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ABSTRACT 
 

As a combination of the fuzzy linguistic approach and the hesitant fuzzy set (HFS), 
hesitant fuzzy linguistic term set (HFLTS) is an efficient tool to deal with situations in 
which experts hesitate between several possible linguistic terms to assess the 
membership of an element in qualitative settings. In this paper, we develop a novel 
method for solving multiple attribute group decision making (MAGDM) problems with 
hesitant fuzzy linguistic information, in which the attribute values provided by the decision 
makers take the form of hesitant fuzzy linguistic term sets (HFLTSs), the information 
about the weights of decision makers is unknown, and the information about attribute 
weights is incompletely known or completely unknown. The developed method consists of 
three parts. The first one establishes a quadratic programming model based on the 
maximizing group consensus method, which can be used to determine the weights of 
decision makers. The second one uses the maximizing deviation method to establish an 
optimization model, from which the optimal weights of attributes can be derived. The third 
one extends the TOPSIS method to hesitant fuzzy linguistic environments and develops a 
hesitant fuzzy linguistic TOPSIS method, which determines a solution with the shortest 
distance to the hesitant fuzzy linguistic positive ideal solution (PIS) and the greatest 
distance from the hesitant fuzzy linguistic negative ideal solution (NIS). Moreover, a 
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practical example is provided to illustrate the proposed method. Finally, the comparison 
analysis with the other methods shows that the developed method is very effective and 
appropriate for solving hesitant fuzzy linguistic MAGDM with incomplete weight 
information. 
 

 
Keywords:  Hesitant fuzzy set; hesitant fuzzy linguistic term set; multiple attribute group 

decision making; maximizing group consensus method; maximizing deviation 
method; TOPSIS. 

 
1. INTRODUCTION 
 
Owing to the fact that the difficulty of establishing the membership degree of an element to a 
set is sometimes not because we have a margin of error (as in intuitionistic fuzzy set [1], 
interval-valued fuzzy set [2], or interval-valued intuitionistic fuzzy set [3]) or some possibility 
distribution on the possible values (as in type-2 fuzzy set [4]), but because we have some 
possible numerical values [5], Torra [5] presented a new concept of hesitant fuzzy set (HFS), 
in which several numerical values between 0 and 1 are simultaneously used to represent the 
membership degree of an element to a given set. As a result, hesitant fuzzy set is not only 
an extension of fuzzy sets [6] to deal with uncertainty but also an efficient tool that can 
represent situations in which several membership functions for a fuzzy set are possible. 
Since its appearance, hesitant fuzzy set have attracted more and more attentions [7-24]. 
Especially, hesitant fuzzy set theory has been successfully applied to multiple attribute group 
decision making (MAGDM) in which the attribute values take the form of hesitant fuzzy 
elements (HFEs) [15] that are expressed as a set of several possible numerical values. 
 
However, it is noted that the attribute values about alternatives are usually uncertain or fuzzy 
due to the increasing complexity of the socio-economic environment and the vagueness of 
inherent subjective nature of human thinking [25,26]; thus, a qualitative form may be more 
appropriate for assessing the information than a quantitative form. For example, some 
linguistic terms like “very good”, ‘‘good’’, ‘‘slightly good’’, and ‘‘fair’’ rather than some 
numerical values are frequently used to evaluate the ‘‘comfort’’ or ‘‘design’’ of a car [27]. The 
fuzzy linguistic approach is a very efficient approximate technique to deal with such cases 
[28,29]. It is noticed that the fuzzy linguistic approach usually uses a single term to express 
the information regarding a linguistic variable [30,31]. But in practical applications, the 
decision makers (DMs) may think of several possible linguistic values at the same time or 
richer expressions rather than a single term for an indicator, alternative, variable, etc [30,31]. 
For example, when evaluating the ‘‘comfort’’ or ‘‘design’’ of a car, some linguistic 
expressions such as “between very good and slightly good”, “greater than fair”, and “lower 
than good” are often used. For the sake of a better description of this situation, Rodríguez et 
al. [30] introduced the concept of a hesitant fuzzy linguistic term set (HFLTS), which can 
efficiently deal with the situations in which the DMs hesitate between several linguistic terms 
to assess an indicator, alternative, variable, etc. Rodríguez et al. [30] presented a multi-
criteria linguistic decision making model based on hesitant fuzzy linguistic term sets 
(HFLTSs). Furthermore, Rodríguez et al. [31] proposed a group decision making model 
dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. 
Zhang and Wu [32] defined several hesitant fuzzy linguistic aggregation operators for 
aggregating the input arguments that take the form of HFLTSs, and then utilized these 
operators to develop an approach for multiple attribute group decision making with hesitant 
fuzzy linguistic information. Obviously, these researches [30,31,32] put their emphasis on 
the aggregation techniques in MAGDM under hesitant fuzzy linguistic situations, which have 
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some limitations as follows: (1) when using these techniques, the weight vectors of decision 
makers and attributes are proposed by the DMs in advance, and thus are more or less 
subjective and insufficient; (2) when using these techniques, the dimension of the 
aggregated HFLTSs may increase, which may increase the computational complexity and 
lead to the loss of decision information. 
 
In fact, in many MAGDM with hesitant fuzzy linguistic information, because of time pressure, 
lack of knowledge or data, and the decision makers’ limited expertise about the problem 
domain [33], the information about the weights of decision makers is unknown, and the 
information about the attribute weights is incompletely known or completely unknown. 
Considering that the aforementioned works [30,31,32] are inappropriate for dealing with such 
situations, in this paper, we establish a quadratic programming model based on the 
maximizing group consensus method to objectively determine the weights of decision 
makers. We further use the maximizing deviation method to establish an optimization model, 
based on which the optimal attribute weights can be objectively obtained. Moreover, 
motivated by the TOPSIS, we develop an extended TOPSIS method to determine the 
optimal alternative, which includes two stages. The first stage is called the hesitant fuzzy 
linguistic TOPSIS, which can be used to calculate the individual relative closeness 
coefficient of each alternative to the individual hesitant fuzzy linguistic positive ideal solution 
(PIS). The second stage is the standard TOPSIS, which is used to calculate the group 
relative-closeness coefficient of each alternative to group PIS and select the optimal one 
with the maximum group relative-closeness coefficient. 
 
To do so, the remainder of this paper is organized as follows. In Section 2, we briefly review 
some concepts related to the fuzzy linguistic approach, HFSs and HFLTSs. Section 3 
develops a novel method based on the maximizing group consensus method, the 
maximizing deviation method and TOPSIS for solving the hesitant fuzzy linguistic MAGDM 
problem with incomplete weight information. An illustrative example is provided to show the 
effectiveness and practicality of the developed method in Section 4. In the sequel, Section 5 
makes a comparison analysis with the other method. This paper ends with some concluding 
remarks in Section 6. 
 
2. PRELIMINARIES 
 
2.1 The Fuzzy Linguistic Approach 

 
The fuzzy linguistic approach is an approximate technique, which represents qualitative 

aspects as linguistic values by means of linguistic variables. Let 
{ }0,1,2, ,iS s i g= = L

 be a 

finite and totally ordered discrete linguistic term set with odd cardinality, where is  represents 

a possible value for a linguistic variable, g  is the number of granularity in the linguistic term 

set, which is a positive integer. For example, a set of nine terms S  could be given as follows 
[34-38]: 
 

0 1 2 3 4

5 6 7 8

: extremely poor, : very poor, : poor, : slightly poor, : fair,

: slightly good, : good, : very good, : extremely good

s s s s s
S

s s s s

 
=  
   

 

Usually, it is required that linguistic term set S  should satisfy the following characteristics: 
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(1) The set is ordered: i js s≥
 if i j≥ ; 

(2) There is the negation operator: 
( )neg i js s=

 such that j g i= −  ( 1g +  is the granularity 
of the term set); 

(3) Max operator: 
( )max ,i j is s s=

 if i js s≥
; 

(4) Min operator: 
( )min ,i j is s s=

 if i js s≤
. 

 

To preserve all the given information, Xu [39,40] extended the discrete linguistic term set S  

to a continuous linguistic term set 
[ ]{ }0 , 0,gS s s s s gα α α= ≤ ≤ ∈

. If s Sα ∈ , then sα  is 

called an original linguistic term, otherwise, sα  is called a virtual linguistic term. In general, 
the decision maker uses the original linguistic terms to evaluate alternatives, and the virtual 
linguistic terms can only appear in operation. 
 

Considering any two linguistic terms 
,s s Sα β ∈

, and [ ]0,1λ ∈
, Xu [39,40] defined two 

operational laws as follows: 
 

(1) 
s s s s sα β β α α β+⊕ = ⊕ =

; 

(2) s sα λαλ = . 
 

We denote ( )I s
 as the position index of s  in S : For example, ( )I sα α=

. 
 

Let 
,s s Sα β ∈

 be two extended linguistic terms, then Xu [41] defined the distance between 

sα  and 
sβ  as follows: 

   
( ) ( ) ( )

,
I s I s

d s s
g g

α β
α β

α β− −
= =

                                                                        (1) 
 

2.2 Hesitant Fuzzy Sets (HFSs) 
 
Torra [5] proposed the notion of hesitant fuzzy sets to manage the situations in which 
several numerical values are possible for the definition of the membership of an element to a 
given set. 
 

Definition 2.1 [5].  Let X  be a reference set, a hesitant fuzzy set (HFS) on X  is in terms of 

a function h  that when applied to X  returns a subset of [ ]0,1
. 

