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Feature Fusion Models for Deep Autoencoders:
Application to Traffic Flow Prediction
Arezu Moussavi-Khalkhali and Mo Jamshidi

Department of Electrical and Computer Engineering, University of Texas-San Antonio, San Antonio, TX,
USA

ABSTRACT
Due to reduction in dimensionality and extraction of the defi-
nitive features of input data, deep architectures have achieved
significant success in various machine learning applications.
Considering their successful applications in speech recognition
and image classification, the main goal of this research is to
investigate the performance of the sparse autoencoders uti-
lized in regression analysis. To this end, deep sparse autoenco-
ders with the standard method of training, cascaded, and
partially cascaded architectures, fed with the fusion of low-
and high-level features, are proposed and implemented. The
regression task is to forecast the vehicular flow rate of
a location on an arterial highway using different traffic vari-
ables of several locations ahead in the Twin Cities Metro area
of Minneapolis. The results demonstrate that the partially cas-
caded model exhibits advancements in yielding more accurate
results than the other two architectures fed with the features
that correlate the most to the traffic flow rate.

Introduction

Many studies continue to develop methods that are capable of forecasting
short-term and mid-term vehicular traffic flow as precisely as possible. The
network of terrestrial roads and highways is highly correlated, and a subtle
change in weather conditions or in the congestion of a single link may affect
the neighboring roads drastically. Because of this stochastic property inherent
in traffic data, it is very hard to predict the future traffic variables, as they do
not follow a special trend. Figure 1 shows some phenomena affecting the
traffic variables. Traffic flow or travel time predictions are of interest in many
applications. Some motivations for precision advancements in forecasting
traffic flow are:

● Improving the functionality of advanced traffic management systems
(ATMS) and ATMS subsystems, such as advanced traveler information
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systems (AITS), in supplying on time and accurate decisions and
responses (Ezell 2010; Noonan and Shearer 1998)

● Improving traffic conditions by using all available resources (roads,
paths); for instance, en-route information provided by AITS helps the
drivers take alternative routes in case of congestions (Noonan and
Shearer 1998)

● Providing more accurate trip advisory systems for travelers, such as
mobile phone apps

In addition to the above-mentioned cases, some other applications and
systems that also benefit from travel time estimation are introduced in
(Ezell 2010). Furthermore, intelligent roads and intelligent vehicles will take
advantage of accurate traffic flow predictions by informing other vehicles
through vehicle-to-vehicle or infrastructure-to-vehicle communications.

To this end, there is abundant research on forecasting traffic flow using
model-based and unmodelled approaches, also known as parametric and
non-parametric models.

Linear regression (Davis and Nihan 1991; Sun et al. 2003), variations of
ARIMA models (Williams 2001; Williams and Hoel 1999, 2003; Yu and
Zhang 2004), and Kalman filtering (Guo, Huang, and Williams 2014;

Figure 1. Factors affecting traffic conditions.
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Ojeda, Kibangou, and De Wit 2013) are among parametric approaches that
are widely used for traffic predictions. Whereas, k-nearest neighbor (Li, Shen,
and Xiong 2012; Oswald, Scherer, and Smith 2000; Zhang et al. 2013), Fuzzy
logic (Dimitriou, Tsekeris, and Stathopoulos 2008; Li, Lin, and Liu 2006;
Zhang and Ye 2008), artificial neural networks (Abdulhai, Porwal, and
Recker 2002; Chan et al. 2012; Dia 2001; Dougherty and Cobbett 1997;
Vlahogianni, Karlaftis, and Golias 2005, 2007), support vector machine
(SVM) regression, also known as support vector regression (SVR) (Su,
Zhang, and Yu 2007; Wu, Ho, and Lee 2004), and hybrids (Chang, Ge, and
Li 2012; Van Der Voort, Dougherty, and Watson 1996) comprise some of the
well-researched methods of non-parametric models. Several methods, such as
Bayesian networks and wavelets, are surveyed in (Bolshinsky and Freidman
2012; Van Hinsbergen and Sanders 2007), which declare that no technique
surpasses the other approaches in prediction precision. However, due to their
ability to capture and model the stochastic nature of traffic data, neural
networks, being unmodelled methods, have gained more attention among
researchers since the 1990s. The reason is that non-parametric mechanisms
are independent of the underlying mathematical assumptions and environ-
mental uncertainties of the traffic model. Consequently, using neural net-
works, which are well-known to approximate a non-linear function without
being exposed to the bounding function of input-output variables, is
a promising approach to tackle such complex problems (Lee 2000; Zhang
and Liu 2009). On the other hand, the state-of-the-art versions of neural
networks, deep architectures, have gained a lot of attention in different
applications, especially those related to classification tasks. The unsupervised
pre-training phase used to initialize the weights is believed to be the driving
force behind the success of deep structures (Bengio 2009). Therefore, the
focus of this research is on non-parametric techniques, specifically deep
structures applied to traffic flow predictions.

