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ABSTRACT ARTICLE HISTORY
This paper focuses on the finite-time tracking control problem Received 21 October 2022
of fractional-order multi-agent systems subject to input satura-  Revised 1 January 2023

tion and constraints. The interaction topology is assumed to be ~ Accepted 4 January 2023

directed and contain a spanning tree. The appropriate barrier
Lyapunov functions are constructed to tackle the output and
partial states constraints. Since only the system output is avail-
able, a reduced-order state observer is constructed to obtain the
unmeasurable state variables. Fuzzy logic system is applied to
tackle the uncertain nonlinear dynamics in the system and the
unknown parameters are estimated by adaptive laws. An event-
triggered control scheme is designed to reduce communication
burden. The proposed distributed controller can guarantee that
all signals of the system are bounded, the constrained states
never breach the time-varying constraints, finite-time tracking
can be achieved with a bounded error and the Zeno behavior
does not occur. At last, the effectiveness of the proposed control
scheme is validated by an example.

Introduction

For a long time, most studies focus on multi-agent systems (MASs) with
integer-order dynamic (Antonio et al. 2021; Chang et al. 2022; Li et al. 2022;
Ma et al. 2022; Viel et al. 2022; Wang, Wang, and Huang 2022). However,
fractional-order systems (FOSs) have more advantages than traditional inte-
ger-order dynamics in describing biological systems or engineering systems
with memory and genetic characteristics, which makes the theory of frac-
tional-order calculus play an irreplaceable role in the fields of information
science, system control, biomedicine and so on. Therefore, the study on
fractional-order MASs (FOMASs) has been widely concerned by scholars,
such as containment control (Ling, Yuan, and Mo 2019; Shahamatkhah and
Tabatabaei 2020; Wu et al. 2021), cluster consensus (Yaghoubi and Talebi
2020), formation control (Cajo et al. 2021; Liu, Li, Qi et al. 2019, Liu, Li, chen
2019) and so on. Compared with integer-order MASs, the study on FOMAS:s is
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still few, and the control methods of integer-order MASs cannot be applied to
FOMASs directly, which makes the study of FOMASs more challenging.

In some practical applications, not only the control input but also the
system state may be limited to a bounded region due to the limitations of
physical devices. Therefore, it is of theoretical and practical significance to
consider the control problem of constrained systems. At present, constraint
problems such as input saturation (IS) (Chen et al. 2018; Fu et al. 2019, 2019,
2022; Sheng et al. 2018; Wang and Liang 2018; Wang et al. 2020), output
constraints and state constraints (Wang et al. 2021; Wei, Li, and Tong 2020;
Yang, Yu, and Zheng 2021) have become the main focus of engineering
systems. In Wang et al. (2020), the problem of adaptive control of uncertain
nonlinear incommensurate FOSs with IS based on fuzzy logic system (FLS)
was considered. In Wang and Liang (2018), an neural network (NN) adaptive
control method was proposed for FOSs subject to IS. The robust consensus
problem of FOMASs with IS was studied in Chen et al. (2018). Taking IS into
account, an adaptive backstepping control scheme with observer was proposed
for FOSs in Sheng et al. (2018). In Fu et al. (2019), the consensus problem
of second-order MASs with IS was considered. The robust global containment
control problem for MASs subject to IS was studied in Fu et al. (2019). In Fu
et al. (2022), the distributed formation navigation problem of MASs subject to
IS was considered. In Yang, Yu, and Zheng (2021), the fault-tolerant fuzzy
adaptive tracking control problem was investigated for uncertain nonaffine
FOSs with full state constraints (FSCs), in which the barrier Lyapunov func-
tion (BLF) was applied to deal with the FSCs. In Wei, Li, and Tong (2020), an
adaptive control issue for nonlinear FOSs with FSCs was addressed based on
NN, and the constraint function considered was constant. Both FSCs and IS
were considered in Wang et al. (2021), and an NN-based adaptive control for
nonlinear FOSs was proposed.

Compared with time-triggered control, event-triggered control (ETC) (Cao
and Nie 2021; Chen et al. 2020; Lin et al. 2022; Shahvali, Naghibi-Sistani, and
Askari 2022; Wang and Dong 2022a, 2022b; Ye, Su, and Sun 2018; Zhang et al.
2022) can avoid unnecessary sampling and communication. The tracking
control problem of FOMASs with unmeasurable states via fuzzy adaptive
ETC strategy was presented in Wang and Dong (2022a). In Wang and Dong
(2022b), an output feedback-based adaptive fault-tolerant fuzzy tracking con-
trol problem for FOMASs with nonlinearity and actuator failures using ETC
scheme was studied. The exponential consensus problem was investigated in
Zhang et al. (2022) for descriptor leader-following FOMASs with ETC proto-
col. In Shahvali, Naghibi-Sistani, and Askari (2022), an adaptive NN-based
backstepping control scheme was designed for FOSs with nonlinearity via ETC
scheme. The consensus problem of FOMASs via pinning impulsive control
using ETC mechanism was studied in Lin et al. (2022). In Cao and Nie (2021),
both unknown nonlinear functions and unmodeled dynamics were
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considered, and an adaptive NN-based ETC strategy was proposed for non-
linear FOSs with IS. In Chen et al. (2020), the consensus problem of linear
leader-following FOMASs using ETC strategy in directed networks was stu-
died. In Ye, Su, and Sun (2018), the tracking control problem of general linear
FOMAS:s via ETC strategy was investigated.

Finite-time stability is also an important aspect in systems and control
(Chen, Liu, and Yu 2020; Fan et al. 2020; Shang and Cai 2021; Shou et al.
2022; Zhao et al. 2022). The results show that the finite-time control (FTC)
approach not only makes the system converge faster, but also has better anti-
interference and robustness in the case of disturbance and uncertainty. The
FTC problem was investigated in Fan et al. (2020) for uncertain nonaffine
MASs with input quantization and unknown nonlinearity. An adaptive con-
tainment FTC scheme for non-strict feedback nonlinear MASs was studied in
Zhao et al. (2022) based on NN via output feedback. In Shang and Cai (2021),
the fast finite-time consensus problem of high-order MASs with uncertainty,
time-varying asymmetric FSCs and nonlinearity was considered. In Chen, Liu,
and Yu (2020), the FTC problem for strict feedback MASs with heterogeneous
nonlinear dynamics based on FLS was studied. The finite-time formation
control problem of MASs was addressed in Shou et al. (2022) based on NN.
The works mentioned above are all on MASs with integer-order dynamics,
and there are few studies on FOSs (Li, Wei, and Tong 2021; Liu et al. 2022). An
NN-based adaptive FTC scheme for nonlinear FOSs via ETC was proposed in
Li, Wei, and Tong (2021). For nonaffine FOMASs with completely unknown
high-order dynamics and disturbances, an adaptive bipartite containment
control problem was considered in Liu et al. (2022) based on FTC algorithm.