 
To be easily understood, Xia and Xu [15] expressed the HFS by a mathematical symbol: 
 

( ){ },h x h x x X= ∈
,                                                                                               (2) 
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where ( )h x
 is a set of some values in [ ]0,1

, denoting the possible membership degrees of 

the element x X∈  to the set h . For convenience, Xia and Xu [15] called ( )h h x=
 a 

hesitant fuzzy element (HFE). 
 
2.3 Hesitant Fuzzy Linguistic Term Sets (HFLTSs) 
 
Hesitant fuzzy sets [5] were presented to describe and manage the situations where experts 
may consider several numerical values at the same time to define the membership of an 
element. However, similar situations may occur in the qualitative setting in which experts 
hesitate among several linguistic terms instead of numerical values to assess a linguistic 
variable. For such situations, based on the fuzzy linguistic approach and the hesitant fuzzy 
sets, Rodríguez et al. [30] introduced the concept of a hesitant fuzzy linguistic term set 
(HFLTS) as follow: 

Definition 2.2 [30].  Let S  be a linguistic term set, 
{ }0,1,2, ,iS s i g= = L

, a hesitant fuzzy 

linguistic term set (HFLTS), SH , is an ordered finite subset of consecutive linguistic terms of 
S . 
 

In the following discussions, SH  is simply denoted without ambiguity as H . Without the loss 
of generality, we assume that the elements in a HFLTE are arranged in an increasing order. 

Let Hl  denote the number of linguistic terms in H . 
 

Example 2.1  Let S  be a linguistic term set, i.e., 
 

0 1 2 3 4

5 6 7 8

: extremely poor, : very poor, : poor, : slightly poor, : fair,

: slightly good, : good, : very good, : extremely good

s s s s s
S

s s s s

 
=  
  . 

 

We give two hesitant fuzzy linguistic term sets (HFLTEs) 1H  and 2H  as follows: 
 

                             { }1 3 4: slightly poor, : fairH s s=
, 

 { }2 4 5 6 7: fair, : slightly good, : good, : very goodH s s s s=
. 

 

Given two HFLTSs 1H  and 2H , in most cases, 1 2H Hl l≠
. To operate correctly between 

HFLTSs, it is required that they have the same length. To address this issue, Zhu and Xu 
[42] extended the shorter HFLTS until both of them have the same length by the following 
method: 
 

Definition 2.3 [42].  Assume a HFLTS, 
{ }1,2, ,t

HH H t l= = L
, let H +

 and H −
 be the 

maximum and minimum linguistic terms  in H  respectively, and ς  ( 0 1ς≤ ≤ ) be an 

optimized parameter, then we call ( )1H H Hς ς+ −= + −
 an added linguistic terms. 
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We can add linguistic terms to a HFLTS by using ς , where ς  is provided by the decision 

maker (DM) according to his/her risk preference. When 1ς = , 0ς =  or 

1

2
ς =

, we have 

H H += , H H −=  or 
( )1

2
H H H+ −= +

, respectively, which indicate that the DM’s risk 
preference is risk-seeking, risk-averse or risk-neutral. 
 

Example 2.2  Let 1H  and 2H  are two HFLTSs shown in Example 2.1. Clearly, 1
2Hl =

, 

2
4Hl =

 and 1 2H Hl l<
. Assume that the DM is a risk-seeker, i.e., 1ς = . Then 1H  can be 

extended to the following form: 
 

{ }1 3 4 4 4: slightly poor, : fair, : fair, : fairH s s s s=
. 

 

Based on Eq. (2), we define the distance between two HFLTSs, 1H , 2H , as below: 
 

Definition 2.4. Let S  be a linguistic term set, and 1H , 2H  ( 1 2H H Hl l l= =
) be two HFLTSs 

on S , then the distance between them is defined as: 
 

     
( )

( ) ( ) ( )1 2 1 2
1 1

1 2

,
,

H Hl l
t t t t

t t

H H

d H H I H I H
d H H

l g l
= =

−
= =

⋅

∑ ∑

                                                   (3) 
 

where 
{ }1 1 1,2, ,t

HH H t l= = L
 and 

{ }2 2 1,2, ,t
HH H t l= = L

. 
                                                                                                                                                                               
3. A NOVEL METHOD FOR MULTIPLE ATTRIBUTE GROUP DECI SION MAKING 

WITH HESITANT FUZZY LINGUISTIC INFORMATION 
 
3.1 Problem Description 

 
First, a multiple attribute group decision making (MAGDM) problem with hesitant fuzzy 

linguistic information can be summarized as follows: Let { }1 2, , , mX x x x= L
 be a set of m  

alternatives, { }1 2, , , nC c c c= K
 be a collection of n  attributes, whose weight vector is 

( )1 2, , ,
T

nw w w w= L
, with 

[ ]0,1jw ∈
, 1,2, ,j n= L , and 1

1
n

j
j

w
=

=∑
, and let 

{ }1 2, , , pD d d d= L
 is a set of p  decision makers, whose weight vector is 

( )1 2, , ,
T

pω ω ω ω= L
, with [ ]0,1kω ∈

, 1,2, ,k p= L , and 1

1
p

k
k

ω
=

=∑
. Let 

( ) ( )( )k k
ij

m n
A

×
=A

 be a 
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hesitant fuzzy linguistic decision matrix, where 

( ) ( )( ) ( ){ }1,2, , k
ij

t
k k

ij ij A
A A t l H= = ∈ %L

  is a 

HFLTS, which is a set of all the linguistic terms that the alternative ix X∈  satisfies the 

attribute jc C∈
, given by the decision maker kd D∈ . 

 
In general, there are benefit attributes (i.e., the bigger the attribute values the better) and 
cost attributes (i.e., the smaller the attribute values the better) in a MAGDM problem. For 
such cases, we need to transform the hesitant fuzzy linguistic decision matrices 

( ) ( )( )k k
ij

m n
A

×
=A

 ( 1,2, ,k p= L ) into the normalized hesitant fuzzy linguistic decision matrix 
( ) ( )( )k k

ij
m n

B
×

=B
 ( 1,2, ,k p= L ) by the following equation: 

 

( )
( )

( )( )
, for benefit attribute

, for cost attribute

k
ij j

k
cij k

ij j

A c
B

A c


= 
 ,   1, 2, ,i m= L , 1,2, ,j n= L , 1,2, ,k p= L ,       (4) 

 

where 
( )( )c
k

ijA
 is the complement of 

( )k
ijA

, such that 

( )( ) ( )( )( ) ( )neg 1,2, , k
ij

c t
k k

ij ij A
A A t l

 = = 
 

L

. 

In most situations, it is noted that the numbers of linguistic terms in different HFLTSs 
( )k
ijB

 of 
( )k
B  ( 1,2, ,k p= L ) are different. In order to more accurately calculate the distance between 
these HFLTSs, we should extend the shorter ones until all of them have the same length. Let 

( ){ }max 1,2, , ,  1,2, , , 1,2, ,k
ijB

l l i m j n k p= = = =L L L

. By the regulations mentioned in 

Definition 2.3, we transform the hesitant fuzzy linguistic decision matrices 
( ) ( )( )k k

ij
m n

B
×

=B
 

( 1,2, ,k p= L ) into the corresponding hesitant fuzzy linguistic decision matrices 
( ) ( )( )k k

ij
m n

H
×

=H
 ( 1,2, ,k p= L ), such that 

( )k
ijH

l l=
 for all 1, 2, ,i m= L , 1,2, ,j n= L , and 

1,2, ,k p= L . 
 
3.2 A Quadratic Programming Model for Determining the W eights of Decision 

Makers  
 

First, we aggregate the individual hesitant fuzzy linguistic decision matrices 
( ) ( )( )k k

ij
m n

H
×

=H
 

( 1,2, ,k p= L ) into the group hesitant fuzzy linguistic decision matrix 
( )ij m n
H

×
=H

, where 
 

   

( )( ) ( )( )
1 1

1,2, ,
p p t

k k
ij k ij k ij

k k
H H H t lω ω

= =

 = ⊕ = ⊕ = 
 

L

                                                      (5) 
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In general, the smaller the deviation between the individual decision information and the 
group decision information, the larger the consensus between the individual decision 
information and the group decision information, the closer that the individual decision 
information is to the group decision information, the more reliable the individual decision 
information. Therefore, the criterion of determining the optimal weights of decision makers is 
to minimize the deviation measure between the individual hesitant fuzzy linguistic decision 
matrices and the group hesitant fuzzy linguistic decision matrix. 
 
In the following, motivated by Xu and Cai [43,44], we consider the issue how to determine 
the weights of decision makers, which can be discussed in the following two cases: 
 

(1) If all 

( ) ( )( ) ( )( ){ }1,2, ,
t

k k k
ij ij

m n
m n

H H t l
×

×

 = = = 
 

LH

 ( 1,2, ,k p= L ) are the same as 

( ) { }( )1,2, ,t
ij ijm n m n

H H t l
× ×

= = = LH
, then it is reasonable to assign the decision makers kd  

( 1,2, ,k p= L ) the same weights 

1

p . 
 

