are used. One of the initial values is obtained from the separate
analysis, the other is by randomly selecting from the corresponding prior distributions and the third
one is set to be null for all parameters.

Time series plot of the history of iterations of the final joint model and separate model shows
a reasonable degree of randomness between iterations and also the overlaps of the three chains
indicates that the same solutions are obtained for each initial values. Therefore, the Gibbs sampler
has been converged to the target density. Moreover, MC error can be checked. Since the values of
MC errors are very low in comparison to its posterior summaries especially its standard error, thus
the posterior density has converged to target density.

4 Conclusions
The objective of this study was to investigate the Bayesian joint model of the longitudinal CD4
measurements and time-to-death event of HIV/AIDS patients. The patients had been under ART
follow-up at ShaShemene Referral Hospital, Ethiopia. The method includes shared random effects
which induce association between the two models by incorporating subject specific variances which
possesses some attractive features on modeling longitudinal response. Both separate and joint
analysis were conducted.

In the separate analysis of the longitudinal data, the square root transformation CD4 measurements
were used to meet the normality assumption. The data were analyzed using the linear mixed effects
model incorporating patient specific variability. The patient specific variability was significant which
supported the assumption of heterogeneous variances. The predictors: observation time, squared
time, sex and tobacco addiction were statistically significant. Out of the covariates included in
the survival submodel of the joint model, knowledge of ART and condom use were found to be
significantly associated with time to death at 0.05 level of significance.

The Bayesian analyses of the joint models with a variety of latent processes were investigated.
First, a simple joint model with no random effects in both submodels is fitted and then other 11 models
with different random effects and various latent associations of the two submodels were investigated.
The results showed that the separate models were found to be statistically significant, while the
Bayesian joint model was not for the data considered in this study. This indicates that the CD4 count
has no significant effect on the patient’s survival time. It can be concluded that the statistical results
obtained from the separate analyses are consistent with those obtained from the joint model and so
the joint model is still important for predictions.
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