The overarching goal of this paper is to exploit the stacked sparse auto-
encoders to extract the high- and low-level features from the stochastic
vehicular traffic data, so as to integrate the extracted representations to achieve
high accuracy predictions. In addition to dimensionality reduction, autoenco-
ders are capable of performing non-linear Principal Components Analysis
(PCA) for feature extraction. Therefore, applying autoencoders to data with
high nonlinearity is superior to linear PCA. Consequently, this paper discusses
the experimental results of implementing deep architectures using stochastic
gradient descent and non-linear SVR, and compares the performance to that of
the feedforward neural networks (FFNN) augmented by linear PCA, and
FFNN without PCA. Unlike what was expected, the stacked sparse autoenco-
der trained with the standard method (Hinton and Salakhutdinov 2006) does
not does not outperform the FFNN amplified with PCA. Therefore, two novel
training architectures, the cascaded and partially cascaded architectures are
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implemented and evaluated to improve the functionality of stacked sparse
autoencoders utilized in regression analysis. It was previously shown that the
cascaded model based on SGD surpass the standard method (Moussavi-
Khalkhali and Jamshidi 2016); therefore, cascaded models based on SVR and
further novel models, partially cascaded methods, are proposed in this study.
Finally, an FFNN amplified with PCA and a non-linear SVR trained by the
fusion of raw inputs and high-level features, derived from the deep regression
models, are implemented and analyzed. The aforementioned non-parametric
predictive methods are implemented to predict the flow rate of a location
down a Trunk highway (target point), using all the available traffic variables
throughout the highway ahead of the target point. Ten-minute interval traffic
flows are extracted from 60 loop detectors, including the ones located through-
out the highway, off-ramps, and on-ramps, to detect the traffic flow rate of
a station ahead of them. The data comprised three months of traffic flow
starting from 6 AM to 10 PM during weekdays from August 2013 to
November 2013. The dataset is split into 60% training, 20% validation, and
20% testing set. Accordingly, the prediction horizon comprises 13 days of 10-
min interval flow rate from 6 AM to 10 PM each day.

The main contributions of this study can be recapitulated as follows: (1)
To the best of our knowledge this is the first work that considers feature
fusion in the stacked sparse autoencoders using in traffic flow analysis. (2)
The inclusion of the following properties of traffic data to predict the flow
rate makes this study different from the previous works: abnormalities of
traffic data; and the correlation between the traffic flow rate and other traffic
variables. Unlike many studies abnormalities and special days or hours are
not excluded from the dataset. Moreover, in order to predict the flow rate of
a location, variables other than flow are extracted from the neighboring
locations. (3) The prediction accuracy is significantly improved by enhancing
the standard training of deep architecture using cascaded and partially
cascaded models.

The organization of this paper is as follows. Section 2 reviews the relevant
literature. Section 3 continues with a brief introduction to autoencoders and
the different methods proposed to train deep regression models. Section 4
explains the data extracted for the purpose of this study. Section 5 provides
the implementation details. Section 6 discusses the experimental results, and
Section 7 concludes the paper.

Literature Review

Traffic flow forecasting has a key role in deploying intelligent roads, and reverbe-
rates throughout daily life. As a result, it draws attention from various disciplines
of science, including statistics, civil engineering, computer science, and electrical
engineering. For several decades, both parametric and non-parametric models
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have been studied to a large extent. There are some surveys and research about
parametric models, such as Kalman filters (Guo, Huang, and Williams 2014;
Ojeda, Kibangou, and De Wit 2013), and non-parametric models, including but
not limited to artificial neural networks (ANN) (Chan et al. 2012; Dia 2001;
Dougherty and Cobbett 1997; Vlahogianni, Karlaftis, and Golias 2005, 2007).
Among non-parametric machine learning techniques, neural networks are iden-
tified for their powerful ability to learn and model the nonlinearity of complex
functions. However, due to their structure and the training method, deep archi-
tectures have presented new advancements in feature extraction and precise
predictions when subject to complex data. Since the main focus of this paper is
on deep regression methods, the following explains the recent studies conducted
on deep architectures and traditional neural networks utilized in traffic prediction.