In view of the above analysis, it is very meaningful to explore this topic in
depth. In this paper, the FTC problem of FOMASs with unknown nonlinear
dynamics and external disturbances in networks including a directed spanning
tree (DST) is investigated subject to partial state constraints (PSCs) and IS.
A distributed adaptive saturated control scheme is designed via output feed-
back using ETC strategy to ensure the practical finite-time stability (PFTS).
The main contributions of this paper are as follows:

(1) A novel output feedback-based distributed adaptive fuzzy FTC scheme
with PSCs and IS via ETC strategy is proposed to guarantee the con-
strained states of system remaining within the constraint boundaries, all
system signals being bounded, the PFTS of error system rather than the
infinite-time stability (Wang and Liang, 2018; Wang et al. 2021; Wang
and Dong 2022a; Wei, Li, and Tong 2020) and no Zeno behavior
occurring. Different from the traditional time-triggered control strategy
(Wang and Liang., 2018; Chen et al. 2018; Sheng et al. 2018), the ETC
scheme proposed in this paper will be more advantageous.
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(2)

3)

The FOMASs considered in this work is more general than that in
Wang et al. (2020), Wang and Liang (2018), Sheng et al. (2018),
Yang, Yu, and Zheng (2021), Wang and Dong (2022a), Zhao et al.
(2022), Chen, Liu, and Yu (2020) and Li et al. (2022). FOMASs
with uncertain nonlinear dynamics and external disturbance are
considered in networks containing a DST. The unmeasurable
states are estimated by a reduced-order state observer. The
unknown nonlinearities are approximated by FLSs and the FLS
weight vectors are estimated adaptively. Compared with existing
works, state feedback-based schemes are considered in Wang et al.
(2020), Wang and Liang (2018) and Yang, Yu, and Zheng (2021),
a linearly parameterizable models is considered in Sheng et al.
(2018), the models without external disturbances are considered
in Zhao et al. (2022); Chen, Liu, and Yu (2020) and Li et al.
(2022), only undirected network topology is considered in Wang
and Dong (2022a).

Different from Yang, Yu, and Zheng (2021), Wei, Li, and Tong
(2020), Wang et al. (2021), Wang, Dong, and Xi (2020) and Qu,
Tong, and Li (2018), FOMASs with partial states and output
constraints are studied in this paper and the BLFs are used to
solve the time-varying constraint problems. Compared with simi-
lar works, the case of FSCs were considered in Yang, Yu, and
Zheng (2021), Wei, Li, and Tong (2020) and Wang et al. (2021)
with constant boundary functions, and the output constraint pro-
blem is considered in Wang, Dong, and Xi (2020) and Qu, Tong,
and Li (2018) as special cases of this work.

The rest of this paper is arranged as follows: The preliminaries are
introduced and the problem is stated in Section 2. The reduced-order
observer and the ETC scheme are designed in Section 3 and 4, respec-
tively. The stability analysis and parameter selection, a simulation exam-
ple are given in Section 5 and 6, respectively. Section 7 summarizes the

paper.

Notations: R*, R, Z*, R* and C represent the sets of non-zero real numbers,
real numbers, positive integers, k-dimensional real vector and complex num-
bers, respectively. For a matrix Q, Q>0 denotes Q is positive definite, its
minimum and maximum eigenvalue are denoted by Anin(Q) and A (Q),
respectively. omin(-) represents the minimum singular value of a matrix.
Denote by || - || the 2-norm of a vector or matrix. log is the natural logarithm.
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Problem Statement

Fractional Calculus

Definition 2.1 (Podlubny 1998): The Caputo fractional derivative of
a continuously differentiable function g(¢) is defined as

Cnyo _ 1 t g(K) (S)
DI = gy | e W

+00
where 0 € (k — 1,x) with x € ZT and T'(0) = J s°"le~%ds. Define the
fractional integral as 0

oo L [ 86
OItg(t) - r(o_) JO (t . 5)1_0 ds. (2)

Property 2.1 (Podlubny 1998): For constants a,, a, and as, one has

(i) §Df (migi(t) £ axg2(t)) = a1gDgi(t) £ a7 Diga(t),
(i) {DYas = 0.

Definition 2.2 (Podlubny 1998): The Mittag-Leffler function is defined as

o0 Nl
E.,.(X)= ., .\
()= e (3)

where X e€(C, >0 and >0 are two parameters. When
=1 EC171(N) = EC](N)

Property 2.2. (Gong, Wang, and Lan 2019): For a4 € (0, 1] and as >0, one has

(i) 0<E,, (—ast™) <1,
(ii) Egy 0 (—ast™)>0.

Lemma 2.1. (Gongand Lan 2018): For continuous and differentiable function
X(t) € R", one has
D (XT(1 QX (1)) < 2X7(1) QD7 X (1), 4)

where 0 € (0,1) and matrix Q> 0.

Lemma 2.2. (Zouari et al. 2021): For ¢ € (0, 1), continuously differentiable

functions g(t) € R and g(t) € R* satisfying 0 < (28)2 <1, one has
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2 Cno 2(\Coy2
D D
%nglog ! &)  _&)Diat) 1 g(t)Dig(1) (5)
2

S —gt)~ ) —glt) 2g80)(gt) —g1)

Graph Theory

The interaction among agents can be described by a graph. Let G = (V, £, W)
be a directed graph, in which V = {1,2,..., N} corresponding to N agents
and £ C V x V are the set of nodes and edges, respectively. Let V'; = {j € V:
(j,i) € &,)#|} be the set of neighbors of agent i. The pair (j, i) € £ means that
agent i can obtain information from agent j. W = [w,-j} N« 18 the weighted
adjacency matrix, where w;; = 1, if (j, i) € & wj; = 0, otherwise. Assume that

graph G is simple, ie., w; =0. Let D = diag(dgl), e dﬁ)) with d,m
Zje Wi and the Laplacian matrix £ =D — W. It is well known that £ has

one simple zero eigenvalue and all nonzero eigenvalues have positive real parts
if and only if graph G has a DST. B
Let the leader be a node labeled by zero, G = (VU {0},&, W) and B =

diag(| >, ..., [J(\(;O)) with bgl) = 1, if agent i being leader’s neighbor, b,(” =0,
otherwise.

Assumption 2.1. Graph G has a DST rooted at node 0.

System Description

Consider the following FOMASs:

gD?Xik = Xik+1 + gk (i) + ik,
k=1,...,n—1,

_ 6
§ DX, = sati(Ti) + gin(X;) + Tins ©)
Yi=Xpi=1,...,N
where 0 € (0,1) and x, € R is the system state. Let ¥, = [X;;»X;p, - - - ,Xm]T €

R" be the full states, which is partitioned into two parts, i.e., the constrained

T
states X, - -, Xis)
j=1,...,5 isatime-varying boundary function and the unconstrained states

T
[Xi,5+1> e ’Xm]
unknown continuous function and satisfies the following Assumption 2.3.
rik € R is the bounded external disturbances satisfying |ri| < 7 with 7% >0
being a constant. y; € R is the system output, which is assumed to be the only
available data. sat;(7;) € R is the saturated controller described by

with 1< Z<n satisfying |y;| < m;, where m;>0,

— . — T .
gik(¥y) : RF = R with ¥, =[xy.---.xs] €RF is an
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Timy Ti = TiM,
sati(7;) = ¢ Ti, Tim <T; < Tim, (7)
Tim, Ti < Tim,

where 7;,/>0 and 7, <0 are known constants and 7; € R is the input of the
saturation controller and will be designed later.

