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Abstract
One of the most classical results in high-dimensional learning theory provides a closed-form
expression for the generalisation error of binary classification with a single-layer teacher–student
perceptron on i.i.d. Gaussian inputs. Both Bayes-optimal (BO) estimation and empirical risk
minimisation (ERM) were extensively analysed in this setting. At the same time, a considerable
part of modern machine learning practice concerns multi-class classification. Yet, an analogous
analysis for the multi-class teacher–student perceptron was missing. In this manuscript we fill this
gap by deriving and evaluating asymptotic expressions for the BO and ERM generalisation errors
in the high-dimensional regime. For Gaussian teacher, we investigate the performance of ERM
with both cross-entropy and square losses, and explore the role of ridge regularisation in
approaching Bayes-optimality. In particular, we observe that regularised cross-entropy
minimisation yields close-to-optimal accuracy. Instead, for Rademacher teacher we show that a
first-order phase transition arises in the BO performance.

1. Introduction

Starting with the seminal work of Gardner and Derrida [1] the teacher–student perceptron is a broadly
adopted and studied model for high-dimensional supervised binary (i.e. two classes) classification. In this
model the input data are Gaussian independent identically distributed (i.i.d.) and a single-layer teacher
neural network with randomly chosen i.i.d. weights from some distribution generates the labels. A student
neural network then uses the input data and labels to learn the teacher function. The corresponding
generalisation error as a function of the number of samples per dimension α= n/d was first derived using
the replica method from statistical physics in the limit n,d→∞ for a range of teacher weights distributions
(Gaussian and Rademacher being the most commonly considered) and for a range of estimators, e.g.
Bayes-optimal (BO) or empirical risk minimisation (ERM) with common losses, see reviews [2–4] and
references therein. Notably, the phase transition in the optimal generalisation error of the teacher–student
perceptron with Rademacher teacher weights [5, 6] is possibly one of the earliest examples of the so-called
statistical-to-computational trade-offs that are currently broadly studied in high-dimensional statistics and
inference. More recently, these works on the teacher–student perceptron have been put on rigorous ground
in [7] for the BO estimation, and in [8] for ERM with convex losses.
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Modern machine learning classification tasks most often involve more than two classes, e.g. 10 for
classification on MNIST or CIFAR10, or even 1000 in ImageNet. Multi-class classification is hence more
commonly considered in practice. To the best of our knowledge, the analysis of the high-dimensional
teacher–student perceptron has not been generalised to the multi-class setting yet. Closely related settings,
such as multi-task Gaussian process regression [9] and high-dimensional multi-class classification with
Gaussian mixture data [10–13] were recently reported, extending to the multi-class case previous works on
binary classification, see, e.g. [14–17]. However, as far as we know, the teacher–student setting is still missing.
In this paper we fill this gap. We define the multi-class teacher–student perceptron model and provide the
following main contributions11:

C1 We derive, prove and evaluate an asymptotic closed-form expression for the generalisation error of the
BO estimator in high-dimensions. In the case of Rademacher teacher weights we unveil a first-order phase
transition in the learning curve.

C2 Similarly, we derive, prove and evaluate an asymptotic closed-form expression for the generalisation per-
formance of ridge-regularised ERM with convex losses. In particular, we discuss and compare two widely
used loss functions: the square and cross-entropy losses.

C3 We compare optimally regularised cross-entropy classification to the Bayesian classifier, and conclude that
for three classes the two are extremely close, in analogy with what was observed for two classes [8].

The expressions in C1 and C2 depend on few scalar order parameters that can be efficiently obtained by
solving numerically a self-consistent system of equations. The main technical difficulty of analysing the
teacher–student perceptron with k> 2 classes is that the corresponding closed-form formulas are given in
terms of a set of coupled self-consistent equations on (k− 1)× (k− 1) dimensionalmatrix variables (a.k.a.
order parameters), involving (k− 1)-dimensional integrals. This poses some challenges in both the
mathematical proof and the numerical evaluation of their solution. In this work, we overcome these
difficulties by building on recent works with similar matrix structure, notably the committee machine [18,
19] and the supervised k-cluster Gaussian mixture classification [20]. The heuristic replica method allows to
derive a generic set of equations covering both the BO case and the ERM cases. The rigorous proof for the
BO case is given in [18, 19] based on an interpolation argument. The ERM case, proven in this paper, adds
the difficulty of non-Bayes optimality to the matrix valued problem. This prevents the use of both
interpolation methods as in [18] or convex Gaussian comparison inequalities, see e.g. [21]. Here we handle
those difficulties by employing a similar proof strategy as in [20, 22], which leverages on the rigorous analysis
of matrix-valued approximate message passing iterations. Although the planted model considered here is
more elaborate than in [20, 22], we show that this problem is also amenable to a matrix-valued AMP
iteration by decomposing the data matrix into two parts aligned and orthogonal to the subspace spanned by
the columns of the teacher weights.

In this work, we focus on the teacher–student model as a theoretical playground where important
practical questions can be quantitatively studied, e.g. the impact of regularisation on the quality of learning or
how to optimally tune hyper-parameters. However, the assumption of i.i.d. Gaussian data is too restrictive to
capture the structure of real datasets. Hence, it is relevant to study extensions of this synthetic model that can
capture the complexity of realistic settings. For instance, adapting the realistic data models presented in [20,
23–26] to multi-class classification beyond the square loss is a feasible future extension of the present work.

1.1. The data model
We consider a multi-class classification problem where the training data X= (x1, . . . ,xn)

⊤ ∈ Rn×d are
composed of n d−dimensional i.i.d. standard Gaussian samples, where xµi ∼N (xµi|0,1), ∀i ∈ {1, . . . ,d},
∀µ ∈ {1, . . . ,n}. The corresponding labels are Y= (y1, . . . ,yn)

⊤ ∈ {0,1}n×k, each representing the one-hot
encoding of one of k possible classes. In particular, we assume the labels are generated by a teacher matrix
W∗ = (W ∗

1 , . . .w
∗
k ) ∈ Rd×k as

yµl =

{
1 if l= argmaxh∈{1,..,k}

(
w∗
h
⊤xµ

)
0 otherwise

, ∀µ ∈ {1, . . .n}. (1)

In the following, we will denote the output channel as ϕout(v) := eargmaxl({vl}l∈[k]) ∈ {0,1}k, where eh is the
standard one-hot vector with hth site equal to 1 and all other entries equal to zero. The teacher matrixW∗ is
drawn with i.i.d. entries either from a standard Gaussian w∗

il ∼N (w∗
il |0,1) or a Rademacher distribution

11 Code repository: https://github.com/rodsveiga/mc_perceptron.
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w∗
il =±1 with equal probability. Note that for k= 2 this problem corresponds to the well-studied perceptron

problem with binary labels [1, 4].
In what follows, we will be interested in the problem of learning the teacher target function in the

high-dimensional setting, where n,d→∞ at a fixed rate, or sample complexity, α= n/d, under two
estimation procedures: empirical risk minimisation (ERM) and Bayes-optimal (BO) estimation.

1.2. Empirical risk minimisation (ERM)
In the first case, the statistician (or student) is given only the training data (X,Y), and has to learn the teacher
weightsW∗ with a multi-class perceptron model ŷ(x) = ϕout(W⊤x) by minimising a regularised empirical
risk over the training set:

Ŵ= argminW∈Rd×k [L(W ;X,Y)+ rλ (W)] , (2)

with L(W ;X,Y) =
∑n

µ=1 ℓ(W
⊤xµ,yµ). The loss ℓ accounts for the performance of the weightsW over a

single training point. Two widely-used loss functions for multi-class classification are the cross-entropy

ℓ(z,y) =−
∑k

l=1 yl ln
(
ezl/
∑k

l=1 e
zl
)
and the square loss ℓ(z,y) = (z− y)⊤(z− y)/2. We focus on ridge

regularisation rλ(W) = λ‖W‖2F/2, where ‖ · ‖F is the Frobenius norm.

1.3. Bayes-optimal estimator
In the second case, known as Bayes-optimal setting, the student has access not only to the training data but
also to prior knowledge on the teacher weights distribution P∗

w and on the model generating the inputs and
labels (1). In the teacher–student setting under consideration, where labels are generated by a noiseless
channel, the BO estimator for the label ynew of a previously unseen point xnew can be computed directly from

the BO estimator ŴBO of the teacher weights as ŷnew = ϕout(Ŵ
⊤
BO xnew). The matrix ŴBO is the minimiser of

the mean-squared error with respect to the ground-truthW∗, i.e.

ŴBO = argminWEW∗|(X,Y)‖W−W∗‖2F = EW∗|(X,Y) [W
∗] . (3)

Note that computing explicitly the Bayesian estimator requires computing the posterior distribution, which
in general is unfeasible in high-dimensions. However, as we shall see, its performance can be characterised
exactly in such limit. A key quantity in our derivation is the free entropy density:

Φ= lim
d→∞

1

d
EX,W∗ ln Zd, (4)

where the partition function Zd is the normalisation of the posterior distribution over the weights

P(W |X,Y) = 1

Zd

k∏
l=1

P∗
w (W l)

n∏
µ=1

δ
(
yµ−ϕout

(
W⊤xµ

))
. (5)

In the BO setting, the free entropy density is closely related to the mutual information density between the
labels and the weights, see [7] for an explicit discussion of this connection.

1.4. Generalisation error
The performance of different optimisation strategies is measured through the average generalisation error,
i.e. the expected error on a fresh sample, also referred to as ‘problem average error’ in the machine learning
literature [27, 28]. As it is commonly done for classification, in this work we will be interested in the
misclassification rate (a.k.a. 0/1 error):

εgen(α) = Exnew,X,W∗1
[̂
y
(
Ŵ(α)

)
6= ynew

]
, (6)

where xnew is a previously unseen data point and ynew the corresponding label, generated by the teacher as in
equation (1). Similarly, the estimator ŷ is generated by the weight matrix Ŵ, which in turn depends on the
training set. We compare the performance obtained via ERM to the one of the BO estimator from
equation (3). Note that equation (6) for the BO error can be written as

εBayesgen =
1

2
EX,x,W∗‖ϕout(W∗⊤x)−ϕout(〈W⊤x〉)‖22

= 1−EX,x,W∗

[
ϕout(W

∗⊤x)⊤ϕout(Ŵ
⊤
BO x)

]
,

(7)

3
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where for brevity x= xnew and 〈·〉= EW|(X,W∗), and we have used that ‖ϕout(·)‖22 ≡ 1. Since the distribution

of xnew is rotationally invariant, the averaged quantity EX,xnew,W∗

[
ϕout(W

∗⊤xnew)⊤· ϕout(Ŵ
⊤
BO xnew)

]
only

depends on the correlation betweenW∗ and ŴBO, which as we will show later concentrates to the maximiser
of the free entropy (4) in the high-dimensional limit.

2. Main theoretical results

From the definition of the generalisation error in (6) and of the teacher model (1), it is easy to see that
crucially the generalisation error only depends on the statistics of the k-dimensional quantities

(W ∗⊤xnew,Ŵ
⊤
xnew) ∈ Rk×Rk (a.k.a. local fields) – both for BO estimation and ERM. Therefore,

characterising the sufficient statistics of the local fields is equivalent to characterising the generalisation error.
Our key theoretical result is that in the high-dimensional limit considered here the local fields are jointly
Gaussian, and therefore the generalisation error only depends on the correlation m̄d between the teacherW∗

and the estimator Ŵ, and the covariances Q∗
d and q̄d of the teacher and the estimator respectively (a.k.a. the

overlaps): m̄d ≡ ( 1d )Ŵ
⊤
W∗, q̄d ≡ ( 1d )Ŵ

⊤
Ŵ and Q∗

d ≡ ( 1d )W
∗⊤W∗. Note that we keep the subscript d to

emphasise that these definitions are still in finite dimension and to distinguish them from the corresponding
overlaps in the high-dimensional limit. As we will show next, these low-dimensional sufficient statistics can
be computed explicitly by solving a set of coupled (k− 1)× (k− 1) self-consistent equations.