A very recent study carried out in (Lv et al. 2015) is used stacked sparse
autoencoders to predict the traffic flow rate of freeways using the week
days flow rate of all the detectors across the freeways in California. The
data extracted from detectors of a single freeway were averaged to predict
the flow rate of that freeway. 15-, 30-, 45-, and 60-minute traffic flow rates
are predicted. Greed search was performed to select the number of hidden
units. However, it was not mentioned how other parameters of the net-
work were selected. Also, the authors mentioned that a logistic regression
was used as the top layer of SAEs, whereas logistic regression is appro-
priate in applications that the task is to predict a nominal value. In other
words, the details of the network implementation is not clear. The results
shows the SAEs are superior to ANNs, random walk models, and SVMs.

Counterparts of stacked autoencoders, stacked Restricted Boltzmann
Machines (RBM) – Deep Belief Networks (DBN)-, are used to predict the
flow rate of a freeway in California and a highway in China (Huang et al.
2013). The authors used the one-year flow rate of several observation points to
predict the flow of a target point. The feature vectors consisted of 15-min
interval flow rates of the observation points. However, the number of neurons
in each layer was set based on the results of performing different experiments
instead of using a cross validation technique. The results show a better perfor-
mance using RBMs compared to some other approaches such as SVR and
neural networks. However, their deep architecture (DBN) is only effective in
peak times with a large traffic flow, and cannot perform well in off-peak hours.

Traditional neural networks and their variants have been of interest to
traffic flow prediction. In the study performed in (Dia 2001), time-lag
recurrent neural networks are trained with historical data collected in
5 hours over 2 days. The future speed measurements of a location on
a highway in Australia were predicted using the historical speed information
of the same location. The prediction accuracy of their method surpasses the
performance of multilayer perceptron (MLP).

APPLIED ARTIFICIAL INTELLIGENCE 1183



A model based on time delayed neural networks (TDNN) optimum of
which is selected using the genetic algorithm is trained based on the synthetic
data and tested on the real dataset to predict the flow and occupancy of
a freeway section in California (Abdulhai, Porwal, and Recker 2002). The
training and test data spans two peak hours. The performance of the model is
not compared with other methods.

In research conducted in (Vlahogianni, Karlaftis, and Golias 2005, 2007),
a genetically optimized MLP and TDNN are utilized to predict the flow of
a location down an urban signalized arterial road in Greece using several
points ahead. The input data consisted of eighteen days of 3-min interval
traffic volumes of 4 locations ahead of the point of interest. The results show
the superiority of their method to ARIMA models.

Preprocessing techniques, such as feature selection, dimensionality reduc-
tion, and smoothing can highly affect the prediction results. The exponential
smoothing technique is applied to the traffic flow to smooth the peaks and
valleys of the data before feeding it into the ANN in (Chan et al. 2012). The
data were collected in two peak hours of the day with 1-minute intervals for
six weeks from a highway in Australia. This study concludes that smoothing
can improve the results of applying ANN.

SVRs are also studied and utilized to some extent for traffic flow or travel
time predictions. In the study performed in (Wu, Ho, and Lee 2004), the
travel time of several locations in a highway in Taiwan is predicted using
SVRs. The data were collected through a 5-week period without holidays.
Compared with historical-mean and current-time predictor methods, the
results of SVR show improvements in prediction accuracy.

Incremental support vector regression is utilized by (Su, Zhang, and Yu
2007) to predict the flow of a point on a freeway in California. In this
method, the new samples were added to the training set to generate more
recent predictions. To perform the study, the data were collected from the
I-880 database (Skabardonis et al.) during almost 30 days and the traffic flow
of the day 31 is predicted. The results show a better precision compared to
the neural networks.

However, in current studies one or both of the following factors are over
looked:

● Abnormalities, like accidents or holidays are excluded from the dataset.
● The correlation between the variable to be predicted and other traffic
features is overlooked; i.e., the input and output traffic variables are the
same (such as predicting future flow rate from historical flow rate
measurements)

To address these issues, the dataset used in this study spans typical and
atypical traffic situations such as different weather conditions, crashes, traffic
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jams, peak and off-peak hours, special days like holidays and sporting events,
and almost all of the uncertainties and stochastic nature associated with
traffic data. Furthermore, the correlated features to flow rate are derived
through the exhaustive search in the pool of traffic variables. Instead of the
yearly data, three-month historical data are utilized to perform this research,
which is an advantage in the presence of resource constraints.