For convenience of stability analysis, sat;(7;) is approximated by the follow-
ing smooth function

Tin * tanh(:,—;d), 7; > 0,
Hi(ri) = { Tim * tanh (1), 7; <0, ®

and then sat;(7;) is written as

sati(t;) = Hi(7:) + pi(7i), )

where p;(7;) is the approximation error satisfying |p;(7;)| = |sati(7;) — Hi(1;)| <
max{7;(1 — tanh(1)), 7, (tanh(1) — 1)} = p..

Remark 1. The actual saturation controller (7) is approximated by a smooth
function H;(7;) given in (8) with an approximation error p;(7;) in (9). The
smooth approximation H;(t;) of sat;(z;) will be applied to construct the
reduced-order state observer in Section 3 and (9) will be used in the stability
analysis.

Substituting (9) into (6), one has

0DV Xk = Xigrr + 8k () + ik
k=1,...,n—1,

thUXin : Hi(Ti> +pi<Ti) +gi1’l(j(jn) + Tin,

yi:Xﬂ,Z: 1,...,N.

(10)

The purpose of this work is to design an output feedback-based distributed
saturated controller for FOMAS to ensure the following control objectives via
adaptive ETC strategy:

(i) Practical finite-time tracking can be achieved, i.e., [y; — yo| <e, as
t>T*i=1,2,...,N.
(ii) All signals are bounded and the PSCs are never breached, i.e.,

(iii) The Zeno behavior does not occur.

Assumption 2.2. yo(t), SD7yo(t) and SDZ(SDCyo(t)) are continuous and
bounded and satisfy |yo(t)| < qo. |5D7yo(t)| < g1 and |sDf(GDfyo(t))] < 2
with qo, q1, q2 being positive constants.
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Assumption 2.3 gy (x,) satisfies |gi(xy)| < gx(yi) for k=2,...,n, where
gik(yi) is an unknown continuous function.

The following lemmas are needed for the subsequent finite-time stability
analysis.

Lemma 2.3. (Polycarpou and Ioannou 1996): For p and any € >0, one has

p

0<|p| —ptanh(g) <bhe (11)

with b = 0.2785.

Lemma 2.4. (Zhou et al. 2019): Let a,b € R, k>1 and m>1 be two real
numbers with (k — 1)(m — 1) = 1. For any p>0, one has

AR
ab < *la|" + —|b|". (12)
k mp™

Lemma 2.5. (Huang, Lin, and Yang 2005): For 0 <m < 1, one has

S o)™ < S Jolm < n' (S o)™ (13)

Lemma 2.6. (Qian and Lin 2001): For any variables v and ¢, positive con-
stants 3, K, ¢, one has

K = K K -2 K
W16 < S ey ™ + g lol™ (14)

Lemma 2.7. (Liu et al. 2022): For o € (0, 1), consider the FOSs {D?{(t) =
g(C(t)) with {(t) € R". If there exist a positive-definite and continuous function
W(t,{(¢)), K- class function ay, a, and constants ;>0,,>0,0<f =m/n<1
with m>0 and n>0 being odds, satisfying

ar([|C(0)[]) < W(t.4(1) < ax([IC()]1),
and
SDIW(L,((t) < —LW(t, (1) + L,

then, the considered system is practical finite-time stable with settling time

b\t F(2—/3>F(1+ﬁ>r<1+a)]% s
L1-w) & I(l+15—ohw ’

T = [Wy F —(

with w € (0,1) and W, = W(0,{(0)), ie., [[((t)]|<e as t>T" with
a sufficient small constant e.



APPLIED ARTIFICIAL INTELLIGENCE . €2166689-261

Remark 2. Note that most of the existing works focus on MASs with integer-
order dynamic. However, the results of integer-order system cannot be applied

1/p
to FOSs directly. From Lemma 2.7, one has W(t,{(t)) < [ll(ll—iw)}
for Vt > T*.

b

Lemma  2.8. Consider  the  fractional  differential  equation
EDIE(L) = —yE(t) + pv(t), where 0<a <1, p>0 and p>0 are constants, v(t)
is a positive function. If £(tg) > 0, then £(t) > 0 holds for V't > t,.

Proof. The solution of the fractional differential equation is

t

§U)=§U®EA—VO‘—%V)+PJ(f—Sf]EaA—VU—WYUWQd& (16)
to

According to Property 2.2, we have E,(—y(t —t)°) > 0 as t > f, and

E;o(—y(t —s)7) > 0 as to < s < t. Since p>0 and v(t) >0, thus the integral

part of equation (16) is also positive. Therefore, if &(fy) > 0, £(¢) > 0 holds

for Vt > t,. O

,(qzls,-lswz) < 0.2554v;}
Vil

il

Lemma 2.9. (Wang et al. 2008): Let Q,, := {( - S -
11 =Sk

il

Tol—|
ol—|

with v;>0 being constants. Then, the inequality 1 — 16tanh2[ﬁ] <0
vi(1y —Siy)?
holds for S“z r 0,

(n—=$3)?

Lemma 2.10. (Polendo and Qian 2005): For a,b € R, p > 1 is a constant, one
has

la+ bfP <207 aP + bP|. (17)

FLS

Lemma 2.11. (Wang et al. 2013): For V>0 and a continuous function g(x) on
a compact set Q, there exists a FLS UT®(y) such that

supg(x) — UTd(x)| <, (18)
XEN

where U = Uy, ---, U,|" is the ideal weight vector of the FLS with 1> 1 being

_ (0,20

the number of the fuzzy rules, O(y) S o
D

is its basis function vector,
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—(—#)" ()
N
and €j, j = 1,...,1, being its center and width, respectively.

From Lemma 2.11, an unknown nonlinear function g(y) can be approxi-
mated by a FLS UT®(y) as

gx) =U"o) + (), (19)

where U is the approximate parameter vector and (y) is the approximation
error.
In order to simplify the design procedure, let

where @;(x) = exp| | is a Gaussian membership function with y;

&=|Ul*i=1,...,N, (20)

where &; is an unknown positive scalar to be estimated. Let &; be the estimation
of & and & = & — & be the estimated error.

BLF
To handle the PSCs in the system, a BLF

1 n*(t)
W(t) _Elogm’ (21)

is employed for control design, where S(¢) is some error variable, which is
restricted by [S()| <#(1).

Lemma 2.12. (Ren et al. 2010): If |S(¢)| <#(t) with given n(t)>0, then

7o S
) =S n(t) = (D)

log (22)

n*(t

Observer Design

A reduced-order state observer is designed as follows:

gD?f(ik = Xi,k+1 + 7i,kJrl)’i - 7ik(Xi1 + 7il)’i),
k=1,...,n—2, ) (23)
0D i1 = Hi(Ti) = Lin1 (kg + layi),
to estimate the unmeasurable state variables, where y, is the estimation of

Xikr1 l~< =1,2,.. M= 1
Let Xu = Xix — Xiko1 — lix-1yi» k =2,...,n, one has
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SD7y, = A, + Fi+ Ri+ bpi(1:),

(24)
where
o D10
Xi3 i . )
)~(i = . ) Ai —: : 3
J ~lina2 0 1
Xin _li,n—l 0 0
) Ti2 = Zilril
R = ri3 — lpri ,
Tin — 7i,n—lm
_ 5 0
gi2EXi2§ — lngin EXﬂ; )
8i3(Xis) — lingn (x; 3
fi - ? . : ) b - 0
o 1
Gin(Xin) — lin—181(X;1)

Choose positive parameters I oy s Yivn, 1 such that matrix A, is Hurwitz

Thus, there exists a matrix P; = 731-T >0 such that P;A; + .AiT P; = —Q; with
a given matrix Q! = Q;>0.