2.1. Performance of empirical risk minimization
Our result holds under the following assumptions, in addition to the Gaussian hypothesis on the design
matrix X. Assumptions:

(A1) the functions L, rλ are proper, closed, lower-semicontinuous, convex functions. The loss L is differenti-
able andpseudo-Lipschitz of order 2 in both its arguments.We assume additionally that the regularisation
rλ is strongly convex, differentiable and pseudo-Lipschitz of order 2;

(A2) the dimensions n,d grow linearly according to the finite ratio α= n/d;

(A3) the lines of the ground truth matrixW∗ ∈ Rd×k are sampled i.i.d. from a sub-Gaussian probability dis-
tribution in Rk.

Theorem 2.1. Let ξ ∼Nk(0, Ik). Under (A1)–(A3), for any pair of pseudo-Lipschitz functions
ψ1 : Rd×k→ R,ψ2 : Rn×k→ R of order 2, the estimator Ŵ and Ẑ= 1√

d
XŴ satisfy:

ψ1(Ŵ)
P−→ Eξ

[
Z ∗

w (m̂q̂
−1/2ξ,m̂Tq̂−1m̂)ψ1

(
fw(q̂

1/2ξ, V̂)
)]
, (8)

ψ2(Ẑ)
P−→ Eξ

[ˆ
Rk

dy Z ∗
out(y,mq

−1/2ξ,Q∗−m⊤q−1m)ψ2

(
fout(y,q

1/2ξ,V)
)]
, (9)

where
P→ denotes convergence in probability as n,d→∞ and the parameters (m,q,V) are the solution (assumed

to be unique) of the following set of self-consistent equations (where we introduced the auxiliary parameters
(m̂, q̂, V̂) : 

m= Eξ

[
Z ∗

w (m̂q̂
−1/2ξ,m̂Tq̂−1m̂)f∗w(m̂q̂

−1/2ξ,m̂Tq̂−1m̂) fw(q̂
1/2ξ, V̂)⊤

]
,

q= Eξ

[
Z ∗

w (m̂q̂
−1/2ξ,m̂Tq̂−1m̂)fw(q̂

1/2ξ, V̂)fw(q̂
1/2ξ, V̂)⊤

]
,

V= Eξ

[
Z ∗

w (m̂q̂
−1/2ξ,m̂Tq̂−1m̂)∂γ fw(q̂

1/2ξ, V̂)
]
,

m̂= αEξ

[´
Rk dy Z ∗

out(y,mq
−1/2ξ,Q∗−m⊤q−1m)

·f∗out(y,mq−1/2ξ,Q∗−m⊤q−1m) fout(y,q
1/2ξ,V)⊤

]
,

q̂= αEξ

[´
Rk dy Z ∗

out(y,mq
−1/2ξ,Q∗−m⊤q−1m)

·fout(y,q1/2ξ,V) fout(y,q1/2ξ,V)⊤
]
,

V̂=−αEξ

[´
Rk dy Z ∗

out(y,mq
−1/2ξ,Q∗−m⊤q−1m)∂ωfout(y,q

1/2ξ,V)
]
.

(10)

4
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We have made use of the following auxiliary functions:

Z ∗
w (γ,Λ)= Ew∗e−

1
2w

∗⊤Λw∗+γ⊤w∗
, Z ∗

out (y,ω,V) = EZ ∗δ
(
y−ϕout

(
V1/2Z ∗ +ω

))
,

f ∗w (γ,Λ) = ∂γ ln Z ∗
w (γ,Λ) , f ∗out (y,ω,V) = ∂ω ln Z ∗

out (y,ω,V) , (11)

fw (γ,Λ) = proxΛ−1rλ

(
Λ−1γ

)
, fout (y,ω,V) = proxVℓ(·,y)(ω).

where w∗ ∼ P∗
w , that is the distribution (in Rk) of the teacher weights,Z ∗ ∼N (0, Ik). For brevity, in the

definitions we have indicated by γ,Λ,ω the generic arguments of the auxiliary functions. V is the covariance
matrix of the normally distributed local fieldsZ ∗,Z . For any function f

proxτ f(x) = argmin
Z∈Rk

[
1

2
(Z − x)⊤τ−1(Z − x)+ f(Z)

]
(12)

is a proximal operator (here defined with matrix parameters, see appendix D.3 for more detail). The simplified
expressions of the auxiliary functions are provided in appendix C.1 and depend on the choices of the teacher
weights distribution, the regularisation and the loss function.

2.1.1. Proof outline
We now provide a short outline of the proof for the asymptotic performance of the estimator obtained with
convex ERM. The idea, pioneered in [29] for a vector valued LASSO problem, is to express the estimator Ŵ
as the limit of a carefully chosen sequence whose iterates have an exact, rigorous asymptotic characterisation.
Such a sequence can be built using an approximate message-passing algorithm, which offers the possibility of
treating low-rank matrix-valued iterates, with state evolution equations characterizing their
high-dimensional statistics. In order to determine the AMP sequence with the correct fixed point, we
decompose the optimisation problem defining the multi-class estimator, isolating components that are
aligned and orthogonal to the subspace spanned by the teacher weights in order to separate random
quantities correlated and independent with the labels Y. We then design the AMP sequence whose fixed
point matches the optimality condition of the ERM problem, and rigorously obtain its state evolution
equations using [30, 31]. Using the strong convexity of the problem, we show that converging trajectories of
the AMP sequence can be systematically found, ultimately characterising the unique minimiser of the ERM
problem with the fixed point of the state evolution equations which match those of the replica prediction.

2.2. Bayes-optimal performance
The sufficient statistics describing the performance of the BO estimator (3) can also be derived in the
high-dimensional limit, and are closely related to the free entropy density. Indeed, in appendix B we show
that the BO estimator can be fully characterised by only one overlap matrix q ∈ Rk×k which is given by the
solution of following extremisation problem:

Φ= extrq,q̂

{
−1

2
Tr[qq̂] +Ψ∗

w(q̂)+αΨ∗
out(q)

}
, (13a)

Ψ∗
w(q̂) = Eξ

[
Z ∗

w

(
q̂1/2ξ, q̂

)
lnZ ∗

w

(
q̂1/2ξ, q̂

)]
, (13b)

Ψ∗
out(q) = Eξ

[ˆ
Rk

dy Z ∗
out

(
y;q1/2ξ,Q∗− q

)
lnZ ∗

out

(
y;q1/2ξ,Q∗− q

)]
, (13c)

where (Z ∗
w ,Z ∗

out) are the auxiliary functions defined in equations (11), and Φ the free entropy density of
equation (4). Extremising the equation above leads to the following set of self-consistent equations:{

q= Eξ

[
Z ∗

w (q̂
1
2 ξ, q̂)f ∗w (q̂

1
2 ξ, q̂)f ∗w (q̂

1
2 ξ, q̂)⊤

]
,

q̂= αEξ

´
Rk dy Z ∗

out(y;q
1
2 ξ,Q∗− q)f ∗out(y;q

1
2 ξ,Q∗− q) f∗out(y;q

1
2 ξ,Q∗− q)⊤

(14)

where (f ∗w , f
∗
out) are defined in equations (11). Note the similarity between equations (14) above and

equations (10) for the sufficient statistics of ERM. Indeed, the equations above can be obtained from those of
ERM via the following mapping, known in the context of statistical physics as Nishimori conditions [32]:

fw→ f ∗w , fout→ f ∗out; m→ q, m̂→ q̂; V→ Q∗− q, V̂→ Q̂
∗
+ q̂. (15)

5
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Intuitively, the student’s additional knowledge of the data generating process is translated by choosing the
same set of auxiliary functions as the teacher. These conditions imply, on average, no statistical difference
between the ground truth configuration and a configuration sampled uniformly at random from the
posterior distribution. Therefore, in the BO setting there is no distinction between the teacher–student
overlap and the student self-overlap. This connection is further discussed in appendix B, where we show that
both sets of equations can be derived from a common framework.

Despite the close similarity between the two sets of self-consistent equations, note one key difference: the
set of extrema in equations (14) is not necessarily a single point. This means that, differently from
equations (10), the fixed-point of the self-consistent equations (14) might not be unique. In this case, it is
important to stress that the overlap q corresponding to the BO estimator (3) is, by definition, the one with
highest free entropy density. Therefore, the BO generalisation error is evaluated by finding the fixed point of
equations (14) that maximises the free entropy (13).

A proof of this claim and of equations (14) and (13) for the BO case was done in ([18], Theorem 3.1, and
[19]) for the committee machine, by an interpolation method that shows the correctness of the replica
prediction for the free-entropy of the system. Their proof applies to teacher–student committee machines
with bounded output channel, prior distribution with finite second moment and Gaussian i.i.d. inputs.
Therefore, it applies to the multi-class perceptron of our setting, with both priors.

2.3. Generalisation error
The characterisation of the error in the high-dimensional limit is a direct consequence of Theorem 2.1.

Corollary 1. In the high-dimensional limit the asymptotic generalisation error associated to the ERM
estimator (2) can be expressed only as a function of the parameters (m,q) obtained by solving the self-consistent
equations (10):

εgen = P(ν,µ)∼N (0,Σ) (ϕout(µ) 6= ϕout(ν)) , where Σ=

[
Q∗ m
m q

]
. (16)

The proof of Corollary 1 is straightforward and follows by noticing that for any v, the function
ψ(Z) = 1(ϕout(Z) 6= ϕout(v)) is pseudo-Lipschitz.

As one can expect from the discussion in section 2.2, the BO error is obtained by a similar, but simpler
expression depending only on the overlap q, obtained by extremising (13):

εgen = Pξ∼N (0,Ik)

(
ϕout(q

1/2ξ) 6= ϕout(Q
∗1/2ξ)

)
. (17)

3. Approximate message-passing algorithm

In order to illustrate our theoretical results for the performance of the Bayesian (3) and ERM (2) estimators,
we would like to compare our asymptotic expressions for the generalisation error with finite instance
simulations. On one hand, the regularised empirical risk defined in (2) is strongly convex, and therefore it
can be readily minimised with any descent-based algorithm such as gradient descent or stochastic gradient
descent. Indeed, in the ERM simulations that follow we employ out-of-the-box multi-class solvers from
Scikit learn [33] to assess our theoretical result from Theorem 2.1. On the other hand, explicitly computing
the Bayesian estimator (3) requires sampling from the posterior, an operation which is prohibitively costly in
high-dimensions. Instead, in this manuscript we employ an Approximate Message Passing (AMP) algorithm
to efficiently approximate the posterior marginals. AMP has several interesting properties which make it a
popular tool in the study of random problems. First, it is proven to be optimal among a class of random
estimation problems [34], and for this reason it is widely used as a benchmark to assess algorithmic
complexity. Second, it admits a set of scalar state evolution equations allowing to track its performance in
high-dimensions [30].

