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Layout graph model for semantic façade reconstruction using laser point 
clouds
Hongchao Fan a, Yuefeng Wangb and Jianya Gongb

aDepartment of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway; bState Key 
Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China

ABSTRACT
Building façades can feature different patterns depending on the architectural style, function-
ality, and size of the buildings; therefore, reconstructing these façades can be complicated. In 
particular, when semantic façades are reconstructed from point cloud data, uneven point 
density and noise make it difficult to accurately determine the façade structure. When inves-
tigating façade layouts, Gestalt principles can be applied to cluster visually similar floors and 
façade elements, allowing for a more intuitive interpretation of façade structures. We propose 
a novel model for describing façade structures, namely the layout graph model, which involves 
a compound graph with two structure levels. In the proposed model, similar façade elements 
such as windows are first grouped into clusters. A down-layout graph is then formed using this 
cluster as a node and by combining intra- and inter-cluster spacings as the edges. Second, 
a top-layout graph is formed by clustering similar floors. By extracting relevant parameters 
from this model, we transform semantic façade reconstruction to an optimization strategy 
using simulated annealing coupled with Gibbs sampling. Multiple façade point cloud data with 
different features were selected from three datasets to verify the effectiveness of this method. 
The experimental results show that the proposed method achieves an average accuracy of 
86.35%. Owing to its flexibility, the proposed layout graph model can deal with different types 
of façades and qualities of point cloud data, enabling a more robust and accurate reconstruc-
tion of façade models.
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1. Introduction

Advanced three-dimensional (3D) building models, 
along with detailed and computable information, 
play an important role in urban planning, thermal 
performance evaluation, and virtual reality, among 
other applications (Li, Wang, and Jiang 2021). In 
such building models, semantic façade models are 
key constituents. Unlike 3D solid models, which are 
solely used for visualization, semantic façade models 
indicate the location and label of each façade element 
and help identify the geometric and topological rela-
tionships among these elements. In this regard, the 
task of reconstructing a semantic façade model is 
considerably more difficult than semantic segmenta-
tion, which automatically extracts semantic façade 
entities from images or laser point clouds but does 
not describe their relationships (Salas 2020; Shan et al. 
2020) To establish a common standard of storage and 
exchange for this type of model, the Open Geospatial 
Consortium introduced the CityGML (Gröger and 
Plümer 2012). Detailed façade information can be 
defined by Levels of Detail 3 (LoD3), which include 
the appearance, 3D geometry, and topology of façade 
entities.

The difficulty in automatically reconstructing 
semantic façade models can be ascribed to two factors. 
First, façade observations are often noisy, leading to 
a rough result of semantic entity extraction. Data- 
driven methods, such as dynamic programming 
(Cohen, Schwing, and Pollefeys 2014), conditional 
random field (Gadde et al. 2017), Restricted 
Boltzmann machine (Fathalla and Vogiatzis 2017), 
are difficult to completely eliminate the interference 
of noise, resulting in the detection results of facade 
elements with fuzzy boundaries and missing details. 
Even when using state-of-the-art deep learning meth-
ods, their robustness remains unreliable (Qi et al. 
2017; Su et al. 2018; Zhang et al. 2019; Hensel, 
Goebbels, and Kada 2019). Recently, researchers have 
been attempted to improve the problems from the 
perspective of multi-source data integration. Lin 
et al. (2019) use thermal infrared imager to obtain 
heat distribution of facade. With combination of 
image features, a high robustness facade element 
extraction model is developed. The use of thermal 
imager equipment, requires a large of labor and time 
costs in large-scale modeling. By improving the dis-
tortion correction method of panoramic images, Zhu 
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et al. (2020) excavate reliable information of building 
facades from panoramic photos. However, this 
method does not fundamentally solve noisy problem 
in images. Hu et al. (2020) take advantage of regular-
ized arrangement of facade elements in street-view 
images, and transform the alignment of facade ele-
ments into binary integer programming, which opti-
mizes the position accuracy of facade elements and 
improves computational efficiency. In fact, facade ele-
ment extraction still relies on deep learning method, 
such as YOLO v3 (Redmon and Farhadi 2018), which 
cannot solve the occlusion problem. Wu et al. (2020) 
collected street-view images from search engines, 
social media, and mobile phones, and extracted facade 
information by constructing image point cloud. This 
method lacks the ability to extract semantic informa-
tion on facades.

The second factor is the complexity and diversity of 
the façade structures themselves, which makes it diffi-
cult to describe façades structure with different styles 
in a flexible manner. Existing methods such as those 
based on façade grammar are often unable to derive 
façade structures. (Martinovic and Van Gool 2013; 
Weissenberg et al. 2013; Gadde, Marlet, and Paragios 
2016; Dehbi et al. 2017). This is because the above 
methods have a consistent understanding of facade 
structure, that is, the facade structure is a combination 
of simple geometric elements. In fact, whether from the 
perspective of architectural construction or architec-
tural design, the structure of facade is not deter-
mined by simple geometric or topological rules. It 
is affected by the design expectation of client, the 
style of architectural designer and the environmen-
tal conditions. The excavation of structure charac-
teristics should not be based on the surface 
morphology, but should be combined with the 
causes of facade structure, the implied esthetic 
and people’s cognitive law.

In this regard, we propose a novel façade structure 
description method, i.e. facade layout graph model. 
The proposed approach is based on Gestalt principles 
(Koffka 1935; Schwartz and Krantz 2017) and the 
Principle of architectural form (Flemming 1990; 
Doersch et al. 2012; Jennath and Nidhish 2016). 
Based on Gestalt principles, visually similar elements 
(i.e. those with similar shapes, labels, and sizes) can be 
grouped as a cluster. This cluster then serves as a node 
of the graph. Moreover, the Principle of architectural 
form enables the theoretical interpretation of architec-
tural knowledge and the esthetic design of façade 
structures. In this method, considering the application 
of topological graphs, we use a few parameters to 
represent the attributes of semantic entities (through 
nodes) and the topological relationships among them 
(through edges). Moreover, nodes formed using 
Gestalt principles can represent multiple entities by 
sharing attributes. Façades must be designed 

considering human suitability and environmental fac-
tors, such as lighting and energy saving, in order to 
ensure appropriate architectural functionality. 
Moreover, codes and directives have been stipulated 
to control the shape and size of façade elements in 
most countries or organizations (e.g. (MHCLG 2019)). 
We set the parameter domains based on these codes 
and directives.