Construct the Lyapunov function Wy as

N ~
= K Pi: (25)

The fractional-order derivative of W, is

N - ~
gDIWy < Zi 2 PSD = > ., 2% PlAX, + Fi+ Ri+ bpi(ri)].

(26)
According to Assumption 2.3, Lemma 2.4 and 2.10, one has
2 PFs < 2K P (FT P
< Xz Ple + ZHP H Z + lzzk lgzl <X11>] (27)

k=2
Similarly,

2% PRy < 2(¥ Pi,}(RIPiR:): < X Pig; + 2|IPi| Z P+ B athl,
k=2

(28)
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and

24 Pibpi(s) < 21 P, 1(bpi(1:)) "Pillpi(x))lF < X P, + |[Pillp?. (29)
From (26) to (29), one has

CDUW0<Z {=Pmin(Qi) — 3Amax(P )]||X1|| +2||P||Z 1k+llk 1_]

+IPillp; + i,
(30)
where Y; = 2[|Pi|| X2, g7 (7:) + lzk 185 ()J-
Adaptive Finite-Time ETC Design
In this section, a new adaptive finite-time ETC scheme is proposed. Let
1
Sin = ZJ-GNI_W:'J‘()H =)+ 5" (i = (1), (31)
Sik:Xi7k71—hik,kzz,...,n—1, (32)
Sin = )A(i’nfl — hin — T’ia (33)
and
ﬁik = hik — Qi k—1, k= 27 R LT (34)

where S;; is the local consensus error, Sy, S;, and ¥ are defined error
variables, v; and a; . are the auxiliary design signal and the virtual controller
respectively, which will be designed later. A fractional-order filter is con-
structed as

(ingfhik +hg=aip1,k=2,...,n, (35)

with Ay being its output, /x(0) = a;x_1(0) and ;>0 being a constant.

Finite-Time Controller Design

Step 1: Taking the fractional-order derivative of S;;, one has
§D2Sn = wilDiyi =5 Diyy) + b (GD7ys —§ Diyol(1)
= (dz(l) + bgl))(siz + i+ an + ¥y + iy, +gn(x,) + i) (36)
~ N 3 1 I
- Zje/\/iwij(sz Xt leXj1 + & (le) + 1) — bz( )OCDt)’O(t)-

Let
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1111

’72 - 8121

Wi log + —y&l , (37)

1
where & is defined in (20), 1;,(t)>0 is a time-varying boundary function
which will be given later and y,>0 is a constant.

According to Lemma 2.1 and Lemma 2.2, one has

Su$DIS; $20¢D° l1:c_ -
10 21 il ti/lzl2 __éiODtU&' (38)
nh—Sh 2m(nh —Sh) v

The Lyapunov function W, is selected as

DIW; <

N
Wi=Wo+y - Wi (39)

From (36) to (39) and Property 2.1, one has

. N
DWy < 5 [ Dhain(Q) = Shman(PRP + 2112 S [P+ By, 7]

_ S; -
+ ||77i||pf + 7 —182 [(dlﬁl) + bgl))(Siz + U +an +x, + lilXil + i)
i1 i
~ - Sit ’71 lzc o ¢
+ Gl(Zz) - ZJGN;WU(X]Z + le + rjl) 02’112t1 1] - ;jfio Dt é-i

Sin

+[1 — 16 tanh*(——————
vi(nh — Sh)

)] Yi}a

(40)

where
Gi(z:) = (dy" + " )gn () = Dy Wil + 8 (1)) — b1 0D 3o ()

S.
+ 1677 Sit g2 S )Y,

Sit vi(mh — S)?
with Z; = [Xl.l,)(jl,yo(t),g Dy()]",j € N, and v; being a constant.
Remark 3. The hyperbolic tangent function tanh(-) is used in the derivation of
(40) to avoid singularity. Based on L'Hospital rule, one has

shmo S =S tanh?( " S P! r) = 0. Thus, function G;(Z;) has no singularity at S;; =
— il 17 —S2

Vil

0 and can be appr0x1mated by an FLS. The last term in (40) will be dealt later.
Since G;(Z;) is unknown, it is approximated by an FLS Ul ®;(Z;) as

Gi(Z) = Ul ®(Z) +i(Zy), (41)

where the approximation error ;(Z;) satisfies |;(Z;)| <7 with >0 being
a constant.
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According to Lemma 2.4, one has

Sit
’711 - Szzl

Gi(Z) < ! Si &L (Z )cb(z)+1 24 Si
_———————1 i)toa +——53
2a7 (3 — $3) 270 2y - 83

7, (42)

_l_
N|>—‘

where a;>0 is a constant.
Substituting (42) into (40), one has

o N —
th Wi < Zizl{_[/\min(gi) — 3 max(P )]HXZH +2||P||Zk 2 1k+llk 17 11]

_ S; - -
FIPIEE + 5 (@ 4 6o Vo an + ol + 1)
1 Sin Sit - .
Z)0(Z) +—1  NT (G + 7
T2 a2k —Sh 2/ (2)0(2) Jr2(’7,-21 - S3) ZJGN,-W’J(XJZ X
+rj1)—1102—2t}111]+[1—16tanh2(71]lf + = +
i (’711 Sit )2
L~ Sgl T C no&
+ =55 (Z)Di(Zi) —; DI&;)}-
Vi Za% (’7%1 - 8121) 1
(43)
Similarly,
Sn(d + bM) s (dY + by’ I ,
7’],21 _ 5,21 ( 2 + 1912) >~ (;712 _ Slzl>2 + B 12 2’[912, (44)
Sa(b" + by sdV+e™ 1,1,
— o Wptm) </ S+l + 57 (45)
M-S (h-sp) 200 2
and
2
S N 82 (d" + b(”)
_ 7’7121 — Sizl ZjéN;’Wij(ij + T’jl) < (11121 _ Slzl) ||Xz|| + > ]1. (46)

Substituting (44)-(46) into (43), one has
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CD"W1<Z A=aol GlP + 2P Y7+ B + (PR + ( +a;)

(1) (1))
Sit 1 ,0) < 3511(d +0b;) .
+ =S [(di + b ") (o + lnxy) + 7 — 8121 - § :jENiWinjl

Sit 1 Sa s r 110 Dy,

v b 0] (2)0,(2) — 0 DV
(’7:21 - Sizl) Zaiz ’7121 - Sizl P 1 2’711

Sh

26’ (’711 - 8121)

SO (2)®,(Z;) —§ DY) + (hr+r)

1

+— 5,(

+[1-16 tanhz(%)]yi +3 (S5 +93)},
Ui(’7i21 - Szgl)z
(47)
where ag = Apnin(Q;) — 3Amax(Pi) — L.