For the BO estimation problem considered here, AMP is summarised by the pseudo-code in Algorithm 1,
which can be found in appendix E. It follows the well-known AMP algorithm for generalised linear
estimation [35, 36], which takes advantage of the high-dimensional limit d→∞ by approximating the
posterior distribution (5) by a multivariate Gaussian through a belief propagation procedure expanded in
powers of d−1. The difference is that the estimators ŵj are k-dimensional vectors and their variances Ĉj are
k× k dimensional matrices, j= 1, . . . ,d. The update functions fout and fw are defined in appendix C.1. For a
detailed derivation of the algorithm, see [37].

Several versions of this k-fold AMP and the associated state evolution appeared in previous works, e.g.
[18]. It can be shown that the state evolution equations associated to Algorithm 1 for BO estimation coincide
exactly with the self-consistent equations (14) presented in section 2.2 starting from an uninformed

6
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initialisation q0 ≈ 0 [18]. This interesting property implies that when the extremisation problem in
equation (13) has only one extremiser, AMP provides an exact approximation to the BO estimator in the
high-dimensional limit. Instead, when there are more than one maxima in equation (13), AMP will converge
to an estimator with overlap q closest to the uninformed initial condition. If this is not the global maximum,
this corresponds to a situation where AMP differs from the BO estimator. Since AMP provides a bound on
the performance of first-order algorithms, this situation is an example of an algorithmic hard phase, where it
is conjectured that the statistical optimal performance cannot be achieved by algorithms running in time
∼ O(d2).

We have implemented Algorithm 1 for k= 3 classes using the mapping presented in appendix A, which
makes the estimators (k− 1)-dimensional vectors and their variances (k− 1)× (k− 1) dimensional
matrices. The detailed expressions for the computation of the denoising functions, as well as the integrals to
be numerically evaluated are presented in appendix F.

4. Results for k= 3 classes

In this section we apply our theoretical results to the case of k= 3 classes and compare them with numerical
simulations. The prior reduction discussed in appendix A allows us to implement easily and efficiently the
numerical experiments in this case. Although our theory is valid for any finite k, the experiments at k larger
than 3 are computationally more demanding and we leave their implementation to future work.

We investigate the dependence of the learing curves on the sample complexity α. First, we consider the
case of Rademacher teacher prior and show that a first-order phase transition arises in the BO performance.
Then, we turn to Gaussian teacher prior and explore the role of the regularisation strength λ in approaching
the BO performance with ERM. For an overview on the empirical and theoretical literature on learning
curves, see [28].

4.1. Bayes-optimal performance for Rademacher teacher
The main difference between Gaussian and Rademacher teacher is that in the second case perfect
generalisation is achievable at finite sample complexity, in line with the results known for the two-classes case
of [2, 5, 6]. To compute the optimal information-theoretical performance, we have evaluated the global
extremum of the replica free entropy. To this end, we have run the replica saddle point iterations
equations (14) with both uninformed and informed initialisations and computed the free entropy (13) of the
fixed points (if distinct) reached by the two initialisations. In figure 1 we report the generalisation error
corresponding to the fixed points reached by the two initialisations, along with their corresponding free
entropy in the inset. We found that indeed, for Rademacher teacher weights, the generalisation error

decreases continuously for α⩽ α
(k=3)
IT ≈ 2.45, and then jumps to zero for all α > α

(k=3)
IT . From a statistical

physics perspective, this discontinuous transition in the error corresponds to a first-order phase transition
associated to the discontinuous appearance of a second extremum associated to perfect learning in the free
energy potential. As we have previously discussed, the state evolution of the AMP Algorithm 1 is equivalent
to gradient descent on the free energy potential (13) starting from an uninformed random initialisation.
Therefore, the appearance of a second extremum away from zero implies that AMP is not able to achieve the
BO statistical performance. Since AMP is conjectured to be optimal among first-order methods [34], this

result is an example of a fundamental statistical-to-algorithmic gap in this problem. For α > α
(k=3)
algo ≈ 2.89,

we observe that the uninformed minimum disappears, and we can check that this coincides with the sample
complexity at which AMP is able to achieve zero generalisation error from random initialisation. This marks
the algorithmic threshold, i.e. the sample complexity beyond which perfect generalisation is reachable
algorithmically efficiently. Our findings thus suggest the existence of an algorithmic hard phase for

α
(k=3)
IT < α < α

(k=3)
algo , where the theoretically optimal performance is not reachable by efficient algorithms.

We note here the comparison with the canonical perceptron with Rademacher teacher weights and two

classes, where the same thresholds are well known to be α(k=2)
IT = 1.249, α(k=2)

algo = 1.493 [5–7]. Naturally,
these values are roughly twice smaller than the ones for k= 3 since for k classes the teacher has k− 1
independent d-dimensional binary elements that need to be recovered in order to reach perfect
generalisation. Comparing more precisely the values for k= 3 and also their difference, all are slightly smaller
than the double of the values for k= 2.

4.2. Bayes-optimal performance for Gaussian teacher
Figures 2–4 summarise our results for the case of Gaussian teacher weights. The BO error, computed from
equation (7), is depicted by the dashed black line in both figures and is a smooth, monotonically-decreasing
function of the sample complexity α. Interestingly, for Gaussian teacher weights, the Bayes-optimal AMP
algorithm—described in section 3 and marked by the green symbols in figure 2—achieves the BO

7
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Figure 1. AMP for Rademacher teacher prior with k= 3 classes. Left: Generalisation error εgen as a function of α evaluated via
equations (17). The orange points mark the error asymptotically reached by the randomly initialised AMP. The blue points mark
the BO error. The inset depicts the corresponding free entropies, their crossing locating the information-theoretic transition to

perfect generalisation at αIT
k=3 ≈ 2.45. AMP reaches perfect generalisation starting from α

alg
k=3 ≈ 2.89. Right: Diagonal (q00) and

anti-diagonal (q01) entries of the self-overlap matrix as a function of α in the BO setting. The full lines mark the fixed points of
equations (14), the symbols represent the result obtained by the AMP algorithm averaged over 20 runs.

Figure 2. AMP for Gaussian teacher prior: Generalisation error εgen as a function of α. The green symbols mark the performance
of AMP (averaged over 20 runs). The dashed black line marks the BO error. The inset displays the diagonal (q00) and
anti-diagonal (q01) entries of the overlap matrix in the BO setting. The full lines mark the fixed points of equations (14), while the
symbols represent the result obtained from the AMP algorithm.

Figure 3. Bayes-optimal and ERM performances for Gaussian teacher weights. Left: Generalisation error εgen as a function of the
sample complexity α. The dashed line marks the BO error. Full lines mark the performance of ERM with cross-entropy (blue)
and square loss (orange), both at optimised ridge regularisation (λ= 0.01 and λ= 1 respectively, see figure 4) from the fixed
points of equation (10). The symbols mark the results from numerical simulations at d= 1000, averaged over 250 seeds. We also
plot the performance of simulations at zero regularisation and theory at λ→ 0+, for both cross-entropy (teal) and square loss
(purple). Right: Large−α behaviour of the error. The dashed line marks the BO error, the symbols mark ERM at fixed λ= 1.

performance. This is highly non-trivial: computing the Bayesian estimator usually requires sampling from
the posterior distribution of the weights given the data, and therefore can be prohibitively costly in the
high-dimensional regime considered here. For Gaussian weights AMP provides an exact approximation of
the posterior marginals in quadratic time in the input dimension.
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Figure 4. Gaussian teacher prior: the role of regularisation in ERM. Generalisation error εgen as a function of the regularisation
strength λ, at fixed sample complexity α. Different values of α are depicted with different colours. The curves are the result of
numerical simulations performed at dimension d= 1000, averaged over 250 instances. For cross-entropy loss (left figure) we
conclude that for these values of α the optimal λ is close to 0.01. For square loss (right figure) we observe that for these values of
α the optimal λ is close to 1.

4.3. Approaching Bayes-optimality with ERM
Instead, how does ERM compare to the Bayesian estimator? Note that the empirical risk in equation (2) is
convex, and therefore, at variance with the posterior estimation, this problem can be readily simulated using
descent-based algorithms such as stochastic gradient descent. The generalisation error obtained by ERM is
plotted in figure 3 as a function of the sample complexity. The full lines depict our theoretical predictions for
the learning curves while the symbols mark the results from numerical simulations performed at finite
dimension d= 1000 (more details on the numerics are provided in appendix G). We find excellent
agreement between the two. For both cross-entropy and square losses, we show the performance achieved
without regularisation (λ= 0) and with optimal λ, obtained by cross-validation on a fixed grid, in figure 4.
Interestingly, we find that the optimally-regularised cross-entropy loss achieves a close-to-optimal
performance, while the square loss maintains a finite gap with respect to the BO error even at fine-tuned
regularisation strength. Similar results were obtained for the two-classes teacher student perceptron [8]. The
fact that regularised cross-entropy minimisation is so close to optimal also in multi-class classification is
remarkable and the generality of this finding is worth further investigation.

4.4. Large–α behaviour
Figure 3 (right) considers again a Gaussian teacher prior and explores the behaviour of the generalisation
error at large sample complexity. The BO performance is depicted in black and decays as 1/α in the large−α
regime. On the other hand, the performance obtained by ERM at fixed λ displays a slower decay α−1/2. This
is again compatible with the behaviour observed in the two-classes case [8]. It remains to be analysed
whether for k> 2 the optimally regularised ERM achieves the 1/α rate as it does for the two classes.

4.5. The role of regularisation
Figure 4 further illustrates the role played by ridge regularisation. We plot the generalisation error as a
function of the regularisation strength λ at fixed sample complexity α for the cross-entropy (left) and the
square loss (right). Different curves represent different values of sample complexity. We observe that the
optimal regularisation depends only very mildly on the sample complexity α for this range of values of α.
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Figure 5.Multi-class perceptron: Schematic representation of the multi-class classification problem defined in equation (1).

Appendix A. Prior reduction

In this section we explain the mapping from k to k− 1 dimensions that we apply to evaluate our theoretical
results from equation (10) as well as to implement Algorithm 1. Figure 5 displays schematically the
multi-class perceptron. The intuition for the prior reduction is exactly the same of the binary perceptron: the
knowledge of k− 1 components of the one-hot label representation y is enough to determine the remaining
component. Nevertheless for k> 2, shifting the weights in order to reproduce this structure introduces
additional correlations that must be taken into account.

We recall thatW∗ is a d× kmatrix, and denote by w∗
l , 1⩽ l⩽ k, its columns, each corresponding to a

different class. Notice that the label y= eargmaxl({w∗
l
⊤x}l∈[k])

given by equation (1) of a data point x can be

equivalently expressed by taking the kth-component, i.e. w∗⊤
k x, as a reference for comparison and setting

w̃∗
h ← w∗

h −w∗
k for all 1⩽ h⩽ k, (A.1)

so that w̃∗
k = 0, and the problem is reduced to k− 1 dimensions. We then replaceW∗ by W̃

∗ ∈ Rd×(k−1).
Denoting 1k as the k-dimensional vector with all entries equal to 1, we present schematically in figure 6 the
prior reduction.

Note that this mapping introduces correlations along the columns of W̃
∗
, but not along the rows, i.e. the

d components of each vector w̃∗
l remain i.i.d. Therefore, the prior over the weights is still factorizable along

the extensive dimension d.