As the primary contribution of this study, the pro-
posed method deduces and reconstructs semantic 
facade model with low quality of data and complicated 
façade structure. By integrating the parameterized lay-
out graph model using prior knowledge, we apply 
simulated annealing (Metropolis et al. 1953) to achieve 
non-convex optimization within a high-dimensional 
space. Moreover, Gibbs sampling coupled with simu-
lated annealing (Geman and Geman 1984) is used to 
obtain a new candidate solution within the appropri-
ate parameter domain.

The remainder of this paper is organized as follows. 
In Section 2, we introduce and discuss existing seman-
tic façade reconstruction methods and related works. 
Subsequently, we present the detailed construction of 
the proposed layout graph model in Section 3.1, and 
the corresponding parameter configuration in Section 
3.2. The optimal layout of the point cloud inference 
algorithms is presented in Section 3.3. The experimen-
tal results and analyses are discussed in Section 4. 
Lastly, the conclusions of this study are presented in 
Section 5.

2. Related work

Several studies have focused on semantic façade 
reconstruction. Instead of using machine learning 
methods to improve semantic segmentation accuracy, 
we reconstruct façade structures by exploring the geo-
metric and topological relationship of the façade 
structure.

2.1. Grammar designing

Methods based on façade grammar, which include 
split grammar (Wonka et al. 2003), CGA shape gram-
mar (Müller et al. 2007), and developed formal gram-
mar (Ripperda and Brenner 2006, 2009), are closely 
related to the proposed methodology. The advantage 
of façade grammar is that it can describe a façade 
structure by designing a set of production rules 
(Alegre and Dellaert 2004; Becker 2009), benefiting 
from the fact that façades, being man-made objects, 
have regular shapes (rectangular, circular, triangular, 
etc.) and repetitive patterns. Using façade grammar, 
a façade structure can be split into numerous basal 
tiles using a split line, and each basal tile contains the 
semantic label and shape of the façade element. 
Horizontal and vertical production rules are used to 
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derive these split lines. For example, the rule 
floor � >windowjremain floor; 0v0; 85; 30ð Þf gimplies 

splitting the left-hand non-terminal symbol “floor” into 
“window” and “remaining_floor” with a vertical split 
line “v” at the position (85, 30). Either the optimization 
method or the learned probability distribution should 
govern the selection of the production rules and splitting 
positions when reconstructing a semantic façade model.

2.2. Grammar optimization method

Ripperda and Brenner (2006) transformed façade 
grammar into the form of a parameter set and adopted 
the reversible-jump Markov chain Monte Carlo 
method to search for optimal combinations of the 
production rules from high-dimensional parameter 
spaces. This method is considerably time-consuming 
owing to the large parameter spaces involved. To 
reduce computational complexity, Koutsourakis et al. 
(2009) used a Markov random field to guide the opti-
mization process. This method uses a sequence of 
three rules – an extrusion, a vertical split operator, 
and a horizontal split operator – to decompose formal 
grammar into graphical models. Thereafter, efficiency 
is improved using intrinsically decoupling optimiza-
tion. Teboul et al. (2011) employed the hierarchical 
Markov decision process to phrase 1D grammar par-
sing problem. Reinforcement learning (RL) can be 
used sequentially to determine the optimal solution 
of rule combinations. Riemenschneider et al. (2012) 
used irregular grids to parse complex shape grammar 
and the pixel-wise classifier to extract the position of 
label transitions; thus, an initial irregular grid could be 
determined. Using the Cocke–Younger–Kasami 
(CYK) algorithm, the rationality of attribute assign-
ment for each grid can be ensured. Cao et al. (2017) 
improved the efficiency and accuracy of the procedure 
of solving the Markov decision process using high- 
level topology optimization. The abovementioned 
optimization methods function efficiently under the 
premise of designing specific grammar rules to achieve 
precise reconstruction. However, the designed pro-
duction rules need to be simple because the optimiza-
tion process typically necessitates large computing 
times to ensure convergence.

2.3. Learning grammar

The concept of learning grammar production prob-
ability was further developed to obtain more flexible 
grammar rules. This concept is extended from the field 
of natural language processing. As this method 
requires a treebank, it is necessary to convert façades 
with ground truth into parsing trees in order to form 
datasets; this is a heuristic method for façade parsing. 
Martinovic and Van Gool (2013) used the Bayesian 
model merging method to refine grammar parsing 

trees using labeled façade images. Repeated and 
redundant grammar rules are reorganized such that 
trees with a clear hierarchy can be created depending 
on different façade styles. Weissenberg et al. (2013) 
proposed a method for the automated learning of 
façade grammar; this method involved three steps: 
compression, comparison, and virtual façade synth-
esis. A minimum description length was used to 
ensure the validity of synthetic grammar. Gadde, 
Marlet, and Paragios (2016) used RL to analyze 
façade grammar, using which a less arbitrary and 
more systematic parsing tree could be generated. 
Dehbi et al. (2017) used statistical relational learning 
to automatically learn weighted attribute context-free 
grammar, which enforces the robustness of recon-
structing complex façades. However, this method is 
limited by the façade style selected in the training set; 
as it is a supervised learning method, datasets contain-
ing different façade styles cannot be mixed.

2.4. Structure deducing

Approaches for deducing façade structures have also 
been proposed. For example, Zhang et al. (2013) 
reconstructed façade structures by leveraging their 
symmetry. Fan et al. (2015) proposed a layout grid 
for describing a façade structure, and Liu et al. (2019) 
used the Kronecker Product to model the repetitive 
patterns of façades. Recently, Li et al. (2020) used 
several rules to improve the geometric correctness of 
reconstructing façades from unstructured 3D point 
clouds. Apart from the abovementioned approaches, 
methods for detecting façade openings have also been 
proposed (Zolanvari, Laefer, and Natanzi 2018; Xia 
and Wang 2019). However, despite being able to 
achieve façade reconstruction, these approaches do 
not adequately account for the structural differences 
in façades; in these methods, façades are reconstructed 
solely from selected datasets.