Select the virtual controller «;; as

1 bast Tt 38u(dY + bY) .
%1 =" L : 2\B—1 u 1 — s ) _(d51)+b51))li1){i1
;" +b; (i — 511) i
Sil 1
2(m — Szzl) 261 - 82 5 )+ Z NWI]XJI
Siig DY
+ ——
2’711
(48)
and the fractional-order adaptive law $D?¢; as
R $?
§DI¢ = —p&i + 71122(1)?(21‘)@(21'), (49)
(’711 Si

where b;; >0 and p,> 0 are design parameters.
Remark 4 From Lemma 2.8, the adaptive law CD"&, designed in (49) can
guarantee that &(¢) > 0 for given &(0) > 0.

According to (47)-(49), one has

by S* S;
ﬁ + [1 — 16’[811}'12(711l
(7 — Sh) Ui(”lzzl - Szzl)z

cxa 1
+E6 - S+ R+ 1Y,

N ~
soiwr <y {—aollgll* —

(50)

where

HY = SN 2P S+ B 73]+ [Pillp? + 1 (7 +7 + 7 +a?) ).
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Step A (2 < A < E): From (23), (32) and (34), one has

Cnyo _C noy C not.
o DiSin =g DiXin1 —o Dihin

_ _ L (51)
= Sipt1 + Vin + ain + linxy — a1 (X + laxy) —g D7hip.
Let
— Lyog—Min__ M Ly , (52)
2 ’72 - Szz/\ 27
where 7, (t) >0 is a boundary function which will be given later.
Thus,
CDUW Sl/\OD Sin Szz/\OCDt Nin + 99 Da,& (53)
N = iN iN-
l ’71’2/\ - 83 2’7iA(’7iA Sin) o l
The Lyapunov function W, is given by
N
Wa=Waat+) o Wi (54)
From (51) to (54), one has
CD‘TW/\ SC DUW/\ 1+ Zl l{m [Si7/\+1 + 19,'7/\+1 + ajn +7i/\Xi1
_ B S. C 0112 (55)
— lipc1 (R, + lnxy) —6 DORip — %] + Ding D i}
in
Similarly,
Sin S? 1
’ S; J; <— 4 (8 ¥ 56
" — 82 (Sint1 +Ving) < (P — S%A)z + 2( A+l T 1/\+1> (56)

By the definition of k1, ngoci7k_1 is a continuous function

Gi(Sis - - - ,Si,kfl,fi,yo,g D%yo,5 Df(ng}’o), Vizy -+ oy Vig—1)s k=2,...,n,
defined on some compact set. Thus, |¢ix_;| <Gy with ;>0 being
a constant. From (34) and (35), one has

9 9,
A Dl < Gk =2,...,n. (57)
(1k (ik

According to Lemma 2.4, one has

C
0 D?ﬂik =

Vlk
27

Vi _ 1
—k+CIk>§_(—_ )19 k:2,...,7l, (58)

Cix (i 2vik

where v;, >0 is a constant.
Substituting (56) and (58) into (55), one has

g DI < Vi —
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Sin
7S
Cpoy2
Sin _C pop, _ Sing DY
2 Q2 0 lHA 2
Hin — Sin 215
_(L_i)2 Yin
(i/\ 2vip " 2

o o N 7 7 S 7
¢DIWr <G DIW)1 + Zizl{ [ain + linxyy — lin-1(kiy + lnxa)

1
+ ]+5( A+1+191A+1)

(59)

The virtual controller a;, is designed as

binSE ! 1 ,
Aip = ————L—e = =Sin (i — Sip) —
(’71A - SzZA>ﬁ 2

Si/\ 7 X
2 g2 Ml
,/Il/\ iN (60)

1/\0 t’7m

+7i,/\—1<5(i1 +L1Xil) +g Dihip + 2 )
21,

where b;) >0 is a design parameter.
According to (59)-(60), one has

28

b;iS? i
Cpo N ~ 112 A J¥ij pz ;
DIWA <>~ {—aollx,ll" =) —&
0t ZIZI J ZJZI (17%, _ Si)ﬁ yl
A1 G 1 1 A Vi
B e L R (AR LIRS D
Ul
Sil

Ui(’?%l - Szzl)%
Step £ +1: From (23), (32) and (34), one has

+[1 — 16 tanh?( Y} + HY.

0D{Sizr1 =5 Dijtz = Difiz1
= Sizy2 T Vigro + @iz + lizaix, — l=(ky + lnxs) (62)
—S DRz

Let

Wiz = SZH+1 + -9 (63)
Taking the fractional-order derivative of W; s, one has
SDIWi g1 < Siz115DSiz1 + Viz1g DIz (64)

The Lyapunov function Wz, is selected as

N
Wea =We+ ) | Wiz (65)
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From (62) to (65), one has

N
SDIW=yy <§ DW= + Z{Si,5+l [Sizia + Vigro + Az + lisaix, (66)
i1
— 71'5()2,»1 +7i1Xl-1) —S DRig] + 19i,5+1ng79i,5+1}-
Similarly,
1

Siz1(Sizra + Vigr2) < Sfayy + 5 (Steys +9isp,)- (67)

From (58) and (67), one has

N — - _
§Df W <§ DYWz+ Y . {Sizltize +liznixy — he(y + laxa)

1 62: 1 Vig+1
+Sizr1 —¢ Dihizi1] — — 2+
e+ ~o Difisi] (Ci,E—H 2Vz‘,5+1) Ak 2
1
T3 (Stzs + U750}
(68)
The virtual controller «; =, is designed as
3 . -
Qi1 = —bi,5+15,%g+11 — ESLE-H — Lz, + le(y + Inxa) +5 Dohisen,
(69)

where b; ;>0 is a design parameter.
From (68) to (69), one has

z b;; -
N ~ 12 2 91 2 Piz¢
ngWE-i-l < E izl{_ao”X,'H - § i1 7(1{% - JS.Z-)[; - bi,EHSiéﬂ +_:€i i
ij

Si s1,1 G 1
1 —16tanh2(—2% )y, = N T (28 D92
- [1 - 16 tanh?( D DIl

Ui(’hzl - Sizl)

g+1vi 1 (1)
™ j=2 + 2 (191'2,5+2 + Si5+2)} +H;
(70)
Step V (V=E+2,...,n—1): From (23), (32) and (34), one has
Cno C Nnoz C no
DiSy, =5 D{x;\, 1 —o D{hi
oeoiv =o PrXiv—1 —o Pihiv 1)

= Sivi1 + Viver + @ + vy — livei (X + lnx,,) —¢ DIy

Let
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2
Wiy = Esfv +3 ﬂlv (72)
Taking the fractional-order derivative of W}, one has
(?D?Wiv S Szv() Dgszv + 791\/0 Daﬁzv (73)
The Lyapunov function W;y, is selected as
N
Wy =Wy + Zl.:l Wiy. (74)
From (71) to (74), one has
N —
SDIW, <§ DIW,_; + Zizl{siv[si vl T divir + v + vy,

_ _ (75)
- li,vfl(f(n + lilXil) _g thiv] + 191\/0 Dgﬁzv}

Similarly,
Siv(Sivi1 + Divi1) <87, + (Szzv+1 + 97 Vi) (76)
From (58) and (76), one has

N _ _ . _
ngWv Sg DIWy_; + Zi: {Siv[Siv + aiv + vy, — Liv—1(x;y + lnxiy)