A.1. Gaussian prior
In the Gaussian prior setting,

Pw(w
∗) =N (W ∗|0, Ik) =

1

(2π)k/2
exp

(
−1

2
w∗⊤w∗

)
, (A.2)

where w∗ ∈ Rk is a column of the matrixW∗, the transformation imposes a new covariance matrix with
elements

Σjl ≡ Cov
(
w∗
j −w∗

k ,w
∗
l −w∗

k

)
. (A.3)

By making use of the identity

Cov(αa+βb,γc+ δb) = αγCov(a,c)+αδCov(a,d)+βγCov(b,c)+βδCov(b,d) , (A.4)

one can write

N (W ∗|w∗
k ,Σ)∝ exp

[
−1

2
(w∗−w∗

k )
⊤
Σ−1 (w∗−w∗

k )

]
←N (W ∗|0k, Ik) , (A.5)
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Figure 6. Prior reduction: Schematic representation of the prior reduction mapping over the multiclass classification problem
depicted in figure 5.

with

Σ= Ik− eke
⊤
k + ek

∑
l̸=k

e⊤l +

∑
l̸=k

el

e⊤k , (A.6)

Thus, since all contributions related to the kth degree of freedom become zero, the transformation (A.1)
allows us to write the mapping

Ik−1← Ik− eke
⊤
k , (A.7a)

1k−11
⊤
k−1← e⊤k + ek

∑
l̸=k

e⊤l +

∑
l ̸=k

el

e⊤k ; (A.7b)

and finally for w̃∗ ∈ Rk−1 :

N (w̃∗|0,Σ̃)∝ exp

(
−1

2
w̃∗⊤Σ̃−1w̃∗

)
, (A.8a)

with covariance Σ̃ ∈ R(k−1)×(k−1) given by

Σ̃= Ik−1 + 1k−11
⊤
k−1. (A.8b)

Therefore each row of the reduced matrix W̃
∗
follows a Gaussian distribution with 0mean and

covariance matrix given by equation (A.8b).

A.2. Rademacher prior
In the Rademacher setting, w∗ ∈ Rk,

Pw(W
∗) =

1

2k

k∏
l=1

[δ(w∗
l + 1)+ δ(w∗

l − 1)] , (A.9)

we can write

Pw(W
∗) =

1

2k

k∏
l=1

[δ(w∗
l −w∗

k +w∗
k + 1)+ δ(w∗

l −w∗
k +w∗

k − 1)]

=
1

2k
[δ(w∗

k + 1)+ δ(w∗
k − 1)]

k−1∏
l=1

[δ ((wl−w∗
k )+w∗

k + 1)+ δ((w∗
l −w∗

k )+w∗
k − 1)] ,

(A.10)
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leading to the reduced prior for w̃∗ ∈ Rk−1:

Pw̃(w̃
∗|w∗

k ) =
1

2k
[δ(w∗

k + 1)+ δ(w∗
k − 1)]

k−1∏
l=1

[δ (w̃∗
l +w∗

k + 1)+ δ(w̃∗
l +w∗

k − 1)] . (A.11)

The dimensional reduction simplifies our analysis when it comes to the numerical evaluation both of the
Gaussian integrals in equation (10) and of the prior and channel updates of AMP, as discussed in appendix F.
The same reformulation applies straightforwardly to the parametersm and q.

Appendix B. Replica calculation

In this section, we carry out the (heuristic) replica computation leading to the system of equations (10) in the
main text. We consider a general setting where the student has access to a prior distribution Pw over the
teacher weights and a model distribution Pout, which can be the true ones or not. This formulation
encompasses both the Bayes-optimal and non Bayes-optimal settings. As we shall see in the following, ERM
can be seen as a special case of the latter. The posterior distribution of the student weights is given by

P
(
{wl}kl=1|X,Y

)
=

1

Zd

k∏
l=1

Pw(W l)
n∏

µ=1

Pout(yµ|{hµl}
k
l=1) (B.1)

where we have defined hµl = w⊤
l xµ/

√
d. The partition function is then

Zd =

ˆ
Rd×k

dw
k∏

l=1

Pw(W l)
n∏

µ=1

Pout(yµ|{hµl}
k
l=1). (B.2)

By using the replica trick, we can compute the free entropy in the high-dimensional limit as

Φ := lim
d→∞

Φd := lim
d→∞

1

d
EX,W∗ ln Zd ≈ lim

d→∞
lim
p→0+

1

d

∂

∂p
EX,W∗Zp

d. (B.3)

We can then rewrite the average in equation (B.3) as

EX,W∗Zp
d = EX,W∗

[ˆ
Rd×k

dw
k∏

l=1

Pw(W l)
n∏

µ=1

Pout(yµ|{hµl}
k
l=1)

]p
(B.4)

= EX,W∗

[
p∏

a=1

ˆ
Rd×k

dwa
k∏

l=1

Pw(W
a
l )

n∏
µ=1

Pout
(
yµ|{h

a
µl}kl=1

)]
(B.5)

= EX

ˆ
Rn×k

dY
p∏

a=0

[ˆ
Rd×k

dwa
k∏

l=1

Paw(W
a
l )

n∏
µ=1

Paout

(
yµ|{h

a
µl}kl=1

)]
, (B.6)

where above we have renamed w∗ = w0. In order to account for both the Bayes-optimal and
non-Bayes-optimal cases, we keep the distinction between teacher and student distributions by adding an
index a to prior and model distributions. In what follows, P0w = P∗

w and P0out = P∗
out refer to the teacher, while

Pa>0
w = Pw and Pa>0

out = Pout to the student. Let us denote the covariance tensor of the haµl as

E[haµlhbνl ′ ] = δµνQ
al
bl ′ , (B.7)

Qal
bl ′ =

1

d

d∑
i=1

wa
ilw

b
il ′ , (B.8)

with Qb
a ∈ Rk×k. We can rewrite the above as

EX,W∗Zp
d = EX

ˆ
Rn×k

dY
p∏

a=0

[ˆ
Rd×k

dwa
k∏

l=1

Paw(W
a
l )

n∏
µ=1

Paout

(
yµ|{h

a
µl}kl=1

)]

=
∏

(a,l);(b,l)

ˆ
R
dQal

bl ′ Iprior
({

Qal
bl ′
})

Ichannel
({

Qal
bl ′
})
,

(B.9)
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where we have denoted

Iprior({Qal
bl ′}) =

p∏
a=0

ˆ
Rd×k

dwa

[
k∏

l=1

Paw(W
a
l )

] ∏
(a,l);(b,l ′)

δ

(
Qal

bl ′ −
1

d

d∑
i=1

wa
ilw

b
il ′

)
, (B.10)

Ichannel({Qal
bl ′}) =

ˆ
Rn×K

dY
p∏

a=0

ˆ
Rd×k

dha
[

p∏
a=0

n∏
µ=1

Paout(yµ|h
a
µ)

]
(B.11)

× exp

−n

2
lndetQ− nk(p+ 1)

2
ln 2π− 1

2

n∑
µ=1

∑
a,b

∑
l,l ′

haµl(Q
−1)albl ′h

b
µl ′

 , (B.12)

and we have introduced both the definitions of the overlaps {Qal
bl ′} and the local fields {haµl}. We can

introduce the Fourier representation of the Dirac δ−functions in the prior term Iprior and rewrite

EZp
d =

∏
(a,l);(b,l ′)

ˆ
R2

dQal
bl ′ dQ̂

al
bl ′

2π
exp
(
dH(Q, Q̂)

)
, (B.13)

where we have defined

H(Q, Q̂) :=
1

2

p∑
a=0

∑
l,l ′

Qal
al ′Q̂

al
al ′ −

1

2

∑
a̸=b

∑
l,l ′

Qal
bl ′Q̂

al
bl ′ + ln I({Q̂al

bl ′})+α ln J({Qal
bl ′}) (B.14)

and the auxiliary functions:

I({Q̂al
bl ′}) =

p∏
a=0

ˆ
Rk

dwaPaw(W
a)exp

−1

2

p∑
a=0

∑
l,l ′

wa
l Q̂

al
al ′w

a
l ′ +

1

2

∑
a̸=b

∑
l,l ′

wa
l Q̂

al
bl ′w

b
l ′

 , (B.15)

J({Qal
bl ′}) =

ˆ
Rk

dy
p∏

a=0

ˆ
Rk

dha

(2π)k(p+1)/2

Paout(y|h
a)√

detQ
exp

−1

2

∑
a,b

∑
l,l ′

hal (Q
−1)albl ′h

b
l ′

 . (B.16)

We observe that, upon exchanging the limits in d and p, the high-dimensional limit of the free entropy can be
computed via a saddle-point method:

Φ= lim
d→∞

EX,W∗ lnZd = lim
p→0+

extrQ,Q̂

[
H(Q, Q̂)

]
. (B.17)

B.1. Replica symmetric ansatz
In order to progress in the calculation, we restrict the extremisation in equation (B.17) to values of {Q, Q̂}
described by a replica symmetric (RS) ansatz [32]. The validity of this ansatz is proven rigorously in
appendix D. We distinguish between the Bayes-optimal and non Bayes-optimal cases. Note that in the
Bayes-optimal case we can drop the a−index from the prior and model distributions. In the non
Bayes-optimal case, we will denote the teacher distributions by P∗

w ,P
∗
out and the student ones simply by

Pw,Pout.

B.1.1. Bayes-optimal RS ansatz
In the Bayes-optimal setting we make the following ansatz:

Qal
al ′ = Q∗

ll ′ , Q̂al
al ′ = Q̂∗

ll ′ , ∀a= 0, ..p, ∀l, l ′ ⩽ k (B.18)

Qal
bl ′ = qll ′ , Q̂al

bl ′ = q̂ll ′ , ∀a 6= b,∀l, l ′ ⩽ k. (B.19)

The trace term is simplified as follows

1

2

p∑
a=0

∑
l,l ′

Qal
al ′Q̂

al
al ′ −

1

2

∑
a ̸=b

∑
l,l ′

Qal
bl ′Q̂

al
bl ′ =

1

2
(p+ 1)

∑
l,l ′

Q̂∗
ll ′Q

∗
ll ′ −

1

2
p(p+ 1)

∑
ll ′

q̂ll ′qll ′ . (B.20)
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The prior and output terms can be simplified by performing a Hubbard–Stratonovich transformation that
allows to decouple the replica indices a,b. By indicating the standard Gaussian measure withDξ:
ξ ∼N (0, Ik), we obtain

I(Q̂
∗
, q̂) =

ˆ
Rk

Dξ
[ˆ

Rk

dwP∗
w(W)exp

(
−1

2
w⊤(Q̂

∗
+ q̂)w+ ξ⊤q̂

1
2w

)]p+1

, (B.21)

J(Q∗,q) =

ˆ
Rk

dy

ˆ
Rk

Dξ
[ˆ

Rk

DhP∗
out

(
y|(Q∗− q) 1

2 h+ q
1
2 ξ
)]p+1

. (B.22)

Since we are interested in the p→ 0+ limit, it is useful to rewrite

ln I(Q̂
∗
, q̂) = p

ˆ
Rk

Dξ
ˆ
Rk

dwP∗
w(W)exp

(
−1

2
w⊤(Q̂

∗
+ q̂)w+ ξ⊤q̂

1
2w

)
× ln

ˆ
Rk

dw ′P∗
w(W

′)exp

(
−1

2
w ′⊤(Q̂

∗
+ q̂)w ′ + ξ⊤q̂

1
2w ′
)
+ o(p),

(B.23)

ln J(Q∗,q) = p

ˆ
Rk

dy

ˆ
Rk

Dξ
ˆ
Rk

DhP∗
out

(
y|(Q∗− q) 1

2 h+ q
1
2 ξ
)