Boosting the prediction accuracy of vehicular traffic flow prediction with
respect to spatio-temporal properties of traffic data in highly correlated
terrestrial roads and highways using deep regression models is the main
research objective. Since the focus of this research is on non-parametric
techniques, specifically deep structures, the performance of the proposed
architectures are compared to that of the simple ANNs, ANNs augmented
by PCA, and ANNs using PCA fed with the high-level features extracted
from deep models.

Autoencoders: The Standard, Cascaded, and Partially Cascaded
Methods for Training Deep Architectures

The first part of this section reviews sparse autoencoders briefly. The next
part explores the different architectures proposed to train a stacked sparse
autoencoder.

Sparse Autoencoders

From a layer-wise perspective, a single layer of an autoencoder consisted of
the input layer, one hidden layer, and the output layer with the same units as
the input layer (See Figure 2).

Output is identical to the input, since each autoencoder in a deep archi-
tecture aims to reconstruct its input. The reconstruction cost is the l22 error

function; i.e., computation of X � ~X
� �2

over all the training set, where X is

the original input and ~X is the reconstructed input. The optimal weight is
found by minimizing the l2 regularized cost function w.r.t. W:

Wopt ¼argmin
w ðk y� XW k22 þλ k w k22Þ (1)

The goal of training an autoencoder is to minimize the above-mentioned cost
function through performing the backpropagation algorithm. This phase of
training autoencoders is called pre-training phase.

When the number of hidden layer units are less than or equal to the number
of input units, and the activation function of hidden units is linear, the single-
layer autoencoder acts as principal components analysis (PCA). Autoencoders
implemented in this fashion are called sparse autoencoders (SAE). SAEs benefit
from the sparse distribution of the hidden units; i.e., SAEs exploit deactivating

APPLIED ARTIFICIAL INTELLIGENCE 1185



some of the latent neurons to cause sparsity in the hidden layer. Hence, the
sparsity parameter is defined as the average activations of each neuron over the
training set. To penalize the activations with values far from a certain value of
the sparsity parameter, sparsity regularization is applied to the model, i.e.,
a penalty term is added to the objective function. Hence the cost function of
an SAE including l2 regularization term is as follows:

Wopt ¼ argmin
wðk y� XW k22 þλ k w k22 þβKL ~ρ; ρð ÞÞ (2)

Where β is the sparsity regularization term and KL is the Kullback-Leibler
divergence or the relative entropy between the desired average activation of
neurons (ρÞ and their actual activations (~ρÞ: Training several autoencoders
and stacking them up, then adding a classification technique or a regression
method, will construct a deep classifier or a deep regression model. When the
entire structure is built, the last phase of training, aka the fine-tuning phase,
may be applied to adjust the parameters. Stochastic gradient descent and SVR
are applied to optimize the last layers cost function (regression cost function)
in this study.

The next section discusses two training models, cascaded and partially
cascaded architectures, proposed to train the deep structures. The performance
of these two methods is compared to that of the standard method of training

Figure 2. A typical autoencoder with n hidden units, input x, and output y (reconstructed input).
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deep architectures. Later in the paper, it is shown that the following architec-
tures results in remarkably more accurate predictions compared with the
standard method of training deep regression models.

Cascaded and Partially Cascaded Architectures

Figure 3 shows the standard model of training deep architectures (Hinton
and Salakhutdinov 2006). In this Fig., each layer of sparse autoencoder (SAE)
is trained with the activations of its previous SAE. The inputs for the first
SAE consist of the input data.

Figure 4 illustrates the cascaded and partially cascaded architecture used to
train stacked autoencoders. In the cascaded model, each layer of SAE is fed
with the combination of features obtained from its immediate previous layer
and features from preceding layers. Algorithm 1 specifies the training pro-
cedure of a stacked cascaded sparse autoencoder. The partially cascaded
architecture benefits from less complex design where merely the last layer
receives inputs from all preceding layers.

As mentioned earlier, adding a regression method to the top layer of
a deep architecture tailors the entire structure to a deep regression model.
Moreover, using linear regression as the last layer does not contribute to
good results, even while the features were extracted by using several layers of
autoencoders. Alternatively, applying the stochastic gradient descent (SGD)
or RBF kernel based SVR to optimize the cost function of the last layer works
well, the reason being non-linear relationships between the dependent and
independent variables of the dataset.

Figure 3. The standard method of training deep architectures.