D] = (-~ SR B (S + )
(77)
Select the virtual controller «;y as
Ay = —bzvszﬁ t zs'v — Luxyy + live1 (R + Tnx,y) +6 Dol (78)

where b;, >0 is a design parameter.
From (77) to (78), one has

_ b.S2P
Cnyo 77 v 28, Pig

DWV<§ {aoll)czll—5”<k2 ")ﬁ—§jﬂ bs+ 55
ZJ

Sil \ 1 C,“ 1
£l —16tanh?(—>1 )y, = S (2 D)2
| ( vi(1 — Si21>§>] ZJ:Z(C” 2vi 2)

VER”
Y J+ S Oy +Su)} +H.
(79)
Step n: From (33),
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Sin = Xin_1 — Bin — Vi (80)
where the auxiliary signal v; is designed as
ngT/i = —171‘ + H,'(T,') — T;. (81)

The fractional-order derivative of S;, is

D7 Sin =5 D{X; 1 —5 Dihin —g D{¥i (82)
=T+ Vi = Lin (B + lnXiy) —6 DY Fiin-
Let
lo 1o
Wl‘ - ESm + 5’(91»”. (83)
Taking the fractional-order derivative of W;,, one has
EDIWiy < SinS DTSy 4 s DTV, (84)
ot Win = Oing V4 Vin ing ¢ Vin-
Construct the Lyapunov function W, as
N
Wy=W, 1+ Zi:l Win. (85)

From (82) to (85), one has

N - — N —
¢D{ W, <g Df W,y + Zizl{sin['[i + Vi = lino1 (R + i) — D7hi]
+ Oing DI jn }

(86)
The ETC scheme is designed as
7(1) = p,(t), V1 € [t th.,), (87)
9,(t) = iy — m" tanh(s"”’”,g U) (88)
and
foy = inf{t s 2] > ale et P}, (89)

where agl) >0, afz) >0, €;>0, m,(l) >0, m,@ >0 satisfying mgl) >a§1) + m§2) are
known parameters, «;, is the virtual controller and z; = ¢, — 7; is the sampling
error. When the above trigger condition (89) is satisfied, the control signal is
updated and remains constant within the next time interval.

Similar to Wang and Dong (2022a), one has
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7i(t) = 9i(t) — M) (@ 4 m?), (90)

where A;(t) is a continuous function satisfying |;(¢)| < 1.
Thus,

— )L,-(t)(agl)e_af'z)t + m,@) < a,m + m? < mgl), (91)
which means that
Sinti < Sin(@y(t) + m{")

(
S
< Sinletin — mgl) tanh( inf?h; )+ m(l)] (92)

< Sin@in + DE;.
Substituting (58) and (92) into (86) yields that

o o N ~ 7 o 7 o
SDYWy <§ DIW, 1+ {Sinloin + % — i1 (Ry + lnxin) =5 DY)

_ ( 1 czn
(iw 2Vin

)192 n -|- bE,’}.
(93)
Select the virtual controller «;, as
a1 - S
= _binsff ! — Vi — Esin + li,nfl(Xil + lilXil) +g Dt hina (94)

where b;, >0 is a design parameter.
From (93) to (94), one gets

= Sy
Cnyo n 28, PiF
CpIw, <Z A=aollxl® —ZJ 17(,(2 )ﬁ—zj_gﬂ by, += 551
Sit w1 G 1
+1—16tanh*(—2 )y, - " (L )2
vi(nh — S;)° 2 G 2vy 207
n Vi ) (1)
+Zj:2 5 Hoe} + H;
(95)
Obviously,
~ 112 a0  -Tp-
— ao[y;]|” < —m)ﬁ Pix;. (96)

Using Lemma 2.12, one has
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28
- Ljﬁ <=7 byllog 2"” ;). (97)
= (- 8) =T T =Sy

According to Lemma 2.4, one has
Pige=Pide &)< —&f?-F&fiz- (98)
Vi Vi 2y; 2y;

Substituting (96)-(98) into (95), one gets

C o N a() =) ;71] ﬁ n Zﬁ
ODt Wy < ZiZl{_A (PI)X PlX; - ijl bl (l gﬂz 82> - Zj:5+1 b’]SIJ

=2
pi = no 1 G 1, 2 S
Shg N (st [l Istanh® (),
2yi ZJ*Z (’J vy 27 vi(nh — SH)?
Pi 2 n Vi 1)
(99)
Using Lemma 2.6, one gets
[ (G , 1 — B\ALF N pi 100
(Amax(r])l) Xz) — ( ﬁ)ﬁ + Amax(Pl> Xl X;? ( )
which means that
ap ao B
_ VP P; 1 — B)B. 101
T (P i Pt = (max(P)X 1)+ (- P (101)
Similarly,
2 Pi 72.F L
Pi z 1 — B)BF 102
SPE < &) 0 -pE (102)
and
S S ey (LS D gyt
=2 2vy 20 0T =2 2wy 20 PIF
(103)

Substituting (101)-(103) into (99), one gets
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” Z 111'
CpIw, < Z; 1{ (P,)X Pi.)f Zj:l bij(loggn% _]SZ.)ﬁ

n 2 Pi » n 1 Ei‘ 1
— D ien bySy — (2—5) - > =)

Pi 2
+2)/i£i+

(104)

S
’J 2 il
+ [1 — 16 tanh"(———)]Y;
=22 Ui(’7i21 - Sizl)E l

+he;+3(1— p)piat + HY.

As a result, it follows from (104) that

Si
SDYW, < —hWE+L+> " [1- 16tanh2(ﬁ)m (105)
vi(Miy — 95 )?

where
l; = min{(—— ﬁ72ﬂbi7”'72ﬁbi:72ﬁbi: 7"')2ﬁbin7 ’[';7
1 {(Amax(lpi) ) 1 = E+1 P;
= B ) B
1 ¢ 1 1 G; 1
B o2 W(—_—2n _ )y 1>
( & v S ((m 2v. 5
and
b=+ Y s e Y >
2—1‘:1 2)’,’ i j:22 /—’)/5 i i

by selecting appropriate parameters.
Remark 5. Note that the last term 3"~ [1 — 16 tanh?( - Si —7)]Yiin (105)

T
vi(m —S; )2

is indefinite. A discussion will be conducted in Section 5 using Lemma 2.9.
Remark 6. The time-varying PSCs are considered in this work rather than
constant FSCs, which requires computing the fractional-order derivatives of
the time-varying constraint boundary and then increases the difficulty of
stability analysis.
To illustrate the previous design, the flowchart of the control system
structure is shown in Figure 1.
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Input saturation | sati(ri) | FOMASs| Y | The adaptive law

(7)(8) (6) (49)
Hi(ti) Yi Xik é}:
—
T | Reduced-order state observer
(23)
Xk

ETC mechanism Qin Virtual controllers
(87)(88)(89) (48)(60)(69)(78)(94)

Figure 1. The flowchart of the control system structure.

Stability Analysis and Parameter Selection

Stability Analysis

Theorem 5.1. Consider a FOMAS given in (6). Under Assumption 2.1-2.3,
virtual control functions (48), (60), (69), (78) and (94), reduced-order state
observer (23), fractional-order adaptive laws (49) and the ETC mechanism
(87)-(89), the practical finite-time output tracking can be achieved, i.e.,
lyi — yo| <& as t>T". In addition, the following conditions can be guaranteed:
(i) The PSCs are never breached, i.e., Xii <mjj=1,---,8
(ii) All the system signals are bounded.
(iii) No Zeno behavior occurs.