× ln

ˆ
Rk

Dh ′P∗
out

(
y|(Q∗− q) 1

2 h ′ + q
1
2 ξ
)
+ o(p). (B.24)

B.1.2. Non-Bayes-optimal RS ansatz
In the non-Bayes-optimal setting we make the following ansatz:

Qal
al ′ = Q0

ll ′ , Q̂al
al ′ = Q̂0

ll ′ , ∀a= 1, ..p, ∀l, l ′ ⩽ K (B.25)

Qal
bl ′ = qll ′ , Q̂al

bl ′ = q̂ll ′ , ∀a 6= b, a,b= 1, . . .p, ∀l, l ′ ⩽ k (B.26)

Q0l
al ′ =mll ′ , Q̂0l

al ′ = m̂ll ′ , ∀a= 1, . . .p, ∀l, l ′ ⩽ k (B.27)

Q0l
0l ′ = Q∗

ll ′ , Q̂0l
0l ′ = Q̂∗

ll ′ , ∀l, l ′ ⩽ k. (B.28)

The trace term is simplified as follows

1

2

p∑
a=0

∑
l,l ′

Qal
al ′Q̂

al
al ′ −

1

2

∑
a̸=b

∑
l,l ′

Qal
bl ′Q̂

al
bl ′ =

1

2
p
∑
l,l ′

Q̂0
ll ′Q

0
ll ′ −

1

2
p(p− 1)

∑
ll ′

q̂ll ′qll ′

+
1

2

∑
l,l ′

Q̂∗
ll ′Q

∗
ll ′ − p

∑
l,l ′

mll ′m̂ll ′ . (B.29)

The prior term is

I(Q̂
0
, q̂, Q̂

∗
,m̂) =

ˆ
Rk

Dξ
ˆ
Rk

dw∗P∗
w(W

∗)exp

(
−1

2
w∗⊤Q̂

∗
w∗
)

×
[ˆ

Rk

dwPw(W)exp

(
−1

2
w⊤(Q̂

0
+ q̂)w+w∗⊤m̂w+ ξ⊤q̂

1
2w

)]p
. (B.30)

In order to compute the output term we need to compute the inverse matrix

Q−1 =


Q̃

∗
m̃ . . . m̃

m̃ Q̃
0

q̃ . . .
... q̃

. . . q̃

m̃ . . . q̃ Q̃
0

 ∈ Rk(p+1)×k(p+1), (B.31)
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which has a similar block structure as Q. The components of the inverse can be computed from the relation
Q−1Q= Ik and are given by

Q̃
∗
=
(
Q∗− pm

(
Q0 +(p− 1)q

)−1
m
)−1

,

Q̃
0
= (Q0− q)−1 +

(
Q0 +(p− 1)q

)−1

×
[
m
(
Q∗− pm

(
Q0 +(p− 1)q

)−1
m
)−1

m
(
Q0 +(p− 1)q

)−1− q(Q0− q)−1

]
,

q̃= Q̃
0− (Q0− q)−1,

m=−
(
Q∗− pm

(
Q0 +(p− 1)q

)−1
m
)−1

m
(
Q0 +(p− 1)q

)−1
. (B.32)

The determinant of Q is given by

ln detQ= (p− 1) lndet(Q0− q)+ ln det
(
Q0 +(p− 1)q

)
+ ln det

(
Q∗− pm

(
Q0 +(p− 1)q

)−1
m
)
.

(B.33)

The above results allow us to rewrite

J
(
Q∗,Q0,q,m

)
=

ˆ
Rk

dy

ˆ
Rk

Dξ exp
(
−1

2
lndet(2πQ)

)ˆ
Rk

DZ ∗P∗
out(y|Z

∗)exp

(
−1

2
Z ∗⊤Q̃

∗Z ∗
)

×
[ˆ

Rk

DZ Pout(y|Z)exp

(
−1

2
z⊤(Q̃

0− q̃)z− z∗⊤m̃z− ξ⊤q̃1/2z

)]p
.

(B.34)

As in the Bayes-optimal case, in order to consider the p→ 0+ limit, we can rewrite

ln I(Q̂
0
, q̂, Q̂

∗
,m̂) = p

ˆ
Rk

Dξ
ˆ
Rk

dw∗P∗
w(W

∗)exp

(
−1

2
w∗⊤Q̂

∗
w∗
)

× ln

ˆ
Rk

dwPw(W)exp

(
−1

2
w⊤(Q̂

0
+ q̂)w+w∗⊤m̂w+ ξ⊤q̂

1
2w

)
+ o(p), (B.35)

ln J
(
Q∗,Q0,q,m

)
= p

ˆ
Rk

dy

ˆ
Rk

Dξ exp
(
−1

2
lndet(2πQ)

)ˆ
Rk

Dz∗P∗
out(y|z∗)exp

(
−1

2
z∗⊤Q̃

∗
z∗
)

× ln

ˆ
Rk

DzPout(y|z)exp
(
−1

2
z⊤(Q̃

0− q̃)z− z∗⊤m̃z− ξ⊤q̃1/2z

)
+ o(p). (B.36)

B.2. Computing the free entropy
At this point, it is straightforward to compute the free entropy from equation (B.17) by taking the limit
p→ 0+ of equations (B.20)–(B.23)–(B.24) and (B.29)–(B.35)–(B.36). In the Bayes-optimal case, we obtain:

ΦBO(α) = extrq,q̂

{
−1

2
Tr[qq̂] +Ψ∗

w(q̂)+αΨ∗
out(q)

}
, (B.37)

Ψ∗
w(q̂) = Eξ

[
Z∗
w

(
q̂1/2ξ, q̂

)
lnZ∗

w

(
q̂1/2ξ, q̂

)]
,

Ψ∗
out(q) = Ey,ξ

[
Z∗
out

(
y,q1/2ξ,Q∗− q

)
lnZ∗

out

(
y,q1/2ξ,Q∗− q

)]
.

(B.38)

In the non Bayes-optimal case, we obtain:

Φnon−BO(α) = extr
Q0,q,m,Q̂

0
,q̂,m̂

{
−Tr [mm̂] +

1

2
Tr
[
Q0Q̂

0
]
+

1

2
Tr [qq̂] (B.39)

+Ψw(Q̂
0
, q̂,m̂)+αΨout(Q

∗,Q0,q,m)
}
, (B.40)
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Ψw(Q̂
0
, q̂,m̂) = Eξ

[
Z∗
w

(
m̂q̂−1/2ξ,m̂q̂−1m̂

)
lnZw

(
q̂1/2ξ, Q̂

0
+ q̂
)]
,

Ψout(Q
∗,Q0,q,m) = Ey,ξ

[
Z∗
out

(
y;mq−1/2ξ,−mq−1m

)
lnZout

(
y;q1/2ξ,Q0− q

)]
,

(B.41)

where we remind that in both cases Q∗ is fixed given the teacher prior. The above equations make use of a
series of auxiliary functions Z∗

w ,Zw,Z∗
out,Zout that simply come from a more compact way of writing

equations (B.23)–(B.24) and (B.35)–(B.36), i.e.

Zw(γ,Λ) =

ˆ
Rk

dwPw(w)e
− 1

2w
⊤Λw+γ⊤w , (B.42a)

Zout(y;ω,V) =

ˆ
Rk

dz
e−

1
2 (z−ω)⊤V−1(z−ω)√

det(2πV)
Pout(y|z) , (B.42b)

and Z∗
w ,Z

∗
out are defined in the exact same way provided that the student distributions Pw,Pout are replaced by

the teacher distributions P∗
w ,P

∗
out.

Appendix C. Update equations for the overlap parameters

We can now compute the update equations for the overlap parameters both in the Bayes and non
Bayes-optimal settings by taking the derivatives of equation (B.37) with respect to (q, q̂) and of

equation (B.39) with respect to (Q0,q,m, Q̂
0
, q̂,m̂), and setting them to zero. In the Bayes-optimal setting the

update equations are therefore given by:

q= Eξ

[
Z∗
w(q̂

1/2ξ, q̂) f∗w(q̂
1/2ξ, q̂) f∗w(q̂

1/2ξ, q̂)⊤
]
, (C.1)

q̂= αEy,ξ

[
Z∗
out(y;q

1/2ξ,Q∗− q) f∗out(y;q
1/2ξ,Q∗− q) f∗out(y;q

1/2ξ,Q∗− q)⊤
]
. (C.2)

In the non-Bayes optimal setting, we define for simplicity: V= Q0− q, V̂= Q̂
0
+ q̂, and we find

m= Eξ

[
Z∗
w × f

∗
w(m̂q̂

−1/2ξ,m̂Tq̂−1m̂) fw(q̂
1/2ξ, V̂)⊤

]
, (C.3)

q= Eξ

[
Z∗
w(m̂q̂

−1/2ξ,m̂Tq̂−1m̂) fw(q̂
1/2ξ, V̂)fw(q̂

1/2ξ, V̂)⊤
]
, (C.4)

V= Eξ

[
Z∗
w(m̂q̂

−1/2ξ,m̂Tq̂−1m̂)∂γ fw(q̂
1/2ξ, V̂)

]
, (C.5)

m̂= αEy,ξ

[
Z∗
out f

∗
out(y,mq

−1/2ξ,Q∗−m⊤q−1m) fout(y,q
1/2ξ,V)⊤

]
, (C.6)

q̂= αEy,ξ

[
Z∗
out(y,mq

−1/2ξ,Q∗−m⊤q−1m) fout(y,q
1/2ξ,V) fout(y,q

1/2ξ,V)⊤
]
, (C.7)

V̂=−αEy,ξ

[
Z∗
out(y,mq

−1/2ξ,Q∗−m⊤q−1m)∂wfout(y,q
1/2ξ,V)

]
, (C.8)

where in both settings we have made use of the following definitions.
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C.1. Definitions of the update functions
For w ∈ Rk, let

Qw(w;γ,Λ)≡ Pw(w)

Zw(γ,Λ)
e−

1
2w

⊤Λw+γ⊤w , (C.9a)

with

fw(γ,Λ)≡ ∂γ logZw(γ,Λ) = EQw [w] , (C.9b)

and for z ∈ Rk, let

Qout(z;y,ω,V)≡
Pout(y|w)
Zout(y,ω,V)

e−
1
2 (z−ω)⊤V−1(z−ω)√

det(2πV)
, (C.9c)

with

fout(y,ω,V)≡ ∂ω logZout(y,ω,V) = V−1EQout [z−ω] , (C.9d)

where the definitions of f∗w , f
∗
out are identical, provided that Pw,Pout are replaced by P

∗
w ,P

∗
out. The functions Zw

and Zout are given by equations (B.42).
The explicit expressions of the auxiliary functions depend on the choice of the teacher and student

distributions. We evaluate these expressions for the special cases under consideration in the following
sections.

C.2. Bayes-optimal update functions
In this section, we evaluate the Bayes-optimal update functions. We consider directly the expressions
obtained after performing the mapping described in appendix A.