Figure 4. The cascaded (left) and partially cascaded (right) methods of training deep
architectures.
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Algorithm 1: Training a Cascaded Stacked Sparse Autoencoder

AE stands for autoencoder; parameters are weights and biases

output ← 0;

For i = 1 to number of SAEs

Initialize weights ~ U (-a, a), biases = 0, y ← concatenate (input data; output)

// a is a real number where 0 < a < 1; y is the output for the SAE

// Initialize the sparsity parameter and the weight of the sparsity penalty term

While stopping criterion not met

train the SAE using backpropagation algorithm

// the cost function has an additional sparsity term

End while

Compute the activation of hidden layer (Fi)

Fi ← Af (y*wi); //Af is the activation function

output ← concatenate (Fi, output)

End for

Implementation Area and the Data Extraction/Source

The data used for this study is extracted from the data repository of the
Minnesota Department of Transportation (MnDOT) (Minnesota Department
of Transportation 2014). The area being studied is Trunk highway 10 (TH10),
which is a major arterial roadway connecting the Minneapolis/St. Paul and
St. Cloud metropolitan areas in Minnesota. There are several loop detectors
across this highway and also on the on-ramps and off-ramps of TH10, which
measure occupancy and volume. Other variables like headway, flow, density,
and speed are calculated based on occupancy and volume, and all are available in
the data repository.

Figure 5 shows an excerpt of the map of the region of interest. Ten-minute
interval traffic flows are extracted from 73 loop detectors. The detectors are
placed in on-ramps and off-ramps of TH10 and throughout TH10 about
0.8 km apart. Based on the importance and the accuracy of the data, the
information of 60 loop detectors are utilized to predict the flow of station
S972, including three detectors (L1 4078, L2 4079, L3 4080 shown in Figure 5).

Different time intervals were taken into consideration: 2-, 5-, 10-, and 15-
minute interval traffic flows. However, the 10-minute intervals are solely
utilized in this study for two reasons: the first one is heuristically getting
better prediction accuracy using 10-minute intervals because this duration is
long enough to include the drastic changes embedded in traffic data.
The second reason why 10-minute intervals are preferred instead of 2- and
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5-minute measurements is to reduce the amount of training information,
thus accelerating the training process. Since shorter prediction horizons are
preferred, 10-minute intervals are chosen instead of 15-minute intervals.

The data comprised three months of traffic flow starting from 6 AM to 10
PM during weekdays from August 2013 to November 2013. Where there are
multiple lanes, the average flow of all lanes are calculated and used. The flow
rate of station S972 consisting of the average of three loop detectors (L1 4078,
L2 4079, and L3 4080) is the target data to be estimated in this study. The
prediction horizon comprises 13 days of 10-min interval flow rate from 6
AM to 10 PM each day.

A noteworthy feature of the extracted data is that they bear different
weather conditions, crashes, traffic jams, peak and off-peak hours, special
days like holidays and sporting events, and almost all of the uncertainty and
stochastic attributes associated with traffic data.

Implementation Details

In this section, deep regression models with different architectures (Figure 3–4)
are implemented to fit the traffic data. Models constructed of two to four layers
of SAE based on the typical, cascaded, and partially cascadedmodels are trained.

The traffic variables highly correlated to the traffic flow rate are deter-
mined through exhaustive search in features pool and based on the results
produced by deep architectures. In other words, during the implementa-
tion, different combinations of traffic variables are tried, and the best
answer is derived without using “density.” The reason could be the high
correlation between the “density” and other variables. Also, density is
measured over a length that is not reasonable to use it for point measure-
ments (Hall 1996).

Preprocessing phase. The following demonstrates the steps that are done on
preprocessing the data before fitting to the model:

Figure 5. The map excerpt of the region under study (Minnesota Department of Transportation
2014).
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● In multilane roads, the mean value of traffic variables is taken into
account.

● Mean imputation is used to replace the missing data.
● Feature scaling is done on input data consisting of four traffic variables
of 60 locations ahead of the target. Two temporal variables are added to
measure the time during each day of each week. Specifically, the training
set is composed of flow, occupancy, headway, and speed, plus time of
the day, and weekdays, which is transformed into [0, 1].

● The observation points include the measurements from detectors
located on TH10, plus measurements related to all on-ramps and off-
ramps of TH10.

● The dataset is divided into three parts consisting of the training set,
validation set, and test set. In particular, from 6,305 data values, 5,000
values are used for training and validation, and the rest are used to test
the model (60% training, 20% validation, and 20% test data).