(2) If all 
( )k
H  ( 1,2, ,k p= L ) are not the same as H , then we introduce the deviation 

variables         

              

( ) ( )( )
( )( )( ) ( ) ( )( )( ) ( )( )

( )( )( ) ( )( )( )

1
11

1 1

,

l pl t tt k qk t
ij q ijij ij q

k k tt
ij ij ij

pl t t
k q

ij q ij
t q

I H I HI H I H
e d H H

g l g l

I H I H

g l

ω

ω

===

= =

 − ⊕−  
 = = =

⋅ ⋅

−
=

⋅

∑∑

∑ ∑

 (6) 
 

for all 1, 2, ,i m= L , 1,2, ,j n= L , 1,2, ,k p= L , 

and then define the square deviations among all 
( )k
H  ( 1,2, ,k p= L ) and H  as below: 

 

 
( ) ( )( )( ) ( )( )( )

2

1 1 1 1 1

1 p pm n l t t
k q

ij q ij
k i j t q

e I H I H
mnpgl

ω ω
= = = = =

 
= − 

 
∑∑∑∑ ∑

                                     (7) 
 

Based on the viewpoint of maximizing group consensus, we can construct the quadratic 
programming model as follows: 
 

 

( ) ( )( )( ) ( )( )( )
2

1 1 1 1 1

1

1
min min

s.t. 0, 1,2, , , 1

p pm n l t t
k q

ij q ij
k i j t q

p

k k
k

e I H I H
mnpgl

k p

ω ω

ω ω

= = = = =

=

  
 = − 
  


> = =


∑∑∑∑ ∑

∑L

                 (M-1) 
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We can derive the solution to the model (M-1) by the following procedures: 
We first construct the Lagrange function: 
 

           
( ) ( )( )( ) ( )( )( )

2

1 1 1 1 1 1

1
, 2 1

p p pm n l t t
k q

ij q ij k
k i j t q k

L I H I H
mnpgl

ω λ ω λ ω
= = = = = =

   
= − − −   

  
∑∑∑∑ ∑ ∑

      (8) 
 

where λ  is the Lagrange multiplier. 
 

Differentiate (8) with respect to hω  ( 1,2, ,h p= L ), and set these partial derivatives equal to 
zero, then we have the following equations: 
 

              

( ) ( )( )( ) ( )( )( ) ( )( )( )
1 1 1 1 1

, 1
2 2 0

p pm n l t t t
k q h

ij q ij ij
k i j t qh

dL
I H I H I H

d mnpgl

ω λ
ω λ

ω = = = = =

  = − − − =  
  

∑∑∑∑ ∑
   (9) 

 
i.e. 
 

( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )
1 1 1 1 1 1 1 1

1 1
0

p pm n l m n lt t t t
h q k h

q ij ij ij ij
q i j t k i j t

I H I H I H I H
mngl mnpgl

ω λ
= = = = = = = =

    − − =         
∑ ∑∑∑ ∑∑∑∑

(10) 
 
which can be rewritten in matrix form as: 
 

0D A Eω λ− − =                                                                                                     (11) 
 

where ( )1,1, ,1
T

E = L
, and 

 
 

   

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1

1 1 1 1

2

1 1 1 1

1 1 1 1 1

1

p m n l t t
k

ij ij
k i j t

p m n l t t
k

ij ij
k i j t

p m n l t t
k p

ij ij
k i j t p

I H I H

I H I H
A

mnpgl

I H I H

= = = =

= = = =

= = = = ×

  
  
  

    =   
 
 
  
  

  

∑∑∑∑

∑∑∑∑

∑∑∑∑

L

                                             (12) 
 

Since 1

1
p

k
k

ω
=

=∑
 can be rewritten as 1TE ω = , from which and (11), we obtain 

 
1

1

1 T

T

E D A

E D E
λ

−

−

−=
                                                                                                        (13) 
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and 

( )1 1

1
1

1 T

T

D E E D A
D A

E D E
ω

− −
−

−

−
= +

                                                                                 (14) 
 

where ω  is the weight vector of decision makers kd  ( 1,2, ,k p= L ). 
 
3.3 Obtaining the Optimal Weights of Attributes by the Maximizing Deviation 

Method 
 
Because many practical group decision making problems are complex and uncertain, and 
human thinking is inherently subjective, the information about attribute weights is usually 

incomplete. For convenience, let ∆  be a set of the known weight information [45-48], where 
∆  can be constructed by the following forms, for i j≠ : 
 

Form 1. A weak ranking: 
{ }i jw w≥

; 

Form 2. A strict ranking: 
{ }i j iw w α− ≥

 ( 0iα > ); 

Form 3. A ranking of differences: 
{ }i j k lw w w w− ≥ −

, for j k l≠ ≠ ; 

Form 4. A ranking with multiples: 
{ }i i jw wα≥

 ( 0 1iα≤ ≤ ); 

Form 5. An interval form: { }i i i iwα α ε≤ ≤ +
 ( 0 1i i iα α ε≤ ≤ + ≤ ). 

 
The maximizing deviation method was proposed by Wang [49] to estimate the attribute 
weights in MADM problems with numerical information. According to Wang [49], if the 
performance values of all the alternatives have small differences under an attribute, it shows 
that such an attribute plays a less important role in choosing the best alternative and should 
be assigned a smaller weight. On the contrary, if an attribute makes the performance values 
of all the alternatives have obvious differences, then such an attribute plays a much 
important role in choosing the best alternative and should be assigned a larger weight. 
Especially, if all available alternatives score about equally with respect to a given attribute, 
then such an attribute will be judged unimportant by most decision makers and should be 
assigned a very small weight. Wang [49] suggests that zero weight should be assigned to 
the attribute of this kind. 
 
In what follows, based on the maximizing deviation method, we construct an optimization 
model to determine the optimal relative weights of attributes under hesitant fuzzy linguistic 
environment. It is noted that our optimization model is similar to the minimizing deviations 
models proposed by Xu [50] for solving MADM problems with preference information on 
alternatives in uncertain linguistic setting. 

For the attribute jc C∈
, the deviation of the alternative ix X∈  to all the other alternatives 

with respect to the decision maker kd D∈  can be defined as below: 
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( ) ( ) ( ) ( )( )
( )( )( ) ( )( )( )

1 1

1

,

m l t t
k k

ij qj jm
q tk k k

ij ij qj j
q

I H I H w

D w d H H w
g l

= =

=

−
= =

⋅

∑∑
∑

, 
1, 2, ,i m= L , 1,2, ,j n= L , 1,2, ,k p= L                                                                  (15) 

 
Let 
 

( ) ( ) ( ) ( ) ( ) ( )( )
( )( )( ) ( )( )( )

1 1 1

1 1 1

,

m m l t t
k k

ij qj jm m m
i q tk k k k

j ij ij qj j
i i q

I H I H w

D w D w d H H w
g l

= = =

= = =

−
= = =

⋅

∑∑∑
∑ ∑∑

   
1,2, ,j n= L , 1,2, ,k p= L                                                                                          (16) 

 

then 
( ) ( )k
jD w

 represents the deviation value of all alternatives to other alternatives for the 

attribute jc C∈
 with respect to the decision maker kd D∈ . 

 
Further, let 

           

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( )( ) ( )( )( )

1 1 1 1 1 1 1 1 1

1 1 1 1 1

,
p p pn n m n m m

k k k k
k j k ij k ij qj j

k j k j i k j i q

p n m m l t t
k k

k ij qj j
k j i q t

D w D w D w d H H w

I H I H w

g l

ω ω ω

ω

= = = = = = = = =

= = = = =

     
= = =     

     

 
− 

 =
⋅

∑ ∑ ∑ ∑∑ ∑ ∑∑∑

∑ ∑∑∑∑

(17) 
 

then ( )D w
 represents the deviation value of all alternatives to other alternatives for all the 

attributes with respect to all the decision makers. 
 
Based on the above analysis, we can construct a non-linear programming model to select 

the weight vector w by maximizing ( )D w
, as follows: 

 

        

( )
( )( )( ) ( )( )( )

1 1 1 1 1

2

1

max max

s.t. 0, 1, 2, , , 1

p n m m l t t
k k

k ij qj j
k j i q t

n

j j
j

I H I H w

D w
g l

w j n w

ω
= = = = =

=

  
−  

  =
⋅


 ≥ = =


∑ ∑∑∑∑

∑L

                     (M-2) 
 

To solve this model, we construct the Lagrange function: 
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( )

( )( )( ) ( )( )( )
1 1 1 1 1 2

1

, 1
2

p n m m l t t
k k

k ij qj j n
k j i q t

j
j

I H I H w

L w w
g l

ω
λλ = = = = =

=

 
− 

  = + − ⋅  

∑ ∑∑∑∑
∑

            (18) 
 

where λ  is the Lagrange multiplier. 
 