C.2.1. Gaussian prior terms with the dimensional reduction A
In the case of Gaussian teacher prior, it is straightforward to notice that, after the application of the mapping
A, the prior over the weights is still Gaussian with covariance Σ̃= Ik−1 + 1k−11

⊤
k−1:

Z ∗
w (γ,Λ) =

ˆ
Rk−1

dw√
(2π)k−1 det(Σ̃)

exp

[
−1

2
w⊤
(
Σ̃−1 +Λ

)
w+γ⊤w

]

=
1√

det(Σ̃)det(Σ̃−1 +Λ)
exp

[
1

2
γ⊤
(
Σ̃−1 +Λ

)−1
γ

]
, (C.10a)

leading to

f∗w(γ,Λ) = ∂γ logZ ∗
w (γ,Λ) =

(
Σ̃−1 +Λ

)−1
γ , (C.10b)

∂γ f
∗
w(γ,Λ) =

(
Σ̃−1 +Λ

)−1
. (C.10c)

For k= 3, the reduced covariance matrix is given by

Σ̃=

[
2 1
1 2

]
. (C.11)

C.2.2. Rademacher prior terms with the dimensional reduction A
Considering k= 3, the reduced prior given by equation (A.11) becomes

Pw̃(w̃
∗
1 , w̃

∗
2 ) =

1

23
[2δ(w̃∗

1 )δ(w̃
∗
2 )+ δ(w̃∗

1 )δ(w̃
∗
2 + 2)+ δ(w̃∗

1 + 2)δ(w̃∗
2 )+ δ(w̃∗

1 )δ(w̃
∗
2 − 2)

+δ(w̃∗
1 − 2)δ(w̃∗

2 )+ δ(w̃∗
1 + 2)δ(w̃∗

2 + 2)+ δ(w̃∗
1 − 2)δ(w̃∗

2 − 2)] .
(C.12)

The denoising functions for this case are computed numerically, via Monte Carlo sampling of the
distribution given equation (C.12).
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C.2.3. Output terms with the dimensional reduction A
Considering directly the mapping to dimension k− 1, we can write the Bayes-optimal model distribution as

P∗
out(y|z) =

k−1∑
l=1

δy,elΘ(zl)
k−1∏

h ̸=l,h=1

Θ(zl− zh)+ δy,ek

k−1∏
l=1

Θ(−zl). (C.13)

Therefore, the auxiliary functions Z∗
out, and so on, are composed by k− 1 contributions according to the

membership of the label y in the argument. For instance, in the case k= 3, we have

Z ∗
out(y;ω,V) = δy,e1

ˆ +∞

0
dz1

ˆ z1

−∞
dz2

e−
1
2 (z−ω)⊤V−1(z−ω)√

det(2πV)
+ δy,e2

ˆ +∞

0
dz2

ˆ z2

−∞
dz1

e−
1
2 (z−ω)⊤V−1(z−ω)√

det(2πV)

+ δy,e3

ˆ 0

−∞
dz1

ˆ 0

−∞
dz2

e−
1
2 (z−ω)⊤V−1(z−ω)√

det(2πV)
. (C.14)

Similarly, for f∗out we need to change the integration bounds in order to take into account all the possibilities
for the label. For each term, we can only compute analytically the inner integral, while we have to estimate
the outer ones via Monte Carlo sampling. Therefore, applying the mapping in A is useful in order to reduce
the number of integrals to be performed numerically and speed up the whole procedure.

C.3. ERM update functions
The update equations for ERM can be derived as a special case of the non Bayes-optimal equations (C.1) and
so on. In particular, this can be seen by rewriting the solution of the optimization problem as the ground state
of the following measure

Pβ(W |X,Y) =
1

Zd(β)
exp(−β rλ(W))exp(−βL(W ;X,Y))

=
1

Zd(β)

k∏
l=1

exp

(
−βλ

2
‖wl‖22

) n∏
µ=1

exp
(
−βℓ

(
W⊤xµ,yµ

))
,

(C.15)

i.e. the solution in the limit β→∞. Therefore, we can express the prior and model distributions of a student
learning via ERM as

Pw(W)∝ exp

(
−βλ

2
‖w‖22

)
, Pout(y|W⊤x)∝ exp

(
−βℓ

(
W⊤x,y

))
. (C.16)

C.3.1. Prior terms with the dimensional reduction A
The ERM ridge-regularization prior can therefore be seen as i.i.d. Gaussian-distributed with variance 1/βλ.
This means that, applying the mapping A, we have

Pw(W) =
1

(2π)(k−1)/2
√
det(C/(βλ)

exp

(
−βλ

2
w⊤C−1w

)
, (C.17)

where again C is the prior covariance in the reduced setting, i.e. C= [2,1;1,2] for k= 3. Let we rescale
γ← βγ andΛ← βΛ. We will see that this would correspond to the rescaling: q̂← β2q̂ and V̂← βV̂. We
obtain

Zw(γ,Λ) =

ˆ
Rk−1

dw
e−

β
2 w

⊤(λC−1+Λ)w+βγ⊤w

(2π)(k−1)/2
√
det(C/βλ)

=
1√

det(C/βλ)det(βλC−1+βΛ)
exp

(
β

2
γ⊤(λC−1+Λ)−1γ

)
, (C.18)

fw(γ,Λ) = β (λC−1+Λ)−1γ, (C.19)

∂γ fw(γ,Λ) = β(λC−1+Λ)−1. (C.20)
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Substituting the expressions above in equations (10), we find

m=
1√

det(C)det(C−1 + m̂q̂−1m̂)

√
det(I− q̂−1/2m̂(C−1 + m̂q̂−1m̂)−1m̂q̂−1/2)

(C.21)

× (C−1 + m̂q̂−1m̂)−1m̂q̂−1/2
(
I− q̂−1/2m̂(C−1 + m̂q̂−1m̂)−1m̂q̂−1/2

)−1

× ˆq1/2(λC−1 + V̂)−1 , (C.22)

q=
1√

det(C)det(C−1 + m̂q̂−1m̂)

√
det(I− q̂−1/2m̂(C−1 + m̂q̂−1m̂)−1m̂q̂−1/2)

(C.23)

× (λC−1 + V̂)−1q̂1/2
(
I− q̂−1/2m̂(C−1 + m̂q̂−1m̂)−1m̂q̂−1/2

)−1

× q̂1/2(λC−1 + V̂)−1 , (C.24)

V=
(λC−1 + V̂)−1√

det(C)det(C−1 + m̂q̂−1m̂)

√
det(I− q̂−1/2m̂(C−1 + m̂q̂−1m̂)−1m̂q̂−1/2)

, (C.25)

where additionally we have rescaled:m← βm, q← β2q, V← βV. The equations are now independent of the
parameter β. We will see that the above rescaling is consistent and leads to a set of well-defined equations in
the β→∞ limit.

C.3.2. Output terms with the dimensional reduction A
We remind that we have performed the rescaling V→ β−1V. In the β→∞ limit, the ERM output term Zout

becomes

Zout(y;ω,V)∝
√
βk−1

ˆ
Rk−1

dz
e−β[− 1

2 (z−ω)⊤V−1(z−ω)+L(y,z)]√
det(2πV)

−→
β→∞

√
βk−1

det(2πV)
e−βMVL(y,·)(ω), (C.26)

whereM is a Moreau envelope associated with the loss L,

MVL(y,·)(ω) = inf
z∈Rk−1

[
1

2
(z−ω)⊤V−1(z−ω)+L(y,z)

]
. (C.27)

From equation (C.9d), we have

fout(y,ω,V) =−β∂ωMVL(y,·)(ω) , (C.28)

which can be obtained using the proximal operator

proxVL(y,·)(ω) = argmin
z∈Rk−1

[
1

2
(z−ω)⊤V−1(z−ω)+L(y,z)

]
. (C.29)

The envelope theorem,M ′

Σf(x) =Σ−1
(
x− proxΣf(x)

)
leads to

fout(y,ω,V) =−βV
−1
(
ω− proxVL(y,·)(ω)

)
, (C.30)

∂ωfout(y,ω,V) =−βV
−1
(
I− ∂ωproxVL(y,·)(ω)

)
, (C.31)

∂ωproxVL(y,·)(ω) = ∂ωz
∗(ω) =

(
V−1 + ∂2zL

)−1
, (C.32)

consistently with the rescaling previously adopted, which leads to the final equations equations (10) in the
main text, holding in the limit β→∞.
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C.3.3. Special case: square loss
The proximal operator for the square loss can be computed analytically:

proxSLVL(y,·)(ω) = (I+V)−1(W +Vy), (C.33)

∂wprox
SL
VL(y,·)(ω) = (I+V)−1. (C.34)

Appendix D. Proof of the main theorem

In this section we prove the main theorem in a slightly more general setup than what is presented in the main
part of the paper. We start by reminding the learning problem defining the ensemble of estimators with a few
auxiliary notations, so that this part is self contained. The exact match with the replica prediction will be
given at the end of the proof.

D.1. The learning problem
We start by reminding the definition of the problem. Consider the following generative model

Y= ϕout

(
1√
d
XW ∗

)
(D.1)

where Y ∈ Rn×k,X∼N (0,1) ∈ Rn×d andW ∗ ∈ Rd×k. The goal is to try to learn an estimator ofW ∗ using a
generalised linear model defined by the optimisation problem

Ŵ ∈ argmin
W∈Rd×k

L
(
Y,

1√
d
XW

)
+ r(W) (D.2)

where L, r are convex functions, and we omit the dependence of the regularisation r on the parameter λ for
simplicity. We wish to determine the asymptotic properties of the estimator Ŵ in the limit where n,d→∞
with fixed ratios α= n/d. We now list the necessary assumptions for our main theorem to hold.

D.1.1. Assumptions
• the functions L, r are proper, closed, lower-semicontinuous, convex functions. The loss function L is dif-
ferentiable and pseudo-Lipschitz of order 2 in both its arguments. We assume additionally that the regular-
isation r is strongly convex, differentiable and pseudo-Lipschitz of order 2.

• the dimensions n,d grow linearly with finite ratios α= n/d, and the number of classes k is kept constant.

• the lines of the ground truth matrixW ∗ ∈ Rd×k are sampled i.i.d. from a sub-Gaussian probability distri-
bution in Rk.

D.2. Reduction to an AMP iteration
We start by reformulating the optimisation problem (D.2) in order to be able to solve it with an AMP
iteration. In particular it is useful to separate the design matrix X in two contributions: one aligned with the
ground truthW ∗ and one independent on the teacher Y . To do so we condition X on the teacher input XW ∗

such that

X= E [X|Y] +X−E [X|Y] (D.3)

= E [X|XW ∗] +X−E [X|XW ∗] (D.4)

= XPW ∗ + X̃P⊥W ∗ (D.5)

where X̃ is an independent copy of the design matrix X, PW ∗ denotes the orthogonal projection on the
subspace spanned by the columns ofW ∗ and P⊥W ∗ = Id−PW ∗ . Furthermore, since we assume that n,d are
arbitrarily large and that k remains finite for each instance of the problem, the matrixW ∗ has full column

rank and the projector PW ∗ =W ∗ ((W ∗)⊤W ∗)−1
(W ∗)⊤ is always well-defined with high probability. We

can then rewrite the original problem as

Ŵ ∈ argmin
W∈Rd×k

L
(
Y,

1√
d

(
XPW ∗ + X̃P⊥W ∗

)
W

)
+ r(W). (D.6)
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The quantity XW ∗ is a Rn×k Gaussian matrix with covariance (W ∗)⊤W ∗, and can be represented as
XW ∗ = S((W ∗)⊤W ∗)1/2 where S is an n× k random matrix with i.i.d. standard normal elements. We then
have

1√
d
XPW ∗ =

1√
d
W ∗ ((W ∗)⊤W ∗)−1

(W ∗)⊤W (D.7)

=
1√
d
S
√
dρ1/2

1

d
ρ−1dm⊤ (D.8)

= Sρ−1/2m⊤ (D.9)

where we introduced the order parameterm= 1
dŴ

⊤
W ∗ ∈ Rk×k and the quantity ρ= 1

d (W
∗)⊤W ∗ ∈ Rk×k.