2.5. Graph model

The proposed method focuses on the geometric and 
topological relationships among façade elements, 
which are represented using a compound graph. This 
approach is partially inspired by the attribute parsing 
graph (Han and Zhu 2005; Schmittwilken et al. 2009). 
In an attribute graph, each element is indexed by the 
spatial relations among surrounding elements. By 
defining bottom-up generation rules, the entire struc-
ture can be deduced from elements in a Bayesian 
framework. However, validated applications of such 
attribute graphs involve consistent shapes and struc-
tures, such as the detection of Manhattan world struc-
ture (Liu, Zhao, and Zhu 2018) and human pose 
estimation (Park, Nie, and Zhu 2017). For this task, 
façade structures need to be described in a more 
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flexible manner due to their complexity and variety. 
Xiong, Elberink, and Vosselman (2014) and Xiong 
et al. (2015) introduced a flexible roof topological 
graph for reconstructing building roofs, which is simi-
lar to the method proposed herein. The proposed 
layout graph model, based on the abovementioned 
works, is introduced in Section 3.

3. Layout graphs for reconstructing semantic 
façade models

This study aims to reconstruct a semantic façade 
model using a point cloud. Given the unevenness of 
façade point clouds, we implement reconstruction 
using a novel framework (Figure 1). Under this frame-
work, we first segment façade components using the 
RANdom SAmple Consensus (RANSAC) method 
(Fischler and Bolles 1981). Similar to the works of 
Tuttas and Stilla (2013) and Nguatem, Drauschke, 
and Mayer (2014), coarse outlines of windows and 
doors were extracted by detecting edges and the direc-
tion of inliers. In our experiment, the coarse outlines 
of balconies could also be extracted by setting 
a direction of outlier. This was possible because win-
dows are often indentations in the façade, whereas 
balconies protrude from the façade. To measure the 
coherence between components and the layout graph 
model, we project the refined façade structure onto 
a 2D plane. Depending on the size of the façade, three 
initial layout graph models of the window, balcony, 
and door are generated randomly. These models 
should conform with prior knowledge determined 
using the Principle of architectural form. By 

integrating these initial models with the extracted 
components, we can obtain the joint-prior probability 
and likelihood corresponding to the three compo-
nents. On this basis, the problem of searching for an 
optimal configuration of the layout graph model can 
be formulated as Maximum A Posteriori (MAP) esti-
mate Owing to the high-dimensional parameter space, 
instead of performing the MAP calculation directly, 
optimization is first carried out through simulated 
annealing coupled with a Gibbs sample, which corre-
sponds to optimization within the Bayesian frame.

3.1. Layout graph model

Owing to its simple and flexible characteristics, we 
use the graph model to describe façade structures. 
The classical graph model is defined as G ¼ <V;E > , 
where V denotes the vertex of the graph, which is 
composed of objects with similar attributes, and E is 
the edge formed by connecting two vertices, which 
represents the geometric and topological relationship 
between these vertices (Kilgour and Hipel 2005). 
From the perspective of building reconstruction, 
a few methods applying this graph model to describe 
repetitive building components have been proposed. 
For instance, by considering each facet on the roof to 
be identical, a topological roof graph can be created 
Xiong et al. (2015). In addition, some studies (Fan 
et al. 2015; Li et al. 2020) have described façade 
structures using topological graphs, focusing solely 
on basic façade elements such as windows. However, 
deriving façade structures using these methods is 
significantly complicated, because several constraints 

Figure 1. Overall workflow of the proposed framework.
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such as horizontal alignment, vertical alignment, 
array arrangement, and symmetry need to be 
satisfied.

Façades feature hierarchical structures depending 
on the Principle of architectural form. For example, 
the floor has a higher level than windows or balconies 
when considered as a semantic entity. Thus, when 
specifying the location of a window, we typically first 
specify the floor on which it lies. In this regard, the 
conventional graph is inadequate in terms of depicting 
hierarchical structures in the façade. Thus, we intro-
duce a hierarchical graph model representing large 
and complicated structures; such graphs are typically 
termed as compound graphs (Sugiyama and Misue 
1991; Dogrusoz et al. 2004). The advantage of 
a compound graph is that it describes a graph model 
that employs a node to represent a sub-graph. We 
exploit a compound graph model to describe the hier-
archical façade layout and call it the façade layout 
graph model.

For the façade in Figure 2, we have drawn a façade 
layout graph model with a two-level compound graph. 
The first level graph is termed Top Layout Graph 
(TLG) as it represents the floor layout. When elements 
on adjacent floors are similar, they can be grouped 
into a cluster according to the “Law of Proximity”, 
included in Gestalt principles. For example, the red 
node in Figure 2 represents the first three floors with 
the same attributes, and the green node represents the 
last two similar floors. Thus, a TLG is formed, and we 
denote it as Gt ¼ <Vt;Et > , where Vt is a set of nodes; 
in this case, it contains two different nodes. The attri-
butes of a node in Vt can be “sf”, “wf”, “hf”, “hgap”, 
“wb”, and “DLG” detailed descriptions are presented 
in Figure 2. Et represents the geometric relationship 
among the nodes in Vt. In particular, it refers to the 
connection of different floors, which can be reflected 
in the 3D shape of a façade.

The second level graph is called the Down Layout 
Graph (DLG), representing the layout of façade ele-
ments. Each node in this graph can be generated from 
an element cluster consisting of one or more façade 
elements. The determination of an element cluster can 
be based on the “Law of Proximity” or the “Law of 
Similarity”, included in Gestalt principles. The edge in 
the DLG is represented by a collection of intra- and 
inter-cluster spacings. Accordingly, the DLG can be 
represented by Gd ¼ <Vd;Ed > . Vd ¼ v1; v2 . . . vnf g, 
where “n” represents the number of nodes. The attri-
butes of each node consist of a tuple of three items, 
such as vn ¼

0sw0; 0ww0; 0hw0ð Þ, as shown in Figure 2. 
An edge is composed of two items, namely 
E ¼ 0d intra0; 0d inter0f g, where “d_intra” have two 
types of values 0 and d2(n-1), which represents the 
intra-cluster spacing of the n-th node, and “d_inter” 
has one value d(2n-1), which is the inter-cluster spacing 
between two nodes connected by an edge. It should be 
noted that each cluster has an intra-cluster spacing. 
When there is only one element in a node, its intra- 
cluster spacing is set to 0.