Proof. Let’s prove it in two cases.

Case 1. If 28“52 r¢Q,, it follows from Lemma 2.9 that
s =87 )2
1— 16tanh2(%§n)’i) 0. Since Y; >0 by its definition, thus, [1—
0i(11;,—S3,)?
16 tanh? (257182;)]1/, is negative in this case. Then inequality (105) is simpli-

fied as

Vil —9n

EDIW, < —LWP 41, (106)

According to Lemma 2.7, it follows from (106) that for V¢ > T7,
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W, < [—2JF 107
with the settling time
. _ I LhL I'(2—-p)r ( L)1“(1‘1’0')1
=W "~ =) 7 l. (108)
It can be seen from the definition of W, (t) that
2
1 Mij L L. -
—lo < Fj=1,...,8. (109)
2% s A
Thus,
—2] h ]1//5 _
|S,-,-| S (OV1—e W= <p(t),j=1,..., 8 (110)
Case 2: If —1— € O,,, one has |34"|l < 0.2554v;, which means that
(11,21752 )2 (5 —S3)?
0.2554)*v213
S| < ( ) Zdz < 1, (2). (111)
1+ (0.2554)%

From the definition of Y}, let 0 < ¥; < ¥; with Y; being a positive constant.
Therefore,

Sit

0<[l — 16 tanh*(—————
iy — Sh)?

NYi<Y.. (112)

Then, (105) can be rewritten as
SDIW, < —LWFP 41, (113)

where I', = 1, + Zfil Y.
Similar to the Case 1, for Vt > T3,

l’z 1
< |——|F
W" — [ll(l o w)] (114)
with the settling time
— 1
TS =W, P — (71/2 V7P - M@= AT + )t + 0)]%, (115)
2 0 ll(l— ) F(l—i—ﬁ—a)llw

According to the Case 1 and Case 2, it can be obtained from (110) and (111)
that [Si| <, (t). Let S = [Si,... ,SNI]T, 7, = max{#x,;,..., My, and

8=1[y1— ¥o,-..,yn — yo]". Equation (31) can be rewritten in vector form as
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= (£ + B)4. It follows from |S;;| < #,, that ||S|| < v/N7,. Then, one gets

| Yol < 10| < om‘.‘(5£|l+8) < Umﬂ@&. Therefore, the practical finite-time

output tracking can be achieved.

Since (113) in Case 2 has the same form as (106) in Case 1, the following
proof only considers Case 1 and Case 2 can be similarly proved.

i). According to Assumption 2.2, |yo(t)| < qo. Thus, [y, < [|6]] + [yol

S VN7, . min (L£4B) ()00 — 11,
< amiy(zlzls + lyo| < m—}— do. Choosing #,,(t) < a—\/ﬁﬂ))’ one

has [y, [ < ma (2).
According to (107), one has

I ,
WPy < [——2—5 11
Thus,
s L/(h(1 - @)
lxl~]~|§|lxil|§\/[2 Al, @) ]7J:27---7”- (117)
Similarly,
lz L
Ol < V2[——J% i=2....,n. 118
‘ j‘ —\/_[Zl(l_w)] ] n ( )

By the boundedness of &, one has |a;| < b; with b;>0 being
a constant. Since x,, = Sp + Vi + ¥, + @i +7,-1y,-, it follows from (110),
(117) and (118) that |[x,| <|[Spl + [Vi| + |Xu| + lau| + lnlyil < 75,

+\/§[ll( 5+ M + by + Iy Choosing 7,,(t) < m(t)

1— w) Amin(

1 - l/ﬁ —
V2] — L) Ty, we  have x| < ma(t).

ll(l_w) Amin( i

Similarly, ~we can obtain that |y,[<m;(f) by choosing

_onVE - -
Wij(t) < 7Tij(t) - \/5[11(11 w)]zﬁ % —bij1 — lijama,

j=3,...,E Therefore, the PSCs are never breached.
ii). According to (107), one has

P, j=E+1,...,n. (119)
Then,

2 B j=E+1,....n (120)
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Similarly,

~ I 1
& < \/27,.[11(171]%. (121)

@)

From (110), (117), (118), (120) and (121), we obtain that X] 191],
j=2,...,n, the error variables S;, j=1,...,n, and & are bounded. & is

also bounded due to |§|<|&|+ |€,’| < &)+ / yimzﬁ. Since

Xizor = Xiz TSz + Uiz + iz + liy;, one has |X1.75+1| < izl +

1771'%
Siz41] + 10241] + loiz] + Tilys] < /AL EIE 4 2 /o[ BJ5 4 e

+lizm;, thus Xizyl 18 bounded. Similarly, Xi» j=E+42,...,n, are bounded.

Since the bounde_dness of x> X; and ¥, X;;_; is also bounded due to
)A(i,jfl =X — Xij — lij-1Xp>j = 2,...,n. As a result, all the system signals are
bounded.

iii). We just need to prove that ;. , — t; > T;>0. Computing the fractional-
order derivative of |zi(t)| = |¢;(t) — 7;(t)|, we have

. c c
SDY|zi| =§ DI\/zi * zi = sign(zi)y D’z < |gD7¢,|. (122)
It is inferred from (88) that SDY¢,() is continuous on some compact set.

Therefore, |¢D7¢,(t)| < ¢ with constant ¢;>0. Noting that |z;()] = 0 and

1 1) @i 2
llmt_>t}i( 1|Zl(t)| e al( )e a; tk+l + m( )
+
) -l )
i al e ! k“-i-m
bep — tk satisfies T; > ~———1—

vior is ruled out.

, we obtain that the lower bound T; of

>0, which implies that the Zeno beha-

Parameter Selection

The guideline of the parameter selections is given as follows:
Consider an FOMAS with the fractional-order ¢ satistying 0 <o <1. The
leader signal y, () satisfying Assumption 2.2, the saturation limits 7;,; and 7y,
and the time-varying constraint boundary function m;(t), i=1,...,N, j =
1,...,E, are given. For a given directed interconnected graph satisfying
Assumption 2.1, the matrices W, D, £ and B can be obtained
Step I: Set the initial values of y,(0), &(0 ) /(0),i=1,...,N,j
and };(0), i=1,...,N, j=1,...,n—1, satisfying XU( )<m
j=1,...,5 and };; ,(0) < m;(0) for j=2,...,E. The initial state

1,.
()for
h;;(0) of

the fractional-order filter satisfying £;(0) = &;j—1(0), i=1,...,N,
j=2,...,n, can be obtained by (48), (60), (69) and (78).
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Step 2: Define fuzzy If-Then rules, select appropriate fuzzy membership
functions and obtain the fuzzy basis functions. Thus, a FLS can be constructed.

Step 3: Choose parameters 7,-]-, i=1,...,N,j=1,...,n—1, such that
matrix 4; is Hurwitz. For a given matrix Q; >0, solve the Lyapunov equation
A,-T P + PiA; = —Q, to obtain a positive definite matrix solution P;.