Note that Y= Sρ1/2, and

Ŵ ∈ argmin
W∈Rd×k

L
(
Y,Sρ−1/2m⊤ +

1√
d
X̃P⊥W ∗W

)
+ r(W). (D.10)

We may then rewrite the optimisation problem equation (D.26) as an equivalent problem under constraint
on the definition of m leading to the Lagrangian formulation

inf
m,W

sup
m̂
L
(
Y,Sρ−1/2m⊤ +

1√
d
X̃P⊥W ∗W

)
+ r(W ∗ρ−1m⊤ +P⊥W ∗W)+Tr

(
m̂⊤

(
dm− Ŵ⊤

W ∗
))

.

(D.11)

Letting U= P⊥W ∗W such thatW=W ∗ρ−1m⊤ +U, the problem becomes

inf
m,U

sup
m̂
L
(
Y,Sρ−1/2m⊤ +

1√
d
X̃U

)
+ r(W ∗ρ−1m⊤ +U)−Tr

(
m̂⊤U⊤W ∗

)
(D.12)

where the initial constraint onm automatically enforces the orthogonality constraint on U w.r.t.W ∗. The
following lemma then characterises the feasibility sets ofm,m̂,U.

Lemma 1. Consider the optimisation problem equation (D.12). Then there exist constants CU,Cm,Cm̂ such that

1√
d
‖U‖F ⩽ CU, ‖m‖F ⩽ Cm, ‖m̂‖F ⩽ Cm̂ (D.13)

with high probability as n,d→∞.

Proof. Consider the optimisation problem defining Ŵ

Ŵ ∈ argmin
W∈Rd×k

L(Y,XW)+ r(W). (D.14)

From the strong convexity assumption on r, there exists a strictly positive constant λ2 such that the function
r̃(W) := r(W)− λ2

2 ‖W‖
2
F is convex (and proper, closed, lower semi-continuous). We can then rewrite the

optimisation problem as

Ŵ ∈ argmin
W∈Rd×k

L(Y,XW)+ r̃(W)+
λ2
2
‖W‖2F (D.15)

which, owing to the convexity of the cost function, verifies

1

d

(
L(Y,XŴ)+ r̃(Ŵ)+

λ2
2
‖Ŵ‖2F

)
⩽ 1

d
(L(Y)+ r̃(0)) . (D.16)

The functions L and r̃ are proper, thus their sum is bounded below for any value of their arguments and we
may write

1

d

λ2
2
‖Ŵ‖2F ⩽

1

d
(L(Y)+ r̃(0)) . (D.17)
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The pseudo-Lipschitz assumption on L and r then implies that there exist positive constants CL and Cr̃ such
that

1

d

λ2
2
‖Ŵ‖2F ⩽

1

d

(
CL

(
1+ ‖Y‖22

))
+Cr̃ (D.18)

where, on the right hand side, the term ‖Y‖2F/d= α‖Y‖2F/n is bounded since the labels are in {−1,+1} and
α is finite. Now using the definition of U

1

d
‖U‖2F =

1

d
‖P⊥W̃ ∗Ŵ‖2F (D.19)

⩽ ‖P⊥W̃ ∗‖2op
1

d
‖Ŵ‖F (D.20)

where the singular values of P⊥
W̃ ∗ are bounded with probability one. Therefore there exists a constant CU such

that ‖U‖/
√
d⩽ CU. Then, by definition of m and the Cauchy-Schwarz inequality

‖m‖2F ⩽
1

d
‖c‖22

1

d
‖W‖2F (D.21)

⩽ 1

d
‖W ∗‖22

1

d
‖Ŵ‖2F. (D.22)

By assumption, the columns of W ∗ are sampled from sub-Gaussian distributions, thus, using Bernstein’s
inequality for sub-exponential random variables there exists a positive constant CW ∗ such that, with high
probability as n,d→+∞, ‖W ∗‖2F ⩽ CW ∗ . Combining this with the result on Ŵ, there exists a positive con-
stant Cm such that ‖m‖F ⩽ Cm with high probability as n,d→+∞. We finally turn to m̂. The optimality
condition form in problem equation (D.10) gives

m̂=− 1√
d
ρ−1/2S⊤∂L

(
Y,
Sm⊤
√
ρ

+
1√
d
X̃C1/2W ∗

)
. (D.23)

The pseudo-Lipschtiz assumption on L implies that we can find a constant C∂L such that

‖m̂‖22 ⩽
1

d
‖ρ−1‖F‖S‖

2
FC∂L

(
1+

1

d
‖Y‖2F +

1

d
‖Sm

⊤
√
ρ

+
1√
d
X̃W ∗‖2F

)
. (D.24)

All quantities in the right hand side of the last inequality have bounded scaled norm with high probability,
except the operator norm of the random matrix X̃ which has i.i.d. N (0,1/d) elements. Existing results in
random matrix theory [38] ensure this operator norm is bounded with high as n,d→+∞, which concludes
the proof of this lemma.

The optimisation problem equation (D.12) is convex and feasible. Furthermore, we may reduce the feasibility
sets ofm,m̂ to compact spaces, and the function of U is coercive and thus has bounded lower level sets.
Strong duality then implies we can invert the order of minimisation to obtain the equivalent problem

inf
m
sup
m̂

inf
U
L
(
Y,Sρ−1/2m⊤ +

1√
d
X̃U

)
+ r(W ∗ρ−1m⊤ +U)−Tr

(
m̂⊤U⊤W ∗

)
(D.25)

and study the optimisation problem in U at fixedm,m̂:

inf
U∈Rd×k

L̃( 1√
d
X̃U)+ r̃(U) (D.26)

where we defined the functions

L̃ : Rn×k→ R (D.27)

1√
d
X̃U→L

(
Y,Sρ−1/2m⊤ +

1√
d
X̃U

)
(D.28)

r̃ : Rd×k→ R (D.29)
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U→ r(W ∗ρ−1m⊤ +U)−Tr
(
m̂⊤U⊤W ∗

)
(D.30)

and the random matrix X̃ with i.i.d.N (0,1) elements is independent from all other random quantities in the
problem. The asymptotic properties of the unique solution to this optimisation problem can now be studied
with a non-separable, matrix-valued approximate message passing iteration. The AMP iteration solving
problem equation (D.26) is given in the following lemma

Lemma 2. Consider the following AMP iteration

ut+1 = X̃
⊤
ht(v

t)− et(ut)〈h ′
t 〉⊤ (D.31)

vt = X̃et(u
t)− ht−1(v

t−1)〈e ′t 〉⊤ (D.32)

where for any t ∈ N

ht(v
t) =

(
RL(Y,.),St(Sρ

−1/2m⊤ + vt)−
(
Sρ−1/2m⊤ + vt

))
(St)−1 (D.33)

et(u
t) = Rr(.),Ŝ

t

(
utŜ

t
+W ∗m̂⊤Ŝ

t
+W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤ (D.34)

and St = 〈(et) ′〉⊤, Ŝ
t
=−

(
〈(ht) ′〉⊤

)−1
. (D.35)

Then the fixed point (u∞,v∞) of this iteration verifies

Rr(.),Ŝ
∞

(
u∞Ŝ

∞
+W ∗m̂⊤Ŝ

∞
+W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤ = U ∗ (D.36)

RL(Y,.),S∞(Sρ−1/2m⊤ + v∞)− Sρ−1/2m⊤ = X̃U ∗ (D.37)

where U ∗ is the unique solution to the optimisation problem equation (D.26).

Proof. To find the correct form of the non-linearities in the AMP iteration, wematch the optimality condition
of problem equation (D.26) with the generic form of the fixed point of the AMP iteration equation (D.101).
In the subsequent derivation, we absorb the scaling 1/

√
d in the matrix X̃, such that its elements are i.i.d.

N (0,1/d), and omit time indices for simplicity. Going back to problem equation (D.26), its optimality con-
dition reads :

X̃
⊤
∂L̃(X̃U)+ ∂ r̃(U) = 0. (D.38)

For any pair of k× k symmetric positive definite matrices S, Ŝ, this optimality condition is equivalent to

X̃
⊤(

∂L̃(X̃U)S+ X̃U
)
S−1 +

(
∂ r̃(U)Ŝ+U

)
Ŝ
−1

= X̃
⊤
X̃US−1 +UŜ

−1
(D.39)

where we added the same quantity on both sides of the equality. For the loss function, we can then introduce
the resolvent, formally D-resolvent:

v̂= ∂L̃(X̃U)S+ X̃U ⇐⇒ X̃U= RL̃,S(v̂) (D.40)

such that

RL̃,S(v̂) = (Id+ ∂L̃(•)S)−1(v̂) = argmin
T∈Rn×K

{
L̃(T)+ 1

2
tr
(
(T− v̂)S−1(T− v̂)⊤

)}
. (D.41)

Similarly for the regularisation, introduce
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û≡
(
I+ ∂ r̃(•)Ŝ

)
(U) U= Rr̃,Ŝ(û) (D.42)

where S ∈ Rk×k is a positive definite matrix, and

Rr̃,Ŝ(V̂) =
(
I+ ∂ r̃(•)Ŝ

)−1
(V̂) = argmin

T∈Rd×k

{
r̃(T)+

1

2
tr
(
(T− v̂)Ŝ−1

(T− v̂)⊤
)}

(D.43)

where Ŝ ∈ Rk×k is a positive definite matrix, and V̂ ∈ Rd×k. The optimality condition equation (D.39) may
then be rewritten as:

X̃
⊤(

RL̃,S(V̂)− V̂
)
S−1 = (û−Rr̃,Ŝ(û))Ŝ

−1
(D.44)

X̃Rr̃,Ŝ(û) = RL̃,S(v̂) (D.45)

where both equations should be satisfied. We can now define update functions based on the previously
obtained block decomposition. The fixed point of the matrix-valued AMP equation (D.101), omitting the
time indices for simplicity, reads:

u+ e(u)〈h ′〉⊤ = X̃
⊤
h(v) (D.46)

v+ h(v)〈e ′〉⊤ = X̃e(u). (D.47)

Matching this fixed point with the optimality condition equation (D.44) suggests the following mapping:

h(v) =
(
RL̃,S(v)− v

)
S−1,

e(u) = Rr̃,Ŝ(uŜ),

S= 〈e ′〉⊤,
Ŝ=−(〈h ′〉⊤)−1,

(D.48)

where we redefined û≡ ûŜ in (D.42). We are now left with the task of evaluating the resolvents of L̃, r̃ as
expressions of the original functions L, r. Starting with the loss function, we get

RL̃,S(v) = argmin
x∈Rn×k

{
L
(
ϕout (

√
ρs) ,Sρ−1/2m⊤ + x

)
+

1

2
tr
(
(x− v)S−1(x− v)

)⊤}
(D.49)

letting x̃= Sρ−1/2m⊤ + x,
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RL̃,S(v) = argmin
x̃∈Rn×k

{
L(ϕout (

√
ρs) , x̃)

+
1

2
tr
(
(x̃− (Sρ−1/2m⊤ + v))S−1(x̃− (Sρ−1/2m⊤ + v))⊤

)}
− Sρ−1m⊤ (D.50)