Model Selection phase. Cross validation and data splitting techniques are
commonly used to find the optimal value of free parameters and assess the
empirical and generalization errors. Two motivations contribute to choosing
data splitting over cross validation in this research. The first one is having
abundant traffic data, so putting a portion of data aside just for the validation
purpose does not confine the test or the training set. The second one is this
method uses less processing time compared to k-fold cross validation where
training and validation must be performed k times before making a decision
over an optimal parameter by averaging over k different answers. Repeating
the process to set the four hyper-parameters (the number of hidden units, the
sparsity parameter, the weight of the sparsity penalty term, and the weight
decay (regularization) parameter) in SAEs will add to the complexity of the
process.

The above-mentioned reasons weigh in favor of using three-way data
splitting for this case study (60% training set, 20% validation set, and 20%
test set). To further ease the process of parameter selection, each combina-
tion of parameters has given a probability of 0.6 to be engaged in the model
selection technique during the training process.

Training phase. The unnormalized input data ranges from 0 to 2619 with
few values of “-1” indicating the failure of the detectors to log variables. A new
approach is taken to decrease the error of the reconstruction step in the SAE
by scaling the logistic function. We hypothesize that, as a consequence of
scaling the input data to [0, 1], the deviation of the normalized features is very
small. Small deviations of input data affect the output of the sigmoidal func-
tion, so that the transferred data has very small values with very small devia-
tion, hence smaller gradients. The small gradients affect the accuracy of
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learning; therefore, the scaled version of logistic function is used to produce
the larger gradients, increasing the accuracy of reconstruction by powers of 10.

Experimental Results

Two to four layers of stacked SAEs are trained according to the standard,
cascaded, and partially cascaded architectures (See Figure 3–4). Table 1
through Table 3 show the results of different implementations for two-,
three-, and four-layer architectures. Each table is assigned to a certain
depth. It is apparent that for a two-layer model the cascaded and partially
cascaded architectures in Table 1 are the same. The effect of increasing layers
on the prediction precision is discussed later. Evaluations are based on the
MSE (Mean Squared Error) and MAPE (Mean Absolute Percentage Error).
MSE measures the deviation between the estimated values and real measure-
ments, whereas MAPE evaluates the size of the error in percentage terms.

Table 1. Two-layer deep regression models.
Architectures/Specs 2SAEs-Standard 2SAEs-Cascaded/Partially cascaded

No.of hidden units/layer 114, 114 114, 114
L2 regularization parameter/layer 1*10−3, 1*10−4 1*10−3, 1*10−4

Sparsity parameter/layer 0.1, 0.1 0.1, 0.1
Sparsity regularization parameter/layer 0.2, 0.1 0.2, 0.1
MSE 973 300
MAPE (%) 2.772 1.605

Table 2. Three-layer deep regression models.

Architectures/Specs 3SAEs-Standard 3SAEs-Cascaded
3SAEs-Partially

cascaded

No.of hidden units/layer 114, 228, 114 114, 114, 114 114, 570, 114
L2 regularization parameter/layer 1*10−3, 1*10−4,

1*10−5
3*10−4, 1*10−3,

1*10−3
1*10−3, 1*10−4,

1*10−5

Sparsity parameter/layer 0.1for all layers 0.1for all layers 0.1for all layers
Sparsity regularization parameter/
layer

0.1, 0.1, 2 0.1for all layers 0.1for all layers

MSE 536 298 286
MAPE (%) 2.431 1.586 1.588

Table 3. Four-layer deep regression models.

Architectures/Specs 4SAEs-Standard 4SAEs-Cascaded
4SAEs-Partially

cascaded

No. of hidden units/layer 114, 570, 57, 114 114, 228, 114, 114 114, 570, 456, 57
L2 regularization parameter/
layer

1*10−3, 1*10−5, 1*10−3,
1*10−5

3*10−4, 1*10−3, 1*10−3,
1*10−3

1*10−3, 1*10−4, 1*10−5,
3*10−4

Sparsity parameter/layer 0.1, 0.1, 0.1, 0.2 0.1 for all layers 0.1 for all layers
Sparsity regularization
parameter/layer

0.1, 2, 2, 1 0.1 for all layers 0.1, 1, 2, 1

MSE 646 329 295
MAPE (%) 6.957 1.636 1.595
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The actual measurement and predicted values for ith observation are yi and
ŷi. MSE and MAPE are measured using the following equations:

MSE ¼ 1
n

Xn

i¼1
ðyi � ŷiÞ2 (3)

MAPE ¼ 1
n

Xn

i¼1

yi � ŷi
yi

����
����

� �
� 100 (4)

Where n is the number of observations. Since the R-value measures the
linearity strength between the parameters, it is not a valid goodness-of-fit
for non-linear models, so it is not included in the results.