Step 4: Select appropriate boundary function 7,(¢), i=1,...,N,

n(f) < Gmin(L+B) ()00 —11))
il —

j=1,...,5  satisfy N and  7,(t) < (1)

L VB T . -
_\/2[—11( L )] 2 — 7[12/(11‘](13“ 1ﬂl )] — bl] 1 — lljflﬂil,] = 27 Cee g

Step 5: Select suitable constants f3, by, 0j, y;, a; for j = 1,...,n,and vj;, ¢ i for
j=2,. ntomeet0</3<1 b;>0, 0;>0,y,>0, a,>0for]—1 .,n, and

Step 6: Solve the fract1onal d1fferent1al equations according to system in (6),
state observer in (23), fractional-order filter in (35) and the fractional-order
adaptive laws in (49), in which the virtual controllers are calculated according
to (48), (60), (69), (78) and (94), the ETC scheme according to (87) and (89)
with the intermediate control function (88), and the saturated controller
according to (7).

Example

An example is given in this section to demonstrate the correctness of the
proposed control algorithm. In this example, the considered FOMASs consist
of a leader and four followers, labeled by 0, 1,2, 3, 4, respectively. The inter-
connection graph of five agents is given in Figure 2.

For simplicity, assume that all edges of the interconnected graph have
weights of 1. Thus, B = diag{co,/, 00,/}, D = diag{0,1,1,1} and

0O 0 0 o /A A A |

1 0 0 0 —00 oo I 1
W_0001’5_1)_)/\/_ / /I o0 —00

1 0 0 0 —o00 I 1 0

Consider a FOMAS consisting of four single-machine-infinite bus power
subsystem (Song et al. 2019) described by

(ngQDi = ¢i+gn +Fifi1(f), o o
o D¢ = sati(1i) — J i — Fsin(g;) + 5= + 4 cos(xit) (123)
+gn +ra(t),i=1,2,3,4.
Let xi =¢» Xo =% dz(l) = ljji’ dz@ = P'M’ d( )= ] J d1(4) =T
gin = 0.3 cos(my;,, ) cos(my,,)s gin = 0.2sin(my; 1) Sm(ﬂX,z) ra(t) =0.2
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Figure 2. Directed interaction graph.

() — 02

1

sin(100¢), rp(t) = 0.3cos(100f) and set d\”) =0.02, ¥ =1, d
d(4)

i

= 0.2593, k; = 1. System (123) can be rewritten as

D9y, = x;, + 0.3 cos(my,, ) cos(my,,) + 0.2sin(100¢),
$D0y., = sati(t;) — 0.02x,, — sin(x,,) + 0.2 4+ 0.2593 cos(f) (124)
+0.2 sin(my,, ) sin(my,,) + 0.3 cos(100t),i = 1,2, 3,4,

where 0 =0.98. The leader signal is y, = sin(0.5t) — cos(1.5¢t). x;,i =
1,2,3,4, are required to be constrained by time-varying boundaries
my=23e"'4+2, m =4e ' +34, m3 =4e ' +3.4 and my = 4e ! 4 3.4,
respectively. y,,,i = 1,2,3,4, are unconstrained.

The saturated controller sat;(7;) given as

15,7; > 15,
Sati(T,'> = T,',—15<Ti< 15, (125)
—15,7; < —15.

Choose parameters § = 99/101, by; = 25, by; = b3, = by = 15, by = 10,
yi=8p, =02 a=1, (=005 I; =1, a’ =al’ =1, ol =4l =2,
agz) = agz) = 0.01, agz) = aiz) =0.1, mgl) = mgl) =3, mgl) = mil) =4,
mfz) =15, € =1 Set initial states x;,(0)=—0.5 x,(0)=—0.2,
X31(0) = 0.5, x,,(0) = 0.1, x,,(0) = X;;(0) = &(0) = 0.

The simulation results of example are shown in Figures 3-12. The curves of
vi(t) and yo(t) are shown in Figure 3. The curves of the tracking errors y; — yo
are given in Figure 4. It can be watched from Figures 34 that y;(t) = x;, can
track yo(t) in a short time with a good tracking performance. Figures 5-6
provide the trajectories of the constrained state y, and the local consensus
error S;;, respectively. It can be watched from Figures 5-6 that they never
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Figure 3. The trajectories of y;, y2, y3, ¥4 and yo.
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Figure 4. The curves of the tracking errors y; — yo.

exceed their restricted boundaries 7;; and #;,. Figure 7 depict the trajectories of
the system state y,, and its estimation j,,. It can be seen from Figure 7 that they
are bounded. Figures 8-11 give the trajectories of 7;(¢) and its saturation input
sat;(7;(f)). It can be seen from Figures 8 to 11 that when the required control
input are large, the actual saturation control inputs works well. The inter-event
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Figure 5. The trajectories of the system states x;; with constraints.
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Figure 6. The trajectories of the error variables S;; with constraints.

time t,,, — i and the trigger time instant # of four agents are shown in
Figure 12. Obviously, the Zeno behavior is excluded successfully.

To highlight the advantages of this work, a comparison with ETC scheme
proposed in Yang et al. (2022) is conducted with the same parameters.
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Figure 7. The trajectories of the system states x;, and its estimation ¥;;.
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Figure 8. The curves of the controller 7;(t) and its saturation input sat; (11 (t)).

Figure 13 shows the trajectories of y; and y, with ETC scheme proposed in
Yang et al. (2022). The trigger numbers of the ETC scheme proposed in Yang
etal. (2022) and this paper are shown in Table 1. As can be seen from Figures 3
and 13 and Table 1, even though more general cases are considered in this
paper, there is no significant difference in control performance, but the
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Figure 9. The curves of the controller 7,(t) and its saturation input saty(7,(t)).
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Figure 10. The curves of the controller 75(t) and its saturation input sat3(73(t)).

number of triggers using the ETC scheme proposed in this paper is signifi-
cantly less than that using the ETC scheme proposed in Yang et al. (2022)
Remark 7. The saturation controller (7) is realized with its input defined in
(87)-(89). The initial values of the constrained states should be set within the
constraint boundaries. Under the proposed control scheme, all error variables
converging to a neighborhood of the origin in finite time is ensured. In
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Figure 11. The curves of the controller 74(t) and its saturation input sats(t4(t)).
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Figure 12. The inter-event time of 7;(t).

addition, as can be seen from Figures 8 to 11, although the required control
feedback is large, the actual saturation control can still achieve satisfactory
control effect.
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Figure 13. The trajectories of y1, ¥, y3, ¥a and y, with ETC scheme proposed in Yang et al. (2022).
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Table 1. Trigger numbers for agents.
Agent 1 Agent 2 Agent 3 Agent 4
ETC scheme in Yang et al. (2022) 889 443 504 461

ETC scheme proposed in this paper 483 396 381 423
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Conclusion

An output feedback-based fuzzy adaptive finite-time ETC problem is investi-
gated in this paper for a FOMAS with PSCs and IS in directed networks.
A reduced-order state observer is designed to estimate the unmeasurable
states. FLS is used to tackle the nonlinearity and the unknown parameters
are estimated adaptively. A fractional-order filter is constructed to avoid
repeatedly calculating the high-order derivatives of the virtual controllers. By
introducing an appropriate BLF, the designed ETC scheme can ensure state
constraints are not breached and the communication resources can be
reduced. By analyzing the stability, it is guaranteed that finite-time tracking
can be achieved with a bounded error, all signals of system are bounded and
the Zeno behavior does not occur. Finally, a numerical example is given to
demonstrate the effectiveness of the proposed control scheme.
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