To describe a façade structure in the form of 
a layout graph model, we parse it using a top-down 
process, as shown in Figure 3. First, we segment the 
refined façade into three components: windows, bal-
conies, and doors. Considering the intrinsic connec-
tion of windows and balconies, we analyze their layout 
based on a potential sequence, such as windows→bal-
conies→doors. Accordingly, the layout of windows 
can be parsed first. In this example, we parse the layout 
via visual interpretation. Thereafter, a TLG with two 
nodes can be generated according to the two types of 
floors, which are surrounded by the red and green 
rectangles. Each node in TLG possesses unique attri-
butes, except for the geometric attributes (i.e. “wf”, 
“hf”, “wb”); the sub-graph, i.e. the DLG, is also unique. 
Therefore, we only need to analyze the elements of one 

Figure 2. Façade layout graph and attributes.
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floor in a node of the TLG and the others remain the 
same, similar to the DLG in Figure 3. The two different 
DLGs correspond to the two nodes in the TLG. The 
parsing of balconies is based on the introduction of 
windows.

To ensure that each façade layout graph has 
a unique form, we construct the nodes in the graph 
by following Gestalt principles. Two necessary princi-
ples are formulated to automatically implement the 
construction of nodes based on Gestalt principles: 

Principle 1: When all the elements in a DLG are 
similar to each other, each edge in this DLG must 
satisfy the condition that the intra-cluster spacing, 
“d_intra”, is less than the adjacent inter-cluster 

spacing, “d_inter”. Thus, elements in proximity can 
form a cluster, conforming to the “Law of Proximity.” 
Two examples are shown in Figure 4(a and 4(b)).

Principle 2: Elements with different widths or 
heights are treated under another condition, 
where the shape factor takes precedence over the 
spacing factor when grouping elements, because 
only elements with the same shape can express 
their attributes through a node. Two typical exam-
ples are depicted in Figure 4(c) and 4(d).

To illustrate the difference between “d_intra” and 
“d_inter”, we use polylines to represent the edges in 
the graph, where a segment has a greater height, 

Figure 3. Top-down parsing of a façade using the layout graph model.

Figure 4. Two descriptions of the façade graph model.
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implying larger spacing. As shown in Figure 4(a), w1 
and w2 can be clustered to form V1. This is because, 
when d0 < d1, w2 tends to form a cluster with w1 rather 
than w3. The spacing between w3 and w4 is equal to 
that between w4 and w5, suggesting that the three 
elements – w3, w4, and w5 – can be clustered to form 
V2. In Figure 4(b), a special node V1 is formed by 
a single element w1 when d0 ¼ 0. Based on the edges 
in Figure 4(a) and 4(b), it is evident inter-spacings are 
always greater than nearby intra-spacings when the 
elements are similar. Figures 4(c) and 4(d) illustrate 
a special case where the widths of the elements in one 
layer are different; thus, additional clusters are needed 
to record their attributes. The nodes V1 and V3 in 
Figure 4(c) and V1 and V2 in Figure 4(d) only contain 
one element; therefore, their intra-cluster spacings 
are 0.

3.2. Model parameters

The layout graph model is described by a parameter 
set Θ, which contains the attributes of the nodes and 
edges in the TLG and DLG; some configurations of the 
parameter set Θ are shown in Figure 2. To generate 
a new layout graph model, in addition to the para-
meters mentioned above, we also need parameters that 
can describe the graph structure, such as the number 
of nodes in the TLG and DLG. By randomly config-
uring the parameter set Θ, we can obtain a large num-
ber of façade layouts. However, some incorrect and 
unreasonable façade layouts can also be constructed, 
such as the façades in Figure 5(a) and 5(c), due to the 
absence of appropriate constraints. In façade recon-
struction, many constraints can be represented by the 
topological relationships between elements.

Before describing the topological constraints, we 
first impose a constraint on the geometric properties 
of the façade elements. Conventionally, the design of 
residential buildings, composite buildings, and shop-
ping malls need to comply with certain codes and 
standards (Horton 2015; MTRTS 2016; European 
Union 2018; MHCLG 2019). For instance, to ensure 

that people are comfortable within the building space, 
the State of Victoria (2017) stipulates that the floor 
height must be greater than 2.5 m, and SNSW (2015) 
specifies that the floor height needs to be greater than 
2.2 m. In multi-floor and multi-functional buildings, 
the height of the ground floor should be greater than 
that of the other floors to provide additional space for 
use, such as retail or commercial uses. SNSW (2015) 
stipulates that the ground floor height should be 
greater than 3.3 m. Buxton (2015) determined that 
the standard height for the ground floor of 
a shopping mall should be no less than 3.2 m. In 
addition to suitability, energy and daylight savings 
are also important factors to be considered. For 
instance, WAPC (2018) states that the height of 
a window should be greater than 1.6 m, and the State 
of Victoria (2017) stipulates that the minimum width 
of a window should be 1.2 m. We studied several codes 
and directives related to building design and energy 
saving, which provide a reference for setting the initial 
domain of the geometric attribute of façades; these are 
described in Table 1.

As façade elements are geometrically and topologi-
cally related, we cannot generate them arbitrarily. 
Under constraints, the process of generating a new 
façade layout can be outlined as follows:

Step 1. First, the initial floor height, i.e. “hf”, is 
obtained randomly. The domain of “hf” is 
defined in Table 1. Accordingly, the total num-
ber of floors is then obtained by calculating 
H=hfb c, where “H” is the height of the façade 

and ⌊ ·⌋  represents the round-down function.

Figure 5. Specific examples of façade layouts: (a) façades that could not be reconstructed; (b) façades that were correctly 
reconstructed; and (c) façades comprising correct elements, with layouts not in conformance with the Principle of architectural 
form, i.e. they are significantly crowded or sparse.

Table 1. Definitions of parameters in layout model.
Parameter Initial domain

hf [2.2, 6.5]
wf W
hw [1.0, 3.5]
ww [0.5, ~]
hgap [0.1, hf � hw]
sp [0.1, ~]
ne [1, ~]
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Step 2. The number of nodes (nns) in the TLG is 
calculated considering that each node repre-
sents at least one floor. The attribute “sf” of 
each node can be determined using 
a stochastic allocation algorithm based on 
the Banker algorithm (Louchard and Schott 
1991). According to the Banker algorithm, 
when allocating the number of floors in one 
node, “sf” should be greater than 0. Lastly, the 
sum of “sf” for all the nodes must be equal to 
the total number of floors. A pseudopod code 
is presented in Algorithm 1.

Step 3. The value of “wf” is determined based on the 
façade width “W”, and the initial values of “wb” 
and “hgap” are set as 0 for each node in the TLG.