The value of parameters related to each layer is shown in the tables.
However, retraining the networks can lead to different final sets of parameter
values. Several experiments for this application reveal that the factors and
multiples of the number of input features render more precise results if
chosen as the number of hidden neurons. Each column shows the parameters
and the results obtained by training standard, cascaded, and partially cas-
caded architectures. Although the advantage of cascaded models over the
typical structures was previously shown (Moussavi-Khalkhali and Jamshidi
2016), the entire models are implemented for comparison reasons, this time
by exploiting SVRs in addition to SGD as the top layers.

To compare the performance of deep regression models, several non-
parametric models are implemented with two sets of training data: the input
data and the fusion of the input data with the high-level features extracted
from the deep architectures.

Models using a nu-SVR (Chang and Lin 2011) with RBF1 as its kernel
function is performed, and the results are demonstrated in Table 4. Since the
partially cascaded models surpass the other architectures using SGD, SAEs
with SVR fed by a training set, consisting of the fusion of input and high-level
features, are implemented. To train a nu-SVR two parameters need tuning: the
regularization parameter (C) and the variable to control the number of support
vectors (υ). The validation set is used to find the optimal parameters.

Table 5 demonstrates the results of training several traditional neural net-
works. Particularly, 10 neural networks are trained, and the one with the least
generalization error is shown in Table 5. The average performance of these

Table 4. Deep regression models based on SVR and partially cascaded training.

Architectures/Specs
1SAE- Partially

cascaded
2SAEs-Partially

cascaded
3SAEs-Partially

cascaded
4SAEs- Partially

cascaded

Regularization
parameter C; υ

C = 35000
υ = 0.68

C = 100000
υ = 0.66

C = 110000
υ = 0.66

C = 120000
υ = 0.66

MSE 301 300 299 299
MAPE (%) 1.575 1.573 1.573 1.574
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networks is also mentioned in the table. For further comparisons, models
consisted of linear PCA and ANN are also implemented and the results are
displayed in Table 5. The average performance and the results of the model with
the least MSE andMAPE are shown in Table 5. In another experiment, the PCA
is applied to the input data in conjunction with the high-level features extracted
from deep models. This model, called amplified ANN, results in slightly more
accurate predictions than the preceding models trained with ANN.

Studying the results from Tables 4 and 5 implies that the features extracted
from the deep models boost the performance of traditional neural networks
to some extent.

The following conclusions are derived from studying the results presented
in Table 1 through 5.

● The Prediction precision of deep structures that are trained based on the
proposed cascaded and partially cascaded models surpasses the precision
of the structures trained with the standard method and even outper-
forms the amplified ANNs.

● Between the partially cascaded and cascaded models the former delivers
the least generalization error in terms of MSE and MAPE. Specifically,
the partially cascaded method using three-layer SAE renders the most
accurate predictions.

● Comparing the MAPE values SAEs based on SVRs lead to better results.
Although MSE values implies that SAEs based on SGD render more
accurate results, fewer adjustments to set the hyper-parameters makes
SVR appropriate in the presence of time and resource constraints. In
other words, SVRs benefit from less complex training procedure, hence
less process and time. The two parameters for SVR, the regularization
parameter (C) and the variable which controls the number of support
vectors (υ) are adjusted using the validation set. C takes a broad range of
numbers, but υ is between 0 and 1.

● The prediction accuracy of the ANN augmented by linear PCA appears
to be superior to that of the ANN without using PCA (See Table 5). This

Table 5. Traditional neural networks and PCA-amplified neural networks.

Architectures/Specs An ANN

An ANN
Augmented by

PCA

An Amplified ANN
(An ANN Augmented by PCA -Fed with

input and high-level features)

No.of hidden units 20 20 20
No. of PCs NA 20 out of 114 20 out of 114
MSE (The best perf.) 656 348 346
MAPE (%)(The best
perf.)

2.107 1.734 1.724

Average MSE 2100 398 385
Average MAPE (%) 2.815 1.779 1.770
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is not far from expectation as PCA selects the most relevant features that
best describes the variance in the input data. Subsequently, the ANN
combined with PCA delivers the better precision if it is fed by the fusion
of high-level features and the input data.

● ANNs enhanced by PCA outperform the deep regression models trained
according to the standard method.