Differentiating Eq. (18) with respect to jw
 ( 1,2, ,j n= L ) and λ , and setting these partial 

derivatives equal to zero, then the following set of equations is obtained: 
 

  

( )( )( ) ( )( )( )
1 1 1 1 0

p m m l t t
k k

ij qj k
k i q t

j
j

I H I H
L

w
w g l

ω
λ= = = =

−
∂ = + =

∂ ⋅

∑∑∑∑

                                       (19) 
 

2

1

1
1 0

2

n

j
j

L
w

λ =

 ∂ = − = ∂  
∑

                                                                                             (20) 
 

It follows from Eq. (20) that 
 

        

( )( )( ) ( )( )( )
1 1 1 1

p m m l t t
k k

ij qj k
k i q t

j

I H I H

w
g l

ω

λ
= = = =

− −
=

⋅

∑∑∑∑

                                                      (21) 
 

Putting Eq. (21) into Eq. (19), we get 
 

( )( )( ) ( )( )( )
2

1 1 1 1 1

pn m m l t t
k k

ij qj k
j k i q t

I H I H

g l

ω
λ = = = = =

 
− − 

 =
⋅

∑ ∑∑∑∑

                                            (22) 
 

Then combining Eqs. (21) and (22), we have 
 

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 1 1 1

2

1 1 1 1 1

p m m l t t
k k

ij qj k
k i q t

j
pn m m l t t

k k
ij qj k

j k i q t

I H I H

w

I H I H

ω

ω

= = = =

= = = = =

−
=

 
− 

 

∑∑∑∑

∑ ∑∑∑∑
                                             (23) 

 

By normalizing jw
 ( 1,2, ,j n= L ), we make their sum into a unit, and get 
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( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

1 1 1 1

1 1 1 1 1 1

p m m l t t
k k

ij qj k
j k i q t

j n pn m m l t t
k k

j ij qj k
j j k i q t

I H I H
w

w
w I H I H

ω

ω

= = = =∗

= = = = = =

−
= =

−

∑∑∑∑

∑ ∑∑∑∑∑
                                        (24) 

 
which can be considered as the optimal weight vector of attributes. 
 
However, it is noted that there are practical situations in which the information about the 
weight vector is not completely unknown but partially known. For such cases, we establish 
the following constrained optimization model: 
 

   

( )
( )( )( ) ( )( )( )

1 1 1 1 1

1

max max

s.t. , 0, 1,2, , , 1

p n m m l t t
k k

k ij qj j
k j i q t

n

j j
j

I H I H w

D w
g l

w w j n w

ω
= = = = =

=

  
−  

  =
⋅


 ∈ ∆ ≥ = =


∑ ∑∑∑∑

∑L

                     (M-3) 
 

It is noted that the model (M-3) is a linear programming model that can be solved using the 
MATLAB mathematics software package. Suppose that the optimal solution to (M-2) is 

( )1 2, , ,
T

nw w w w= L
, which can be considered as the weight vector of attributes. 

 
3.4 Extended TOPIS Method for the MAGDM with Hesita nt Fuzzy Linguistic 

Information 
 

TOPSIS method, initially introduced by Hwang and Yoon [51], is a widely used method for 
dealing with MADM problems, which focuses on choosing the alternative with the shortest 
distance from the positive ideal solution (PIS) and the farthest distance from the negative 
ideal solution (NIS). In the following, based on the above analysis, we shall extend the 
TOPIS method to the MAGDM problems under hesitant fuzzy linguistic environments, in 
which the information about the weights of decision makers is unknown, the information 
about attribute weights is incompletely known or completely unknown, and the attribute 
values are given in the form of HFLTSs. 
 
The flowchart of the extended TOPIS method is provided in Fig. 1. The extended method 
consists of the following steps: 
 

Step 1.  For a MAGDM problem, the decision maker kd D∈  constructs the hesitant fuzzy 

linguistic decision matrix 
( ) ( )( )k k

ij
m n

A
×

=A
, where 

( )k
ijA

 is a HFLTS, given by the DM kd D∈ , 

for the alternative ix X∈  with respect to the attribute jc C∈
. Utilize Eq. (4) to transform the 

hesitant fuzzy linguistic decision matrices 
( ) ( )( )k k

ij
m n

A
×

=A
 ( 1,2, ,k p= L ) into the normalized 

hesitant fuzzy linguistic decision matrices 
( ) ( )( )k k

ij
m n

H
×

=H
 ( 1,2, ,k p= L ). 
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Step 2. If the information about the weights of decision makers is unknown, then we use Eq. 
(14) to obtain the weights of decision makers. 
 
Step 3.  If the information about the attribute weights is completely unknown, then we use Eq. 
(24) to obtain the attribute weights; if the information about the attribute weights is partly 
known, then we solve the model (M-2) to obtain the attribute weights. 
 
Step 4.  Determine the hesitant fuzzy linguistic positive ideal solution (PIS) 

( ) ( ) ( ) ( ){ }1 2, , ,k k k k
nX H H H+ + + += L

 and the hesitant fuzzy linguistic negative ideal solution (NIS) 
( ) ( ) ( ) ( ){ }1 2, , ,k k k k

nX H H H− − − −= L

 for each decision maker kd  by the following equations: 
 

( ) ( ){ } ( )( ){ }max max 1, 2, ,
t

k k k
j ij ij

i i
H H H t l+

 = = = 
 

L

               1,2, ,j n= L                  (25) 
 

( ) ( ){ } ( )( ){ }min min 1,2, ,
t

k k k
j ij ij

i i
H H H t l−

 = = = 
 

L

           1,2, ,j n= L                        (26) 
 

Step 5. Calculate the separation measures 
( )k
id+  of each alternative ix  from the hesitant 

fuzzy linguistic PIS 
( )kX +  of the decision maker kd  as: 

 

 

( ) ( ) ( )( )
( )( )( ) ( )( )( )

1 1

1

,

n l t t
k k

j ij jn
j tk k k

i j ij j
j

w I H I H

d w d H H
g l

+
= =

+ +
=

−
= =

⋅

∑∑
∑

                                (27) 
 

In a similar way, calculate the separation measures 
( )k
id−  of each alternative ix  from the 

hesitant fuzzy linguistic NIS 
( )kX −  of the decision maker kd  as: 

 

             

( ) ( ) ( )( )
( )( )( ) ( )( )( )

1 1

1

,

n l t t
k k

j ij jn
j tk k k

i j ij j
j

w I H I H

d w d H H
g l

−
= =

− −
=

−
= =

⋅

∑∑
∑

                             (28) 
 

Step 6. Calculate the relative closeness coefficient of each alternative ix  to the hesitant 

fuzzy linguistic PIS 
( )kX +  of the decision maker kd  as: 

 

   

( )
( )

( ) ( )

k
k i

i k k
i i

d
C

d d
−

+ −

=
+                                                                                                      (29) 

After calculating the 
( )k
iC  for each decision maker kd  ( 1,2, ,k p= L ), we then form the 
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relative-closeness coefficient matrix as below: 
 

  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2
1 1 1

1 2
2 2 2

1 2

p

p

p
m m m m p

C C C

C C C
C

C C C
×

 
 
 =  
 
 
 

L

L

L L L L

L
                                                                                (30) 

 
Steps 4-6 extended the standard TOPSIS to hesitant fuzzy linguistic environments and 
therefore can be called the hesitant fuzzy linguistic TOPSIS. From this stage on our method 
continues by applying the standard TOPSIS to the relative-closeness coefficient decision 
matrix in order to identify the group positive ideal solution. 
 
Step 7.  Identify the group positive ideal solution (GPIS) and group negative ideal solution 
(GNIS), respectively as follows: 
 

( ){ } ( ){ } ( ){ }{ }1 2max , max , , max pG
i i i

i i i
X C C C+ = L

                                                         (31) 
 

( ){ } ( ){ } ( ){ }{ }1 2min , min , , min pG
i i ii i i

X C C C− = L

                                                          (32) 
 

Step 8. Calculate the separation measures 
G
id+  and 

G
id−  of each alternative ix  from the 

group positive ideal solution 
GX +  and the group negative ideal solution 

GX − , respectively, as 
follows: 

( ) ( ){ }( ) ( ) ( ){ }( )
1 1

,max max
p p

k k k kG
i k i i k i i

i i
k k

d d C C C Cω ω+
= =

= = −∑ ∑
                                     (33) 

 

             

( ) ( ){ }( ) ( ) ( ){ }( )
1 1

,min min
p p

k k k kG
i k i i k i i

i i
k k

d d C C C Cω ω−
= =

= = −∑ ∑
                                      (34) 

Step 9.  Calculate the group relative-closeness coefficient 
G
iC  of each alternative ix  to 

group positive ideal solution 
G
id+  as: 

 

  

G
G i
i G G

i i

d
C

d d
−

+ −

=
+                                                                                                        (35) 

Step 10.  Rank the alternatives ix  ( 1, 2, ,i m= L ) according to the group relative-closeness 

coefficients 
G
iC  ( 1, 2, ,i m= L ) and then select the most desirable one(s). The larger the 

value of 
G
iC , the more different between ix  and the group negative ideal object 

G
id− , while 

the more similar between ix  and the group positive ideal object 
G
id+ . Therefore, the 

alternative(s) with the maximum group relative-closeness coefficient should be chosen as 
the optimal one(s). 
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Fig. 1. The flowchart of the developed method 
 
It is noted that some formulas such as (25) and (26) and the similar TOPSIS approach with 
hesitant fuzzy linguistic information can be found in Ref. [52]. However, Ref. [52] focuses on 
the MADM problems with only a hesitant fuzzy linguistic decision matrix. However, in real-life, 
due to the increasing complexity of socio-economic environment, it is less and less possible 
for a single decision maker to consider all relevant aspects of the problem. Therefore, many 
organizations employ groups to make decision, which is called as group decision making 
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(GDM). Our method gives a TOPIS based procedure to solve a MAGDM problem under 
hesitant fuzzy linguistic environments with several hesitant fuzzy linguistic decision matrices. 
The TOPSIS method proposed in Ref. [52] included a stage, which we call the hesitant fuzzy 
linguistic TOPSIS; while the extended TOPSIS proposed by our method includes two stages. 
The first stage is called the hesitant fuzzy linguistic TOPSIS, which can be used to calculate 
the individual relative closeness coefficient of each alternative to the individual hesitant fuzzy 
linguistic PIS. The second stage is the standard TOPSIS, which is used to calculate the 
group relative-closeness coefficient of each alternative to group PIS and select the optimal 
one with the maximum group relative-closeness coefficient. 
 