Step 4. To obtain the configuration of the DLG for 
one node in the TLG, a procedure similar to that 
used for forming the TLG is used. Thus, the 
heights “hw” and widths “ww” of the façade 
elements are randomly generated according to 
their domain, as defined in Table 1. As spacings 
exist between the elements on one floor, the 
value of “sp” needs to be generated randomly 
according to its domain, which is defined in 

Table 1. Therefore, the number of elements can 
be calculated as W= wwþ spð Þb c.

Step 5. Similar to step 2, the number of nodes in the 
DLG can be generated randomly considering 
that each node contains at least one element. 
A stochastic allocation algorithm can be used to 
determine the attribute “sw”.

Step 6. Finally, the remaining width on one floor 
can be calculated as wf � ne� ww. Using 
Principle 1, the edge attribute of the DLG can 
be assigned.

3.3. Model formulation

In the proposed framework, the façade model can be 
generated using a parameter set. This procedure adopts 
the bottom-up approach. As shown in Figure 6, we 
consider the window structure as an example. At the 
beginning of reconstruction, two window layouts are 
reconstructed according to the DLGs. Thereafter, 
according to the attributes of the red nodes in the 
TLG, a three-layered structure surrounded by a red 
rectangle is reconstructed, where each layer contains 
the same window layout as the layer under it. The two- 
layered structure on the right, surrounded by a green 
rectangle, is reconstructed in a similar manner. By 
combining these two structures, we can reconstruct 
a façade with windows. The position of each element 
on one floor can be cumulatively acquired using the 
attributes “wf” and the edges in the DLG. Thus, the 
coordinates of elements in the i-th floor can be calcu-
lated using Equation (1): 

Figure 6. Bottom-up reconstruction using the layout graph.

Algorithm 1: Stochastic allocation algorithm

Input: number of nodes (nns), number of floors (nfs) 
Output: SF  0sf1

0; 0sf2
0; . . .0 sfnns

0
� �

For i  1 to nns do 
available nfs � nnsþ i //guaranteeing that there is at  

least one remaining node 
SF i½ �  random:randint 1; availableð Þ
nfs nfs � SF i½ �

x ¼
wspþ ndjð

0ww0Þ þ edð0d intra0Þ2�ðjþ1Þ if nm< j< nmþ ndjð
0sw0Þ

wspþ edð0d inter0Þ2�ðjþ3Þ þ ndjþ1ð
0ww0Þ else nm ¼ nmþndjð

0sw0Þ

(

y ¼ hsp � ntið
0hf 0Þ

(1) 
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where “ndj” denotes the j-th node in the DLG, “ed” 
denotes the edges in the DLG, “nti” refers to the nodes 
in the TLG, and “nm” is a counter. When j = 0, we have 
hsp ¼ H, wsp ¼ nti wbð Þ, nm ¼ 0.

By mapping the generated model to the given data, 
coherence can be measured. In this context, we trans-
form the problem of determining the optimal model 
for the given data into a MAP strategy (Equation (2)). 
Posterior probability can be defined via a joint-prior 
estimator and the likelihood function: 

Θ�¼ arg max P ΘjDtð Þð Þ

¼ arg max β� Pr Θð Þ þ 1� βð Þ � L DtjΘð Þð Þ
(2) 

where Θ refers to the parameter set containing 
Θwindow, Θbalcony, and Θdoor. Pr(Θ) represents the 
joint-prior estimates of the reconstructed model; 
and L(Dt|Θ) represents the likelihood function of 
the reconstructed model and the given data Dt. The 
weight β 2 0; 1ð Þ can be adjusted according to the 
quality of point cloud data. In most practical sce-
narios, the weight can be set as β ¼ 0:5. According 
to our test results, the weight has an effect only 
under extreme conditions, i.e. when very few con-
tours are extracted. This is because the acceptance 
of a model requires a high likelihood and also 
a reasonable prior estimate. We consider the win-
dow as an example to introduce the function.

3.3.1. Joint-prior estimates
In building façades that are significantly crowded or 
sparse, the components typically do not conform to 
the Principle of architectural form or the lighting 
requirements of the building (Goia, Haase, and 
Perino 2013), as demonstrated in Figure 5(c). 
A rational control function is established to assess 
whether the generated model conforms to the prefer-
ences of the inhabitants. Three prior conditions are 
designed for this function.

Under the first condition, the total width of 
windows on one floor is constrained. A detailed 
introduction of this condition can be found in 
Wang, Fan, and Zhou (2020), and it is also 
expressed in Equation (3). The smaller the value of 
Pr1(Θ), the more reasonable is the façade layout; 
this ensures that windows on the façade are not 
excessively sparse or crowded. 

Pr1 Θwindowð Þ ¼

Pnw

i¼0
ww

W
�

nw
2� nw � 1

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

(3) 

where nw= 2� nw � 1ð Þ is the ratio of the reference 
width of the window to the façade. We sum up this 

function by investigating several façades and verifying 
the effectiveness of the experiments.

Under the second condition, the ratio of the area of 
the window to that of the wall is constrained, consid-
ering the Window-to-Wall Ratio (WWR). Typically, 
the optimal WWR has minor variations in different 
regions or directions with respect to the sun. For 
example, Lee et al. (2013) reported that the optimal 
WWR in Asia was 0.25 in the south and 0.5 in the 
north. Goia (2016) investigated the optimal WWR for 
office buildings in Europe and reported it to be 
0.3–0.45. Shaeri et al. (2019) analyzed the relationship 
between the WWR and the energy saving in urban 
buildings, reporting an optimal WWR value of 0.3–0.5 
for Bushehr. In our experiments, we believe that the 
closer the WWR is to 0.3, the better is the façade 
layout. 

Pr2 Θwindowð Þ ¼

Pnw

i¼0
ww� hw

W � H
� WWR

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

(4) 

The third condition pertains to the inherent topo-
logical relationship among façade elements. For 
example, balconies are always adjacent to windows. 
Therefore, we combine different components to 
determine whether the generated model is feasible. 
For each floor, the relationship can be formulated 
as follows: 

Pr3 Θð Þ ¼ 1 if ywindow � ybalconyþhbalcony
1� 104 else

�

(5) 

where (xwindow, ywindow) and (xbalcony, ybalcony) repre-
sent the coordinates of lower-left corner of a window 
and a balcony respectively, hbalcony means the height of 
a balcony.