Figure 6 illustrates the performance comparison of different methods,
which shows the superior performance of cascaded and partially cascaded
models over the other methods. However, between the two former models,
the partially cascaded method, where the last layer is fed with the activations
of preceding layers, leads to better results. Another advantage of the partially
cascaded model, compared to the cascaded model, is less complexity and,
thus, more process and time proficiencies.

Generally, the partially cascaded architectures show a great potential
alternative to the standard method of training sparse autoencoders with
respect to regression analysis. In fact, this model shows the best performance
compared to other methods as well. Furthermore, the results imply that, as
the depth of the model increases, the accuracy in terms of MSE and MAPE
rises. However, increasing the depth from three layers to four layers did not
contribute to a drastic change in accuracy. In fact, after a specific number of
layers, adding more depth to the model will deteriorate the accuracy of
results while adding to the complexity of the model. However, the “right”
number of hidden layers differs with the application and underlying distri-
bution of the training data.

Discussion and Conclusion

The objective of this paper is to explore and utilize the capability of feature
extraction of stacked sparse autoencoders in the context of regression analy-
sis applied to traffic flow forecasting. Considering the aforementioned

Figure 6. Performance comparison of different methods.
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objective, deep regression models employing sparse autoencoders are con-
structed based on the standard, cascaded, and partially cascaded training
methods. This research represents that integrating features extracted from
deep regression models is able to enhance the prediction accuracy of traffic
flow rate, even in the presence of abnormalities and unusual phenomena
such as accidents, diverse weather conditions, peak and off-peak hours. Since
the training dataset required to train the deep structures is not a very large
dataset (three months of historical traffic data), retraining the models with
the newest available data is time efficient. Retraining the network in offline
methods is required every so often to ensure the high prediction accuracy.
Despite performance enhancement achieved by utilizing deep regression
models, many hyper-parameters needed to be tuned and be set to their
right values during the training procedure. The regularization term for sparse
autoencoders, the parameters related to the sparsity criteria, the number of
layers, the number of hidden units, and the regularization term for the fine-
tuning phase are among factors that affect the precision accuracy of the
regression model. Additionally, setting the number of iterations and the
learning rate of the SGD algorithm in each of the models needed some
heuristic searching. However, following the tricks of training the SGD algo-
rithm mentioned by (Bottou 2012) and finding the right parameters for one
model could result in achieving optimum values for other models more
easily. Unfortunately, these hyper-parameters are not the only values needed
to be determined. For this study, another variable requires adjustment, and
that is the scale of narrowing the sigmoidal function so as to make the model
robust to the outliers.

Considering the depth of the models reveals that adding more hidden
layers to the structure does not necessarily contribute to better results. In
fact, in some cases the best performance is achieved with the first layer and
the accuracy worsens by adding more layers (Theis et al. 2011). Obviously,
there is a tradeoff between the complexity of the model and the expected
precision. Thus, the best decision can be made based on the application and
the desired performance.

As a part of this research, the most correlated features to the flow variables
are selected based on the exhaustive search through the pool of traffic
variables; the best results are yielded using the flow, occupancy, headway,
and speed as the attributes extracted from the other locations. All non-
parametric methods delivered their best results using these variables.

Although utilizing the partially cascaded model in training deep architec-
tures is considered as an encouraging approach, traditional neural networks
amplified with PCA trained by the high-level features along with the input data
demonstrate remarkably more accurate results than stacked SAEs trained
based on the standard model. Partially cascaded models with SVR as top
layer shows better performance when comparing MAPE values. However,
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SAEs based on SGD render predictions with less MSE values. In general,
training SAEs with SVR at top layer is a little challenging. Since the input of
SVR is to be scaled such that all values are between 0 and 1, the high-level
features, concatenated with the raw input, are rescaled using the statistics of
the input data. As mentioned earlier, the two parameters for SVR, the reg-
ularization parameter and the parameter to control the support vectors, are
tuned using the validation set. The granularity of the parameters, especially nu
(υ), plays a major role in achieving the optimal solution.

To further explore the autoencoders in the regression task, we intend to
implement deep denoising autoencoders, and apply them to the same traffic
data, and eventually compare the results with the sparse autoencoders and
some of the advanced parametric models in the next upcoming studies. Also,
evaluating these methods on urban traffic data is a topic of interest, as the
signalized urban road traffic data is affected by other factors such as signal
timing not only in the target road, but in a large vicinity of neighboring
roads.

Note

1. Radial Basis Function.
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