4. ILLUSTRATED EXAMPLE 
 
In this section, a numerical example is used to demonstrate the applicability and the 
effectiveness of our method under hesitant fuzzy linguistic environment. 
 
Example 4.1  Let us suppose an investment company, which wants to invest a sum of 
money in the best option (adapted from [35,53]). There is a panel with five possible 

alternatives in which to invest the money: (1) 1x  is a car industry; (2) 2x  is a food company; 

(3) 3x  is a computer company; (4) 4x  is an arms company; (5) 5x  is a TV company. The 

investment company must make a decision according to the following four attributes: (1) 1c  

is the risk analysis; (2) 2c  is the growth analysis; (3) 3c  is the social–political impact analysis; 

(4) 4c  is the environmental impact analysis. Suppose that five possible candidates ix  

( )1,2,3,4,5i =
 are to be evaluated using the linguistic term set 

 

0 1 2 3 4

5 6 7 8

extremely poor, very poor, poor, slightly poor, fair,

slightly good, good, very good, extremely good

s s s s s
S

s s s s

= = = = = 
=  = = = =   

 

by three decision makers kd  ( 1,2,3k = ) under the above four attributes jc
 ( 1,2,3,4j = ). 

The decision makers construct, respectively, three hesitant fuzzy linguistic decision matrices 
( ) ( )( )

5 4

k k
ijA

×
=A

 ( 1,2,3k = ) listed in Tables 1-3, where 
( )k
ijA

 is a HFLTS denoting all the 

possible linguistic terms for the alternative ix  under the attribute jc
. The hierarchical 

structure of this MAGDM problem is shown in Fig. 2. 
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Table 1. Hesitant fuzzy linguistic decision matrix 
( )1
A  provided by the decision maker 

1d  
 

1 
1c  2c  3c  4c  

1x  { }5 6 7, ,s s s
 { }5 6 7 8, , ,s s s s

 { }3 4 5, ,s s s
 { }2 3 4 5, , ,s s s s

 
2x  { }5 6,s s

 { }4 5 6 7 8, , , ,s s s s s
 { }1 2 3 4, , ,s s s s

 { }4 5 6, ,s s s
 

3x  { }2 3,s s
 { }7 8,s s

 { }2 3 4, ,s s s
 { }5 6,s s

 
4x  { }4 5 6 7, , ,s s s s

 { }3 4 5, ,s s s
 { }7 8,s s

 { }1 2 3, ,s s s
 

5x  { }4 5 6 7 8, , , ,s s s s s
 { }2 3 4 5, , ,s s s s

 { }4 5 6, ,s s s
 { }1 2 3 4, , ,s s s s

 
 

Table 2. Hesitant fuzzy linguistic decision matrix 
( )2
A  provided by the decision maker 

2d  
 

2 
1c  2c  3c  4c  

1x  { }5 6 7, ,s s s
 { }1 2 3 4, , ,s s s s

 { }4 5 6 7 8, , , ,s s s s s
 { }2 3 4 5, , ,s s s s

 
2x  { }3 4 5 6 7, , , ,s s s s s

 { }5 6,s s
 { }5 6 7 8, , ,s s s s

 { }1 2,s s
 

3x  { }7 8,s s
 { }2 3 4, ,s s s

 { }3 4 5, ,s s s
 { }4 5 6, ,s s s

 
4x  { }4 5 6 7, , ,s s s s

 { }7 8,s s
 { }2 3 4, ,s s s

 { }1 2 3, ,s s s
 

5x  { }5 6 7, ,s s s
 { }2 3 4 5, , ,s s s s

 { }7 8,s s
 { }1 2 3 4, , ,s s s s

 
 

Table 3. Hesitant fuzzy linguistic decision matrix 
( )3
A  provided by the decision maker 

3d  
 

3 
1c  2c  3c  4c  

1x  { }5 6 7 8, , ,s s s s
 { }6 7,s s

 { }3 4 5, ,s s s
 { }2 3 4 5, , ,s s s s

 
2x  { }4 5 6, ,s s s

 { }1 2 3 4, , ,s s s s
 { }4 5 6 7 8, , , ,s s s s s

 { }5 6,s s
 

3x  { }2 3,s s
 { }6 7 8, ,s s s

 { }2 3 4, ,s s s
 { }5 6 7 8, , ,s s s s

 
4x  { }1 2 3, ,s s s

 { }5 6,s s
 { }4 5 6 7 8, , , ,s s s s s

 { }4 5 6 7, , ,s s s s
 

5x  { }7 8,s s
 { }1 2 3 4, , ,s s s s

 { }4 5 6, ,s s s
 { }5 6 7, ,s s s
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3x 4x2x1x 5x

1c
2c 3c 4c

 
 

Fig. 2. Hierarchical structure 
 

In what follows, we utilize the developed method to find the best alternative(s). We now 
discuss two different cases. 
 
Case 1. Assume that the information about the attribute weights is completely unknown; in 
this case, we use the following steps to get the most desirable alternative(s). 
 

Step 1.  Considering that all the attributes jc
 ( 1,2,3,4j = ) are the benefit type attributes, the 

hesitant fuzzy linguistic decision matrices 
( ) ( )( )

5 4

k k
ijA

×
=A

 ( 1,2,3k = ) do not need 

normalization. Suppose that all the decision makers (DMs) ( 1,2,3k = ) are pessimistic, then 
we utilize Definition 2.3 to transform the hesitant fuzzy linguistic decision matrices 

( ) ( )( )k k
ij

m n
A

×
=A

 ( 1,2,3k = ) into the hesitant fuzzy linguistic decision matrices 
( ) ( )( )k k

ij
m n

H
×

=H
 ( 1,2,3k = ) (see Tables 4-6), such that 

( ) 5k
ijH

l =
 for all 1, 2,3, 4i = , 

1,2,3,4j = , and 1,2,3k = . 
 

Table 4. Hesitant fuzzy linguistic decision matrix 
( )1
H  provided by the decision maker 

1d  
 

4 
1c  2c  3c  4c  

1x  { }5 5 5 6 7, , , ,s s s s s
 { }5 5 6 7 8, , , ,s s s s s

 { }3 3 3 4 5, , , ,s s s s s
 { }2 2 3 4 5, , , ,s s s s s

 
2x  { }5 5 5 5 6, , , ,s s s s s

 { }4 5 6 7 8, , , ,s s s s s
 { }1 1 2 3 4, , , ,s s s s s

 { }4 4 4 5 6, , , ,s s s s s
 

3x  { }2 2 2 2 3, , , ,s s s s s
 { }7 7 7 7 8, , , ,s s s s s

 { }2 2 2 3 4, , , ,s s s s s
 { }5 5 5 5 6, , , ,s s s s s

 
4x  { }4 4 5 6 7, , , ,s s s s s

 { }3 3 3 4 5, , , ,s s s s s
 { }7 7 7 7 8, , , ,s s s s s

 { }1 1 1 2 3, , , ,s s s s s
 

5x  { }4 5 6 7 8, , , ,s s s s s
 { }2 2 3 4 5, , , ,s s s s s

 { }4 4 4 5 6, , , ,s s s s s
 { }1 1 2 3 4, , , ,s s s s s
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Table 5. Hesitant fuzzy linguistic decision matrix 
( )2
H  provided by the decision maker 

2d  
 

5 
1c  2c  3c  4c  

1x  { }5 5 5 6 7, , , ,s s s s s
 { }1 1 2 3 4, , , ,s s s s s

 { }4 5 6 7 8, , , ,s s s s s
 { }2 2 3 4 5, , , ,s s s s s

 
2x  { }3 4 5 6 7, , , ,s s s s s

 { }5 5 5 5 6, , , ,s s s s s
 { }5 5 6 7 8, , , ,s s s s s

 { }1 1 1 1 2, , , ,s s s s s
 

3x  { }7 7 7 7 8, , , ,s s s s s
 { }2 2 2 3 4, , , ,s s s s s

 { }3 3 3 4 5, , , ,s s s s s
 { }4 4 4 5 6, , , ,s s s s s

 
4x  { }4 4 5 6 7, , , ,s s s s s

 { }7 7 7 7 8, , , ,s s s s s
 { }2 2 2 3 4, , , ,s s s s s

 { }1 1 1 2 3, , , ,s s s s s
 

5x  { }5 5 5 6 7, , , ,s s s s s
 { }2 2 3 4 5, , , ,s s s s s

 { }7 7 7 7 8, , , ,s s s s s
 { }1 1 2 3 4, , , ,s s s s s

 
 

Table 6. Hesitant fuzzy linguistic decision matrix 
( )3
H  provided by the decision maker 