The abovementioned three conditions are simulta-
neously implemented, and the following function is 
used to normalize the prior estimate: 

Pr Θð Þ
¼ exp � Pr1 Θwindowð Þ þ Pr2 Θwindowð ÞÞ � Pr3 Θð Þð Þ

(6) 

3.3.2. Likelihood function

Likelihood indicates the degree of coherence 
between the generated model and given data. This 
can be obtained by mapping the reconstruction 
model to an actual façade point cloud. The higher 
the degree of coherence, the better is the parameter 
configuration. In the reconstructed models, win-
dows are represented by a rectangular Bounding 
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Box (BBox). After mapping these BBoxes to the 
refined façade structure, we can measure the degree 
of coherence by counting the number of laser 
points within the BBox area, denoted as L1. 
However, using this calculation function alone 
may generate a large component, because the larger 
the area, the greater is the number of points. 
Therefore, a point density calculation method is 
also required to ensure the reliability of the like-
lihood function, denoted as L2.

(a) Point counting function

To simplify the calculation complexity, we first 
project the façade plane onto a 2D plane, where the 
x-axis represents the width of the façade and the y-axis 
represents height. Each generated rectangle in the 
model is regular with respect to the coordinate axes. 
The Euclidean distance from each laser point to the 
center of the rectangle is calculated, where the dis-
tances along the x- and y-directions are expressed as 
xd and yd, respectively. When xd <ww=2 and 
yd < hw=2 are satisfied simultaneously, the measured 
laser point can be assigned to the window class. The 
total number of laser points corresponding to the 
windows can be expressed by point_window 
(Θwindow). We set the total laser points in the façade 
as length(Dt); then, the function can be built as 
follows: 

L1 DtjΘwindowð Þ ¼
point windowðΘwindowÞ

lengthðDtÞ
(8) 

(b) Point density function

Point density is defined by the number of laser 
points contained within a single rectangle. Using the 
previous function, L1, point_window(Θwindow) was 
obtained. Thus, the point density can be calculated 
using Equation (9): 

L2 DtjΘwindowð Þ ¼
point windowðΘwindowÞ

total area windowsðΘwindowÞ
(9) 

In this manner, the total area of all the rectangles in 
the generated model can be calculated easily.

Similar to the procedure for the window, the coher-
ence of the balcony and door can also be calculated. 
Consequently, the total likelihood function can be 
obtained as follows: 

3.3.3. Global optimization
We aim to calculate the value of Θ* according to the 
MAP. Searching for optimal model parameters is 
a non-convex optimization problem. Simulated 
annealing can be used to obtain the global optimal 
within a high-dimensional space. Theoretically, simu-
lated annealing can escape from local optima in 
a probabilistic manner, ensuring convergence to the 
optimal global solution for any initial parameters 
(Lafarge et al. 2008).

The steps involved in simulated annealing used for 
this purpose are as follows: 

In this task, we set α ¼ 0:95 and T0 ¼ 100. 
When the temperature decreases to Tmin ¼ 10� 6 or 
the current solution does not change even after 
iter max ¼ 50, we assume that the algorithm has con-
verged. The abovementioned values represent the 
optimal configurations for simulated annealing, as 
summarized in our experiment. When generating 
new hypothetical parameters, Gibbs sampling can be 
used to ensure that each generated solution is mean-
ingful for a particular façade. 

3.3.4. Gibbs sampling
When generating a new solution from the parameter 
space, two problems need to be addressed. First, owing 
to the existence of several non-independent para-
meters in the layout model, direct sampling from the 
parameter space is difficult. Second, random sampling 
from a high-dimensional space can yield invalid solu-
tions. To address these issues, we adopt Gibbs sam-
pling to generate candidate solutions, influenced by 
the geometric and topological relationships among the 

L DtjΘð Þ ¼ 1 � exp � L1 DtjΘwindowð Þ � L1 DtjΘbalcony
� �

� L1 DtjΘdoorð Þ

þL2 DtjΘwindowð Þ � L2 DtjΘbalcony
� �

� L2 DtjΘdoorð Þ

� �� �

(10) 

Algorithm 2: Optimization

Step 1. Input Initial parameter Θ, 
Initial temperature T0, 
iteration = 0 

Step 2. Cooling schedule Ti  αi � T0 
While Ti > Tmin and iteration< iter max Do 

Generate a new parameter Θnew from parameter space. // 
Gibbs sampling  
d E  P Θnewð Þ � P Θð Þ

IF d E > 0 or expðd E=TiÞ> random 0; 1ð Þ // acceptance  
rate ¼ expðd E=TiÞ
Then Θ Θnew, iteration 0 

Else iteration iterationþ 1 
Step 3. i←i + 1 and Repeat Step 2 
Step 4. End and Output Θ
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elements. To increase the rate of convergence, we also 
control the Gibbs sampling process by designing the 
proposition kernel Qm.

3.3.5. Proposition kernels
At different stages of the algorithm, we select different 
kernels for sampling under different probabilities. The 
proposed kernels narrow the dimension at different 
stages, limiting the scope of finding the optimal solu-
tion. This narrowing allows the algorithm to produce as 
many meaningful parameter combinations as possible. 
Three kernels (Q1, Q2, and Q3) are proposed in this 
work, and the corresponding changes are shown in 
Figure 7, where we consider the window as an example. 

Q1: TLG kernel. This kernel plays an important role 
during the initial stage of the algorithm. Under this 
kernel, the DLG is fixed to only one node, which pre-
vents large changes in the horizontal direction. Thus, 
we can search for the optimal configuration of the TLG. 
The change in state from (a) to (b) in Figure 7 expresses 
the application of Q1.

Q2: DLG kernel. In this kernel, the number of win-
dows and the width of the window can be selected as 
primary parameters when searching for the optimal 
solution. This can cause significant changes in the 
prior estimate and affect the area of windows; this is 
illustrated by the change in state from (b) to (c) in 
Figure 7.

Q3: Optimization kernel. In this kernel, we only dis-
turb the formation of nodes and edges in the TLG and 
DLG. Disturbing the formation is necessary for find-
ing a true global optimal solution. In the iterations 
close to a better solution, some parameters may not 
help optimize the model. Several changes still occur in 
the layout model under the same conditions of 

window size and number of windows. The changes 
in inter-cluster and intra-cluster spacings of the DLG 
can generate different models, similar to the change in 
state from (c) to (d) in Figure 7.