3d  
 

6 
1c  2c  3c  4c  

1x  { }5 5 6 7 8, , , ,s s s s s
 { }6 6 6 6 7, , , ,s s s s s

 { }3 3 3 4 5, , , ,s s s s s
 { }2 2 3 4 5, , , ,s s s s s

 
2x  { }4 4 4 5 6, , , ,s s s s s

 { }1 1 2 3 4, , , ,s s s s s
 { }4 5 6 7 8, , , ,s s s s s

 { }5 5 5 5 6, , , ,s s s s s
 

3x  { }2 2 2 2 3, , , ,s s s s s
 { }6 6 6 7 8, , , ,s s s s s

 { }2 2 2 3 4, , , ,s s s s s
 { }5 5 6 7 8, , , ,s s s s s

 
4x  { }1 1 1 2 3, , , ,s s s s s

 { }5 5 5 5 6, , , ,s s s s s
 { }4 5 6 7 8, , , ,s s s s s

 { }4 4 5 6 7, , , ,s s s s s
 

5x  { }7 7 7 7 8, , , ,s s s s s
 { }1 1 2 3 4, , , ,s s s s s

 { }4 4 4 5 6, , , ,s s s s s
 { }5 5 5 6 7, , , ,s s s s s

 
 

Step 2. Utilize the Eq. (14) to get the weights of the decision makers: 
 

1 1 1
, ,

3 3 3
ω  =  

   
 
Step 3. Considering that the information about the attribute weights is completely unknown, 
we utilize the Eq. (24) to get the optimal weight vector of attributes: 
 

( )0.2349,0.2936,0.2692,0.2023
T

w =
 

 

Step 4. Utilize Eqs. (25) and (26) to determine the hesitant fuzzy linguistic PIS 
( )kX +  

( 1,2,3k = ) and the hesitant fuzzy linguistic NIS 
( )kX −  ( 1,2,3k = ) for each decision maker kd  

( 1,2,3k = ), respectively: 
 

( ) { } { } { } { }{ }1
5 5 6 7 8 7 7 7 7 8 7 7 7 7 8 5 5 5 5 6, , , , , , , , , , , , , , , , , , ,X s s s s s s s s s s s s s s s s s s s s+ =

 
( ) { } { } { } { }{ }1

2 2 2 2 3 2 2 3 4 5 1 1 2 3 4 1 1 1 2 3, , , , , , , , , , , , , , , , , , ,X s s s s s s s s s s s s s s s s s s s s− =
 

( ) { } { } { } { }{ }2
7 7 7 7 8 7 7 7 7 8 7 7 7 7 8 4 4 4 5 6, , , , , , , , , , , , , , , , , , ,X s s s s s s s s s s s s s s s s s s s s+ =

 
( ) { } { } { } { }{ }2

3 4 5 6 7 1 1 2 3 4 2 2 2 3 4 1 1 1 1 2, , , , , , , , , , , , , , , , , , ,X s s s s s s s s s s s s s s s s s s s s− =
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( ) { } { } { } { }{ }3
7 7 7 7 8 6 6 6 7 8 4 5 6 7 8 5 5 6 7 8, , , , , , , , , , , , , , , , , , ,X s s s s s s s s s s s s s s s s s s s s+ =

 

   
( ) { } { } { } { }{ }3

1 1 1 2 3 1 1 2 3 4 2 2 2 3 4 2 2 3 4 5, , , , , , , , , , , , , , , , , , ,X s s s s s s s s s s s s s s s s s s s s− =
 

 

Step 5.  Utilize Eqs. (27) and (28) to calculate the separation measures 
( )k
id+  and 

( )k
id−  of 

each alternative ix  of the decision maker kd : 
 

( )1
1 0.2260d+ = , 

( )1
1 0.2975d− = , 

( )1
2 0.2568d+ = , 

( )1
2 0.2667d− = , 

( )1
3 0.2722d+ = , 

( )1
3 0.2513d− = , 

( )1
4 0.2525d+ = ,   

( )1
4 0.2710d− = , 

( )1
5 0.3160d+ = ,   

( )1
5 0.2075d− = , 

( )2
1 0.3063d+ = , 

( )2
1 0.1826d− = ,

( )2
2 0.2576d+ = , 

( )2
2 0.2312d− = , 

( )2
3 0.2900d+ = , 

( )2
3 0.1989d− = , 

( )2
4 0.2894d+ = , 

( )2
4 0.1995d− = , 

( )2
5 0.2545d+ = ,   

( )2
5 0.2344d− = , 

( )3
1 0.2007d+ = ,

( )3
1 0.3155d− = , 

( )3
2 0.2631d+ = , 

( )3
2 0.2531d− = , 

( )3
3 0.2612d+ = , 

( )3
3 0.2550d− = , 

( )3
4 0.2411d+ = ,   

( )3
4 0.2751d− = , 

( )3
5 0.2238d+ = ,   

( )3
5 0.2924d− = . 

 

Step 6. Utilize Eq. (29) to calculate the relative closeness coefficient 
( )k
iC  of each alternative 

ix  to the hesitant fuzzy linguistic PIS 
( )kX +  of the decision maker kd  as 

( )1
1 0.5683C = ,  

( )1
2 0.5095C = , 

( )1
3 0.4800C = , 

( )1
4 0.5176C = , 

( )1
5 0.3964C = ,  

( )2
1 0.3735C = ,  

( )2
2 0.4730C = , 

( )2
3 0.4069C = , 

( )2
4 0.4081C = , 

( )2
5 0.4794C = , 

( )3
1 0.6113C = ,  

( )3
2 0.4902C = , 

( )3
3 0.4940C = , 

( )3
4 0.5329C = , 

( )3
5 0.5665C = . 

 
Then, we construct the relative-closeness coefficient matrix as below: 
 

5 3

0.5683 0.3735 0.6113

0.5095 0.4730 0.4902

0.4800 0.4069 0.4940

0.5176 0.4081 0.5329

0.3964 0.4794 0.5665

C

×

 
 
 
 =
 
 
 
   

 
Step 7.  Utilize Eqs. (31) and (32) to identify the group positive ideal solution (GPIS) and 
group negative ideal solution (GNIS), respectively, as follows: 
 

{ }0.5683,0.4794,0.6113GX + =
 

{ }0.3964,0.3735,0.4902GX − =
 

Step 8. Utilize Eqs. (33) and (34) to calculate the separation measures 
G
id+  and 

G
id−  of each 

alternative ix  from the group positive ideal solution 
GX +  and the group negative ideal 

solution 
GX − , respectively, as follows: 
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1 0.0353Gd+ = , 1 0.0977Gd− = , 2 0.0621Gd+ = , 2 0.0709Gd− = , 3  0.0927Gd+ = , 3 0.0402Gd− = , 

4 0.0668Gd+ = , 4 0.0662Gd− = , 5 0.0722Gd+ = , 5 0.0607Gd− =  
 

Step 9.  Utilize Eq. (35) to calculate the group relative-closeness coefficient 
G
iC  of each 

alternative ix  to group positive ideal solution 
G
id+  as: 

 

1 0.7344GC = ,  2 0.5330GC = ,   3 0.3027GC = ,  4 0.4978GC = ,   5 0.4567GC =  
 

Step 10: Rank the alternatives ix  ( 1,2,3,4,5i = ) according to the group relative-closeness 

coefficient 
G
iC  ( 1,2,3,4,5i = ). Clearly, 1 2 4 5 3x x x x xf f f f , and thus the best alternative is 

1x . 
 
Case 2. The information about the attribute weights is partly known and the known weight 
information is given as follows: 
 

4

1 2 3 4
1

0.18 0.2, 0.15 0.25, 0.3 0.35, 0.3 0.4, 0, 1,2,3,4, 1j j
j

w w w w w j w
=

 
∆ = ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≥ = = 

 
∑

 
Step 1’.  See Step 1. 
 
Step 2’. See Step 2. 
 
 
Step 3’. Utilize the model (M-2) to construct the single-objective model as follows: 
 

( ) 1 2 3 4max 4.8000 6.0000 5.5000 4.1333

s.t.

D w w w w w

w

 = + + +


∈∆  
 
By solving this model, we get the optimal weight vector of attributes 

( )0.1800,0.1500,0.3000,0.3700
T

w =
. 

 
Step 4’. See Step 4. 
 

Step 5’.  Utilize Eqs. (27) and (28) to calculate the separation measures 
( )k
id+  and 

( )k
id−  of 

each alternative ix  of the decision maker kd : 
 

( )1
1 0.2597d+ = , 

( )1
1 0.2593d− = , 

( )1
2 0.2603d+ = , 

( )1
2 0.2587d− = , 

( )1
3 0.2625d+ = , 

( )1
3 0.2565d− = , 

( )1
4 0.2565d+ = ,   

( )1
4 0.2625d− = , 

( )1
5 0.3157d+ = ,  

( )1
5 0.2033d− = , 

( )2
1 0.2395d+ = , 

( )2
1 0.2335d− = ,

( )2
2 0.2817d+ = , 

( )2
2 0.1913d− = , 

( )2
3 0.2213d+ = , 

( )2
3 0.2517d− = , 
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( )2
4 0.3562d+ = ,   

( )2
4 0.1168d− = , 

( )2
5 0.2220d+ = ,  

( )2
5 0.2510d− = , 

( )3
1 0.2587d+ = , 

( )3
1 0.2160d− = ,

( )3
2 0.1873d+ = , 

( )3
2 0.2875d− = , 

( )3
3 0.2400d+ = , 

( )3
3 0.2347d− = , 

( )3
4 0.1985d+ = ,   

( )3
4 0.2762d− = , 

( )3
5 0.1628d+ = ,  

( )3
5 0.3120d− = . 

 

Step 6’. Utilize Eq. (29) to calculate the relative closeness coefficient 
( )k
iC  of each 

alternative ix  to the hesitant fuzzy linguistic PIS 
( )kX +  of the decision maker kd  as 

 
( )1
1 0.4995C = ,  

( )1
2 0.4986C = , 

( )1
3 0.4942C = , 

( )1
4 0.5058C = , 

( )1
5 0.3916C = , 

( )2
1 0.4937C = ,  

( )2
2 0.4043C = , 

( )2
3 0.5322C = , 

( )2
4 0.2468C = , 

( )2
5 0.5307C = , 

( )3
1 0.4550C = ,  

( )3
2 0.6056C = , 

( )3
3 0.4945C = , 

( )3
4 0.5819C = , 

( )3
5 0.6572C = . 

 
Then, we construct the relative-closeness coefficient matrix as below: 
 

5 3

0.4995 0.4937 0.4550

0.4986 0.4043 0.6056

0.4942 0.5322 0.4945

0.5058 0.2468 0.5819

0.3916 0.5307 0.6572

C

×

 
 
 
 =
 
 
 
   

 
Step 7’.  Utilize Eqs. (31) and (32) to identify the group positive ideal solution (GPIS) and 
group negative ideal solution (GNIS), respectively as follows: 
 

{ }0.5058,0.5322,0.6572GX + =
 

{ }0.3916,0.2468,0.4550GX − =
 

 

Step 8’. Utilize Eqs. (33) and (34) to calculate the separation measures 
G
id+  and 

G
id−  of each 

alternative ix  from the group positive ideal solution 
GX +  and the group negative ideal 

solution 
GX − , respectively, as follows: 

 

1 0.0824Gd+ = , 1 0.1182Gd− = , 2 0.0622Gd+ = , 2 0.1383Gd− = , 3 0.0581Gd+ = , 3 0.1425Gd− = , 

4 0.1202Gd+ = , 4 0.0804Gd− = , 5 0.0386Gd+ = , 5 0.1620Gd− =  
 

Step 9’.  Utilize Eq. (35) to calculate the group relative-closeness coefficient 
G
iC  of each 

alternative ix  to group positive ideal solution 
G
id+  as: 

 

1 0.5895GC = ,  2 0.6897GC = ,   3 0.7104GC = ,  4 0.4006GC = ,   5 0.8077GC =  
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Step 10. Rank the alternatives ix  ( 1,2,3,4,5i = ) according to the group relative-closeness 

coefficient 
G
iC  ( 1,2,3,4,5i = ). Clearly, 5 3 2 1 4x x x x xf f f f , and thus the best alternative is 

5x . 
 
5.  COMPARISON WITH THE OTHER HESITANT FUZZY MULTIP LE ATTRIBUTE 

DECISION MAKING METHODS 
 
In this section, we will perform a comparison analysis between our new method and the 
other existing hesitant fuzzy multi-attribute decision making methods, and highlight the 
advantages of the new method. 
 

5.1  Comparison with the Hesitant Fuzzy Multiple At tribute Decision Making 
(MADM) Methods Based on TOPSIS 

 
Zhang and Wei [54] extended the concept of TOPSIS method to develop a methodology for 
solving MADM problems with hesitant fuzzy element. Xu and Zhang [55] developed a 
method based on TOPSIS and the maximizing deviation method for solving MADM problems, 
in which the attribute values provided by the decision makers are expressed in hesitant fuzzy 
elements and the information about attribute weights is incomplete. Moreover, they extended 
the developed method to interval-valued hesitant fuzzy situations. Compared to Zhang and 
Wei’s method and Xu and Zhang’s method, the advantages of our method are as follows: 
 
(1) Zhang and Wei’s method and Xu and Zhang’s method aim at dealing with the MADM 
problem in which the attribute values take the form of hesitant fuzzy elements, and they can 
not be used to accommodate the hesitant fuzzy linguistic information. On the contrary, our 
method can be applied to MAGDM problems in which the attribute values take the form of 
HFLTSs, and therefore it can be used to address the hesitant fuzzy linguistic information.  
 
(2) Zhang and Wei’s method and Xu and Zhang’s method focus on the MADM problems. 
However, in real-life, due to the increasing complexity of socio-economic environment, it is 
less and less possible for a single decision maker to consider all relevant aspects of the 
problem. Therefore, many organizations employ groups to make decision, which is called as 
group decision making (GDM). Our method gives a TOPIS based procedure to solve a 
MAGDM problem under hesitant fuzzy linguistic environments. First, in our method, a 
quadratic programming model is established to determine the weights of decision makers, 
which is not be discussed in Zhang and Wei’s method and Xu and Zhang’s method. In 
addition, Zhang and Wei’s method doesn’t consider the weights of attributes. Xu and Zhang 
[55] established an optimization model to determine the attribute weights. But, this model 
determined the attribute weights from only an individual hesitant fuzzy decision matrix, and it 
cannot determine the importance weights of attributes in group decision making. Our method 
can derive the optimal weights of attributes from all individual hesitant fuzzy linguistic 
decision matrices. Finally, the TOPSIS methods proposed by Zhang and Wei [54] and Xu 
and Zhang [55] only included a stage, which we call the hesitant fuzzy TOPSIS; while the 
extended TOPSIS proposed by our method includes two stages. The first stage is called the 
hesitant fuzzy linguistic TOPSIS, which can be used to calculate the individual relative 
closeness coefficient of each alternative to the individual hesitant fuzzy linguistic PIS. The 
second stage is the standard TOPSIS, which is used to calculate the group relative-
closeness coefficient of each alternative to group PIS and select the optimal one with the 
maximum group relative-closeness coefficient. 
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5.2  Comparison with the Group Decision Making Mode l Dealing with 
Comparative Linguistic Expressions Based on Hesitan t Fuzzy Linguistic 
Term Sets 

 
Rodríguez et al. [31] proposed a group decision making model dealing with comparative 
linguistic expressions based on hesitant fuzzy linguistic term sets. In the following, we will 
compare our method with the Rodríguez et al.’s model to illustrate the advantages of our 
method. First, we revisit Example 4.1 by using the Rodríguez et al.’s model. 
 

Step 1. Obtaining for each HFLTS 
( )k
ijA

 ( 1,2,3,4,5i = , 1,2,3,4j = , 1,2,3k = ) its envelope 

and then get three uncertain linguistic decision matrices 
( ) ( )( )

5 4

k k
ijP

×
=P

 ( 1,2,3k = ) (see 
Tables 7-9). 
 

Table 7. Uncertain linguistic decision matrix 
( )1
P  

 
7 

1c  2c  3c  4c  
1x  [ ]5 7,s s

 [ ]5 8,s s
 [ ]3 5,s s

 [ ]2 5,s s
 

2x  [ ]5 6,s s
 [ ]4 8,s s

 [ ]1 4,s s
 [ ]4 6,s s

 
3x  [ ]2 3,s s

 [ ]7 8,s s
 [ ]2 4,s s

 [ ]5 6,s s
 

4x  [ ]4 7,s s
 [ ]3 5,s s

 [ ]7 8,s s
 [ ]1 3,s s

 
5x  [ ]4 8,s s

 [ ]2 5,s s
 [ ]4 6,s s

 [ ]1 4,s s
 

 

Table 8. Uncertain linguistic decision matrix 
( )2
P  

 
8 

1c  2c  3c  4c  
1x  [ ]5 7,s s

 [ ]1 4,s s
 [ ]4 8,s s

 [ ]2 5,s s
 

2x  [ ]3 7,s s
 [ ]5 6,s s

 [ ]5 8,s s
 [ ]1 2,s s

 
3x  [ ]7 8,s s

 [ ]2 4,s s
 [ ]3 5,s s

 [ ]4 6,s s
 

4x  [ ]4 7,s s
 [ ]7 8,s s

 [ ]2 4,s s
 [ ]1 3,s s

 
5x  [ ]5 7,s s

 [ ]2 5,s s
 [ ]7 8,s s

 [ ]1 4,s s
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Table 9. Uncertain linguistic decision matrix 
( )3
P  

 
9 

1c  2c  3c  4c  
1x  [ ]5 8,s s

 
[ ]6 7,s s

 
[ ]3 5,s s

 
[ ]2 5,s s

 
2x  [ ]4 6,s s

 
[ ]1 4,s s

 
[ ]4 8,s s

 
[ ]5 6,s s

 
3x  [ ]2 3,s s

 
[ ]6 8,s s

 
[ ]2 4,s s

 
[ ]5 8,s s

 
4x  [ ]1 3,s s

 
[ ]5 6,s s

 
[ ]4 8,s s

 
[ ]4 7,s s

 
5x  [ ]7 8,s s

 
[ ]1 4,s s

 
[ ]4 6,s s

 
[ ]5 7,s s

 
Step 2. Utilize the arithmetic mean aggregation operator based on 2-tuple [56] to obtain the 

pessimistic and optimistic collective 2-tuple linguistic decision matrices 
( )

5 4ijP− −

×
=P

 and 

( )
5 4ijP+ +

×
=P

 (see Tables 10 and 11), respectively. Since the Rodríguez et al.’s model 
needs to know the weight values of decision makers in advance, hence we assume the 

weight vector of decision makers as 

1 1 1
, ,

3 3 3
ω  =  

   
 
For example, 

           
( ) ( ) ( ) ( )1 1 1

12 5 1 6 4

1 1 1
,0 ,0 ,0 ,0

3 3 3
P s s s s− − − − = ∆ ∆ + ∆ + ∆ = 

   

( ) ( ) ( )1 1 1
12 8 4 7 6

1 1 1 1
,0 ,0 ,0 ,

3 3 3 3
P s s s s+ − − −   = ∆ ∆ + ∆ + ∆ =   

     

Step 3.  Computing a pessimistic and optimistic collective overall preference values iP−
 and 

iP+
 ( 1,2,3,4,5i = ) for each alternative (see Table 12). Since the Rodríguez et al.’s model 

needs to know the weight values of attributes in advance, hence we assume the weight 

vector of attributes as ( )0.2349,0.2936,0.2692,0.2023
T

w =
. 