In the simulated annealing process, the kernel is 
selected dynamically. The kernel is selected based 
on two aspects. The first is the posterior probability 
of the current solution. There exists a case where 
a better solution is effectively found during the 
initial stage. In this case, additional iterations on 
this kernel are unnecessary. Therefore, a new kernel 
can be assigned a greater probability to help the 
optimization enter the next stage. Second, when 
iterating up to a certain time, finding better solu-
tions under some conditions can be difficult. In this 
case, a suitable kernel should be selected to escape 
from potential local optima. The selection probabil-
ity of kernels is detailed in Table 2.

4. Experiment and evaluation

In the experiments, we tested the ability of the façade 
layout graph model to reconstruct semantic façades. The 
Intersection over Union (IoU) was used as a criterion for 
the quantitative evaluation of reconstruction accuracy. 
Three datasets were used for the experiments.

Figure 7. Changes in posterior estimates during iteration, where the x-axis represents the number of solutions, and y ¼ 1 � P on 
the y-axis represents the posterior probability for each iteration.

Table 2. Selection probability of kernel under different 
conditions.

Selection probability of kernels Execution conditions
1
8 q1 ¼ q2 ¼ q3 P � 0:5 & i

iter <
1
3

1
6 q1 ¼

1
3 q2 ¼ q3 P � 0:5 & 1

3 <
i

iter
q1 ¼

1
8 q2 ¼ q3 0:5 � P< 0:7 & 1

3 <
i

iter <
2
3

q1 ¼
1
6 q2 ¼

1
3 q3 0:5 � P< 0:7 & 2

3 <
i

iter
q1 ¼ q2 ¼

1
8 q3 0:7 � P

q1 þ q2 þ q3 ¼ 1; P refers to posterior probability; i denotes the i-th 
iteration, and iter refers to the maximum number of iterations, calcu-
lated as iter ¼ ln Tmin=T0ð Þ

ln αð Þ .
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4.1. Experimental data

Dataset-A was obtained through a single mobile laser 
scanner from a vehicle-based system. Each laser point 
records, in detail, the x-, y-, and z-axis coordinates; 
scanning time; and reflectivity. Dataset-B is a part of 
public dataset “Paris-Lille-3D” (Roynard, Deschaud, 
and Goulette 2018), where each point is characterized 
(x, y, z, x_origin, y_origin, z_origin, GPS_time, reflec-
tance, label, and class), and the point density is approxi-
mately 1000–2000 points per square meter. This dataset 
was acquired using a multi-beam LiDAR sensor from 
a vehicle-based system. Thus, the point density in most 
areas can be considered similar; however, an anisotro-
pic pattern also exists. It should be noted that the Paris- 
Lille-3D dataset was collected on a street in Paris. The 
buildings in Paris feature many different architectural 
layouts; therefore, this dataset serves as practical proof 
for validating the proposed method. Dataset-C is 
a subset of the public dataset SEMANTIC3D.NET 
(Hackel et al. 2017), acquired via a static terrestrial 
laser scanner. Point clouds acquired via static scanners 
exhibit differences in the point density under varying 
distances. Therefore, this dataset can be used to verify 
the robustness of the proposed method for different 
qualities of façade data. An overall description of these 
datasets is provided in Table 3.

We manually segmented façade and non-façade 
points. Notably, sloped roofs were included in the non- 
façade class; this is because a sloped roof can increase the 
height of the façade, sequentially increasing the actual 
façade area and affecting the calculation of the rational 
control function.

4.2. Reconstruction results

In experiments, we use this procedure of Figure 6 to 
reconstruct regular, complex and low-quality facades. 
We selected Bld-1-5 from Dataset-B to show the 
reconstruction of regular facades. Bld-6 is also from 
Dataset-B to show the reconstruction of complex 
facade. Bld-7 and Bld-8 are from Dataset-C, which 
are low-quality point clouds, so they are used to verify 
low-quality facade reconstruction. Moreover, entire 
results of the three datasets can be found in Figure 12.

4.2.1. Regular façades
Regular façades have similar layouts, which reflect the 
shape of elements and the spacing between them. 
Thus, we can use the proposed optimization method 
with constraints to accurately infer the optimal façade 
model. Figure 8 shows the reconstruction results of 
regular façades; structural refining results are shown in 
the second row of this figure. Different components 
were separated using the RANSAC method; however, 
for the sake of presentation, they are combined in this 
figure. The final results obtained using the proposed 
method to search for optimal models are depicted in 
the third row of the figure. Similar to the second row, 

Figure 8. Results of complete façade reconstruction.

Table 3. Description of datasets.

Dataset
Number of 

points
Number of 

façades Description

A 4.3 × 106 14 Ordered point cloud
B 21 × 106 8 Anisotropic pattern
C 23 × 106 35 Differences in data 

quality
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results of different components are combined. It is 
evident that some balconies are overlapped by win-
dows, such as in the second façade. This is because 
some noise from the façade data is retained even after 
façade refinement, which affects the determination of 
the optimal model. In the optimization process, to 
obtain a better prior estimate, the size of the window 
is increased. From the results in the fourth row, we can 
verity that these overlaps are eliminated by using bot-
tom-up generation.

4.2.2. Complex façades
The proposed method is also capable of reconstructing 
complex data. In a complex façade, the layout of each 
floor is usually different, and the geometric attributes 
of the façade elements are also different. When refin-
ing such a façade structure, it can be difficult to iden-
tify window contours, as shown in Figure 9(b). Thus, 
to reconstruct this type of façade, a higher weight of 
the prior estimation is required for the optimization. 
To avoid large windows, we limit the upper boundary 
of the domain of window width (i.e. “ww”) during the 
derivation of the façade, which helps obtain a more 
accurate result compared to unrestricted inference.

4.2.3. Low-quality façades
In the point cloud data acquired via a static laser 
scanner, low-quality façades often exist because of 
the small angle of incidence and the long distance 
between the façade and the scanner (Dong et al. 
2020). Refining the structure is not necessary for 
such façades because only a few points are recorded. 
The probability of a window being recorded is much 
lower than that for a façade; therefore, holes in the 
façade can be considered as windows. Accordingly, we 
use a modified form of the likelihood function 
(Equation (10)), i.e. Linverse DtjΘð Þ ¼ 1 � L DtjΘð Þ, for 
the optimization. From the results in Figure 10, we can 

verity that holes are found and the semantic facade 
models are reconstructed correctly. It should be noted 
that the doors in Bld-7 is randomly generated accord-
ing to the rule that door is located at the bottom of 
facade. Moreover, in Bld-8, the deduced facade layout 
divides the large holes on the left side of this facade 
into two windows with the same layout as other parts. 
This partition method reduces the complexity of 
facade layout graph by reducing the number of 
nodes in DLG.

4.3. Quality assessment

To perform a quantitative evaluation of the proposed 
method, the ground truth of the test data is required as 
a reference. In this experiment, we manually extract 
elements from the tested façades, and these elements 
are classified via visual interpretation.

We adopted the IoU as a criterion to evaluate the 
precision of the reconstructed façades. The IoU is 
denoted by the ratio of the number of points present 
in the ground truth as well as the reconstructions to 
the total number of points present across both results 
(Rezatofighi et al. 2019). 

IoU ¼
Ground � truth I Detected
Ground � truth [Detected

(11) 

Doors are often reconstructed using a stochastic value 
in the reconstruction process due to the missing points 
on the ground floor; this leads to a low IoU score. In 
our experiment, the position and size of the detected 
windows are essential for obtaining an accurate recon-
structed model. Thus, we also introduce an Accuracy 
score, expressed as 

Accuracy ¼
Ground � truth I Detectedj

Ground � truth
(12) 

Figure 9. Results of reconstructing the complex façade of Bld-6.
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For Bld-1 to Bld-6, the Accuracy score was close to 1. 
This is because we derive their layouts from the refined 
façade structure, which contains points that belong to 
the façade elements; the higher the number of points 
included, the better is the result. In contrast, the 
Accuracy score of Bld-7 and Bld-8 is close to 0, because 
we infer their layouts from as few points as possible.

Table 4 indicates that the proposed method achieves 
good performance in terms of accuracy; however, its 
IoU is low. This is because we do not consider the 
Principle of architectural form when creating the refer-
ence ground truth, which led to a smaller BBox than 

that derived. Additionally, in point cloud data, it is 
difficult to accurately determine edges. Therefore, the 
derived façade models only possessed the maximum 
fitting of the given data and not the most accurate result. 
From the perspective of Accuracy, the derived models 
fit the façade structure to the maximum extent possible, 

Figure 10. Results of low-quality façade reconstruction.

Figure 11. Layout graph of the window, balcony, and door for Bld-6. In the window layout, we refine the DLG. Nodes with identical 
attributes can be constructed using attribute inheritance, thereby reducing the number of parameters. In the balcony layout, we 
apply the same attribute inheritance method to the TLG to refine the structure of the layout graph. (a) Reconstruction result of 
Dataset-A, where upper figure is the refined result of original point cloud; (b) Reconstruction result of Dataset-B, where upper 
figure is the original point cloud; (c) Reconstruction result of Dataset-C, where upper figure is the original point cloud.

Table 4. IoU and Accuracy scores for the test data.
Façade Bld-1 Bld-2 Bld-3 Bld-4 Bld-5 Bld-6 Bld-7 Bld-8

IoU 0.54 0.51 0.47 0.48 0.59 0.63 0.77 0.78
Accuracy 0.86 0.95 0.86 0.88 0.71 0.81 0.004 0.16
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Figure 12. Overall reconstruction results of chosen datasets, where the cyan denoted windows, the pink denoted balconies and 
the blue denoted doors. Among these results, facades are generated using the CityGML LoD3 standard. Roofs in these buildings 
were generated by using Random3DCity engine (Biljecki, Ledoux, and Stoter 2016).
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proving the effectiveness of the method. It is worth 
mentioning that better reconstruction results were 
obtained for the low-quality façades than for other 
façades. This is mainly because, in these façades, win-
dows and doors are clearly represented as holes, making 
it easy to obtain accurate results using the designed 
Linverse DtjΘð Þ function.

4.4. Limitations

Although the proposed layout graph model can 
describe different types of façade structures, as evi-
denced by the experimental results, it is not sufficiently 
refined, which is reflected by its descriptions of com-
plex façade structures. We assign six attributes to each 
node in the TLG, including the DLG. The DLG con-
tains nodes with three attributes and edges with two 
attributes. When the façade structure changes, it is 
necessary to increase the number of nodes in the 
TLG, which results in at least 11 attributes being 
increased, such as the 96 parameters used to represent 
the layout of Bld-6. However, this is still simpler than 
the grammar-based approach, which uses 153 rules to 
generate façade structures. Moreover, based on our 
observations, the models derived via the proposed 
approach can be stored and delivered in a more con-
cise storage spacing compared to those from previous 
approaches. This process of simplifying model can be 
learned via a combination of rules in learning gram-
mar and Occam’s razor, and the parameter set used in 
the proposed approach can be refined using inheri-
tance rules. Furthermore, through this method, we 
obtain a refined result with a reduction of 17 para-
meters (shown in Figure 11). However, automation of 
the refining process could not be achieved. In the 
following work, we plan to explore methods to make 
the proposed model more refined.

5. Conclusions

From the experimental results, it is evident that the 
proposed façade layout graph model is suitable for 
reconstructing different types of façades. As advantages, 
this model features a clear hierarchy and enables the 
intuitive interpretation of façade structures. In particu-
lar, we use the same type of graph for both the TLG and 
the DLG. The derivation of these two levels of the graph 
model is based on the Principle of architectural form 
and Gestalt principles. Therefore, the facade layout 
model can be parsed and reconstructed in a simple 
manner, similar to the top-down and bottom-up stra-
tegies. For the derivation of the optimal model, we use 
structural knowledge of the building to design con-
straint conditions, thereby reducing the domain of 
parameters. Simultaneously, under these constraints, 
we use Gibbs sampling to obtain new candidate models.

The geometric and topological relationships 
among high-level façade structures are reflected by 
the clustering of floors in the TLG, while those 
among low-level façade elements are represented by 
the clustering of elements in the DLG. Based on the 
description of these relationships, we impart addi-
tional information to the semantic façade model, as 
compared to simply reconstructing it from semantic 
segmentation; this is expected to enable computers to 
understand façades in a more intelligent manner. 
Moreover, when using the proposed method for 
describing façade structures, façades can be easily 
edited without affecting other floors, such as adjust-
ing the location and size of façade elements and 
deleting or adding façade elements; this will be con-
ducted in our future work.
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