Table 10. Pessimistic collective 2-tuple linguistic  decision matrix 
−
P  

 
10 

1c  2c  3c  4c  
1x  ( )5 ,0s

 
( )4 , 0s

 3

1
,
3

s
 
 
   

( )2 , 0s
 

2x  ( )4 , 0s
 3

1
,
3

s
 
 
   

3

1
,
3

s
 
 
   

3

1
,
3

s
 
 
   

3x  
4

1
,

3
s
 − 
   

( )5 ,0s
 2

1
,
3

s
 
 
   

5

1
,

3
s
 − 
   

4x  ( )3 ,0s
 

( )5 ,0s
 4

1
,
3

s
 
 
   

( )2 , 0s
 

5x  
5

1
,
3

s
 
 
   

2

1
,

3
s
 − 
   

( )5 ,0s
 2

1
,
3

s
 
 
   
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Table 11. Optimistic collective 2-tuple linguistic decision matrix 
+
P  

 
11 

1c  2c  3c  4c  
1x  

7

1
,
3

s
 
 
   

6

1
,
3

s
 
 
   

( )6 ,0s
 ( )5 ,0s

 

2x  
6

1
,
3

s
 
 
   

( )6 ,0s
 7

1
,

3
s
 − 
   

5

1
,

3
s
 − 
   

3x  
5

1
,

3
s
 − 
   

7

1
,

3
s
 − 
   

4

1
,
3

s
 
 
   

7

1
,

3
s
 − 
   

4x  
6

1
,

3
s
 − 
   

6

1
,
3

s
 
 
   

7

1
,

3
s
 − 
   

4

1
,
3

s
 
 
   

5x  
8

1
,

3
s
 − 
   

5

1
,

3
s
 − 
   

7

1
,

3
s
 − 
   

( )5 ,0s
 

 
Table 12. Pessimistic and optimistic collective ove rall preference values for each 

alternative 
 
12 

1x  2x  3x  4x  5x  
pessimistic ( )4 , 0.3491s −

 ( )3 ,0.4899s
 ( )4 , 0.0984s −

 ( )4 , 0.2561s −
 ( )4 , 0.4399s −

 
optimistic ( )6 ,0.2088s

 ( )6 , 0.0120s −
 ( )6 , 0.4312s −

 ( )6 , 0.1381s −
 ( )6 , 0.0228s −

 
 
For example, 

           
( ) ( ) ( ) ( )1 1 1 1

1 5 4 3 2 4

1 1 1 1 1
,0 ,0 , ,0 , 0.3491

3 3 3 3 3
P s s s s s− − − − −  = ∆ ∆ + ∆ + ∆ + ∆ = −  

    

( ) ( ) ( )1 1 1 1
1 7 6 6 5 6

1 1 1 1 1 1
, , ,0 ,0 ,0.2088

3 3 3 3 3 3
P s s s s s+ − − − −    = ∆ ∆ + ∆ + ∆ + ∆ =    

      
 

Step 4. Building a vector of intervals ( )1 2 3 4 5, , , ,P P P P P=P
for the alternatives (see Table 13). 

 
Table 13. Linguistic intervals for each alternative  

 

1x  2x  3x  4x  5x  
1P  2P  3P  4P  5P  
( )
( )

4

6

, 0.3491 ,

,0.2088

s

s

− 
 
    

( )
( )

3

6

,0.4899 ,

, 0.0120

s

s

 
 

−    

( )
( )

4

6

, 0.0984 ,

, 0.4312

s

s

− 
 

−    

( )
( )

4

6

, 0.2561 ,

, 0.1381

s

s

− 
 

−    

( )
( )

4

6

, 0.4399 ,

, 0.0228

s

s

− 
 

−    
 

Step 5.  Building a preference relation 
( )

5 5ijV
×

=V �
 (see Table 14). 
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Table 14. Preference relation 
( )

5 5ijV
×

=V �
 

 
14 

1x  2x  3x  4x  5x  
1x  0.5 0.5378 0.5461 0.5272 0.5324 

2x  0.4622 0.5 0.5009 0.4862 0.4940 

3x  0.4539 0.4991 0.5 0.4821 0.4918 

4x  0.4728 0.5138 0.5179 0.5 0.5076 

5x  0.4676 0.5060 0.5082 0.4924 0.5 

 
For example, 
 

( ) ( ) ( )
( ) ( )12 1 2

max 0,6.2088 3.4899 max 0,3.6509 5.9880

6.2088 3.6509 5.9880 3.4899
V P P P

− − −
= > =

− + −
 

where 

                                                   
( ) ( ) [ ]1 1

1 4 6, 0.3491 , ,0.2088 3.6509,6.2088P s s− − = ∆ − ∆ =   

                           
( ) ( ) [ ]1 1

2 3 6,0.4899 , , 0.0120 3.4899,5.9880P s s− − = ∆ ∆ − =   
 

Step 6.  Calculate the non-dominance degrees iNDD  ( 1,2,3,4,5i = ) for each alternative. 

1 1.0000NDD = ,  2 0.9245NDD = ,  3 0.9079NDD = , 4 0.9457NDD = , 5 0.9352NDD = . 
For example, 
 

( )( ) ( )( )
( )( ) ( )( )1

1 max 0.4622-0.5378 ,0 ,1 max 0.4539-0.5461 ,0 ,
min 1

1 max 0.4728-0.5272 ,0 ,1 max 0.4676-0.5324 ,0
NDD

 − − = = 
− −    

 

Finally, the set of alternatives is ordered according to iNDD  ( 1,2,3,4,5i = ) as follows: 
 

1 4 5 2 3x x x x xf f f f  
 

And the best alternative is 1x . 
 
It is easy to see that the optimal alternative obtained by the Rodríguez et al.’s method is the 
same as our method, which shows the effectiveness and reasonableness of our method. 
However, it is noticed that the ranking order of the alternatives obtained by our method is 

1 2 4 5 3x x x x xf f f f , which is different from the ranking order obtained by the Rodríguez et 

al.’s method. Concretely, the ranking orders between 2x  and 4x , and between 2x  and 5x  

obtained by the two methods are just converse, i.e., 2 4x xf  and 2 5x xf  for our method 

while 4 2x xf  and 5 2x xf  for the Rodríguez et al.’s method. It is easy to see that our 
method has some desired advantages over the Rodríguez’s method, which are illustrated as 
follows: 
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(1) From Step 1 above, we can see that the Rodríguez et al.’s method first transform the 
HFLTSs to uncertain linguistic variables [35,57,58] and then deal with the transformed 
uncertain linguistic variables. It is noted that such a transformation pays more attentions to 
the maximum and minimum linguistic terms in a HFLTS, and neglects the importance of the 
linguistic terms between the maximum linguistic term and the minimum linguistic term. As a 
result, it leads to the loss of information, which affects the final ranking results. However, our 
method does not need to perform such a transformation but directly deals with the HFLTSs, 
thereby provides a more sufficient and comprehensive description of the differences 
opinions of the DMs than the Rodríguez et al.’s method. The comparison shows that our 
method has its great superiority in handling the ambiguity and hesitancy inherent in MAGDM 
problems with hesitant fuzzy linguistic information. 
 
(2) Our method utilizes the maximizing group consensus method and the maximizing 
deviation method to determine the weight values of decision makers and attributes, 
respectively, which is more objective and reasonable; while the Rodríguez et al.’s method 
asks the DMs to provide the weight values of decision makers and attributes in advance, 
which is subjective and sometime cannot yield the persuasive results. 

 
6. CONCLUSIONS 
 
In the current paper, we have proposed a novel method for hesitant fuzzy linguistic MAGDM 
with incomplete weight information, which involves three parts: 
 
(1) Based on the idea that a set of group members should have a maximum degree of 
agreement solution, by maximizing the group consensus, we have first developed a method 
to determine the optimal weights of decision makers under hesitant fuzzy linguistic situations, 
which ensures the rationality of the individual decision information. 
 
(2) Then, motivated by the idea that a larger weight should be assigned to the attribute with 
a larger deviation value among alternatives, we have further proposed a maximizing 
deviation measure based method to determine the optimal attribute weights under hesitant 
fuzzy linguistic environments, which eliminates the influence of subjectivity of attribute 
weights provided by the decision makers in advance. 
 
(3) Moreover, we have proposed an extended TOPSIS method to solve MAGDM problems 
with hesitant fuzzy linguistic information, which includes the hesitant fuzzy linguistic TOPSIS 
and the standard TOPSIS. The former is to calculate the relative closeness coefficient of 
each alternative to the hesitant fuzzy linguistic PIS; while the latter is to calculate the group 
relative-closeness coefficient of each alternative to group PIS, based on which we rank the 
considered alternatives and then select the optimal one with the maximum group relative-
closeness coefficient. An important advantage of the extended TOPSIS method is that it can 
avoid the loss of hesitant fuzzy linguistic information in the process of information 
aggregation. 
 
Finally, an investment example has been used to illustrate the effectiveness and practicality 
of the developed method. A comparison analysis has also been made to show the 
advantages of the developed method over the other methods. 
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