= RL(Y,.),S(Sρ
−1/2m⊤ + v)− Sρ−1m⊤ (D.51)

and the corresponding non-linearity will then be

h(v) =
(
RL(Y,.),S(Sρ

−1/2m⊤ + v)−
(
Sρ−1/2m⊤ + v

))
S−1. (D.52)

Moving to the regularisation, the resolvent reads

Rr̃,Ŝ(u) = argmin
x∈Rd×k

{
r
(
W ∗ρ−1m⊤ + x

)
−Tr

(
m̂⊤x⊤W ∗

)
+

1

2
tr
(
(x− u)Ŝ−1

(x− u)⊤
)}

(D.53)

letting x̃=W ∗ρ−1m⊤ + x, we obtain

Rr̃,Ŝ(u) = argmin
x̃∈Rd×k

{
r(x̃)− m̂⊤x̃⊤W ∗

(D.54)

+
1

2
tr
(
(x̃−

(
u+W ∗ρ−1m⊤))Ŝ−1

(x̃−
(
u+W ∗ρ−1m⊤))⊤)}−W ∗ρ−1m⊤ (D.55)

= argmin
x̃∈Rd×k

{
r(x̃) (D.56)

+
1

2
tr
(
(x̃−

(
u+W∗m̂⊤Ŝ+W ∗ρ−1m⊤

)
)Ŝ

−1
(x̃−

(
u+W ∗m̂⊤Ŝ+W ∗ρ−1m⊤

)
)⊤
)}
(D.57)

−W ∗ρ−1m⊤ (D.58)

Rr(.),Ŝ

(
u+W ∗m̂⊤Ŝ+W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤ (D.59)

which gives the following non-linearity for the AMP iteration

e(u) = Rr(.),Ŝ

(
uŜ+W ∗m̂⊤Ŝ+W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤. (D.60)

The following lemma then gives the exact asymptotics at each time step of the AMP iteration solving
problem equation (D.26): its state evolution equations.

Lemma 3. Consider the AMP iteration equations (D.31)–(D.35). Assume it is initialised with u0 such that
limd→∞

1
d‖e0(u

0)⊤e0(u0)‖F exists, a positive definite matrix Ŝ0, and h−1 ≡ 0. Then for any t ∈ N, and any pair
of sequences of uniformly pseudo-Lipschitz functions ϕ1,n : Rd×k and ϕ2,n : Rn×k, the following holds

ϕ1,n (u
t)

P' E
[
ϕ1,n

(
G(Q̂

t
)1/2
)]

(D.61)

ϕ2,n (v
t)

P' E
[
ϕ2,n

(
H(Qt)1/2

)]
(D.62)

where G ∈ Rd×k and H ∈ Rn×K are independent random matrices with i.i.d. standard normal elements, and

Qt, Q̂
t
,Vt, V̂ t are given by the equations

Qt =
1

d
E
[(

Rr(.),(V̂ t)−1

(
G(Q̂

t
)1/2(V̂ t)−1 +W ∗m̂⊤(V̂ t)−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)⊤
×
(
Rr(.),(V̂ t)−1

(
G(Q̂

t
)1/2(V̂ t)−1 +W ∗m̂⊤(V̂ t)−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)]
(D.63)
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Q̂
t
=

1

d
E
[((

RL(Y,.),Vt−1(.)− Id
)(
Sρ−1/2m⊤ +H(Qt−1)1/2

)
(Vt−1)−1

)⊤
×
((
RL(Y,.),Vt−1(.)− Id

)(
Sρ−1/2m⊤ +H(Qt−1)1/2

)
(Vt−1)−1

)]
(D.64)

Vt =
1

d
E
[
(Q̂t)−1/2G⊤Rr(.),(V̂t)−1

(
G(Q̂t)1/2(V̂t)−1 +W ∗m̂⊤(V̂t)−1 +W ∗ρ−1m⊤

)]
(D.65)

V̂ t =−1

d
E
[
(Qt−1)−1/2H⊤

((
RL(Y,.),Vt−1(.)− Id

)(
Sρ−1/2m⊤ +H(Qt−1)1/2

))
(Vt−1)−1

]
. (D.66)

Proof. Owing to the properties of Bregman proximity operators [39, 40], the update functions in the AMP
iteration equations (D.31)–(D.35) are Lipschitz continuous. Thus under the assumptions made on the initial-
isation, the assumptions of Theorem D.1 are verified, which gives the desired result.

Lemma 4. Consider iteration equations (D.31)–(D.35), where the parameters Q, Q̂,V, V̂ are initialised at any
fixed point of the state evolution equations of Lemma 3. For any sequence initialised with V̂ 0 = V̂ and u0 such
that

lim
d→∞

1

d
e0(u0)

⊤e0(u0) = Q (D.67)

the following holds

lim
t→∞

lim
d→∞

1√
d
‖ut− u⋆‖F = 0 lim

t→∞
lim
d→∞

1√
d
‖vt− v⋆‖F = 0. (D.68)

Proof. The proof of this lemma is identical to that of Lemma 7 from [20].

Combining these results, we obtain the following asymptotic characterisation of U ∗.

Lemma 5. For any fixedm and m̂ in their feasibility sets, let U ∗ be the unique solution to the optimisation
problem equation (D.26). Then, for any sequences (in the problem dimension) of pseudo-Lipschitz functions of
order 2 ϕ1,n : Rn×k→ R and ϕ2,n : Rd×k→ R, the following holds

ϕ1,n (U
∗)

P' E
[
ϕ1,n

(
Rr(.),V̂−1

(
GQ̂1/2V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)]
(D.69)

ϕ2,n

(
1√
d
X̃U ∗

)
P' E
[
ϕ2,n

(
RL(Y,.),V(Sρ

−1/2m⊤ +HQ̂1/2)− Sρ−1m⊤
)]

(D.70)

where G ∈ Rd×k andH ∈ Rn×k are independent random matrices with i.i.d. standard normal elements, and
Q,Q̂,V, V̂ are given by the fixed point of the following set of self consistent equations

Q=
1

d
E
[(

Rr(.),V̂−1

(
GQ̂1/2V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)⊤
×
(
Rr(.),V̂−1

(
GQ̂1/2V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)]
(D.71)

Q̂=
1

d
E
[((

RL(Y,.),V(.)− Id
)(
Sρ−1/2m⊤ +HQ1/2

)
V−1

)⊤
×
((
RL(Y,.),V(.)− Id

)(
Sρ−1/2m⊤ +HQ1/2

)
V−1

)]
(D.72)

V=
1

d
E
[
Q̂−1/2G⊤Rr(.),V̂−1

(
GQ̂1/2V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)]
(D.73)

V̂=−1

d
E
[
Q−1/2H⊤

((
RL(Y,.),V(.)− Id

)(
Sρ−1/2m⊤ +HQ1/2

)
V−1

)]
. (D.74)

Proof. Combining the results of the previous lemmas, this proof is close to that of Theorem 1.5 in [29].
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Returning to the optimisation problem onm,m̂ in equation (D.25), the solution U ∗, at any dimension,
verifies the zero gradient conditions onm,m̂:

∂m̂= 0 ⇐⇒ (U ∗)⊤W ∗ = 0 (D.75)

∂m= 0 ⇐⇒ mρ−1/2S⊤∂L
(
ϕout (

√
ρs) ,Sρ−1/2m⊤ +

1√
d
X̃U

)
+ ρ−1(W ∗)⊤∂r(

(
W ∗ρ−1m⊤ +U

)
) = 0. (D.76)

Using Lemma 5 with the assumption that the gradients of L, r are pseudo-Lipschitz, we obtain form

1

d
E
[(
Rr(.),V̂−1

(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)⊤
W ∗

]
= 0 (D.77)

⇐⇒ m=
1

d
E
[
(W ∗)⊤Rr(.),V̂−1

(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)]
(D.78)

and for m̂

1

d
E
[
mρ−1/2S⊤∂L

(
ϕout (

√
ρs) ,RL(Y,.),V(Sρ

−1/2m⊤ +HQ̂
1/2

)
)

(D.79)

+ ρ−1(W ∗)⊤∂r
((

Rr(.),V̂−1

(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)))]
= 0. (D.80)

Using the definition of D-resolvents, this is equivalent to

1

d
E
[
mρ−1/2S⊤

(
Id−RL(Y,.),V (.)

)(
Sρ−1/2m⊤ +HQ̂

1/2
)
V−1 (D.81)

+ ρ−1(W ∗)⊤
(
Id−Rr(.),V̂−1 (.)

)(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)
V̂

]
= 0 (D.82)

which simplifies to

m̂⊤ =−1

d
E
[
mρ−1/2S⊤

(
Id−RL(Y,.),V (.)

)(
Sρ−1/2m⊤ +HQ̂

1/2
)
V−1

]
(D.83)

which brings us to the following set of six self consistent equations

Q=
1

d
E
[(

Rr(.),V̂−1

(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)⊤
×
(
Rr(.),V̂−1

(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)
−W ∗ρ−1m⊤

)]
(D.84)

Q̂=
1

d
E
[((

RL(Y,.),V(.)− Id
)(

Sρ−1/2m⊤ +HQ1/2
)
V−1

)⊤
×
((
RL(Y,.),V(.)− Id

)(
Sρ−1/2m⊤ +HQ1/2

)
V−1

)]
(D.85)

V=
1

d
E
[
Q̂

−1/2
G⊤Rr(.),V̂−1

(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)]
(D.86)

V̂ =−1

d
E
[
Q−1/2H⊤

((
RL(Y,.),V(.)− Id

)(
Sρ−1/2m⊤ +HQ1/2

)
V−1

)]
(D.87)

m=
1

d
E
[
(W ∗)⊤Rr(.),V̂−1

(
GQ̂

1/2
V̂−1 +W ∗m̂⊤V̂−1 +W ∗ρ−1m⊤

)]
(D.88)

m̂⊤ =−1

d
E
[
mρ−1/2S⊤

(
I−RL(Y,.),V (.)

)(
Sρ−1/2m⊤ +HQ̂

1/2
)
V−1

]
. (D.89)

These equations then characterise the asymptotic properties of the quantities Û and X̃Û/
√
d. The properties

of Ŵ and XŴ/
√
d are then obtained by using the definition of U in terms of orthogonal decompositions.
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Note that To match these equations with the replica ones, we first need to assume the loss and cost functions
are separable. The proximal operators are then separable as well across lines of the input matrices. All
arguments then have i.i.d. lines (Gaussian matrices with k× k covariances, or lines of the teacher matrix,
which are i.i.d. multiplied with k× kmatrices), and the 1/d averages simplify, leaving the aspect ratio in the
quantities defined over arguments in Rn×k. The rest of the matching then boils down to identifying the
proximal operators with the replica notations, done in appendix A, and standard Gaussian integration, as
done for instance in [8], appendix III.3.

D.3. Toolbox
In this section, we reproduce part of the appendix of [20] for completeness, in order to give an overview of
the main concepts and tools on approximate message passing algorithms which will be required for the proof.

D.3.1. Notations
For a given function ϕ : Rd×k→ Rn×k, we write:

ϕ(X) =

ϕ
1(X)
...

ϕd(X)

 ∈ Rd×k (D.90)

where each ϕi : Rd×k→ Rk. We then write the k× k Jacobian

∂ϕi

∂Xj
(X) =


∂ϕi

1(X)
∂Xj1

· · · ∂ϕi
1(X)

∂Xjk

...
. . .

...
∂ϕi

k(X)
∂Xj1

· · · ∂ϕi
k(X)

∂Xjk

 ∈ Rk×k. (D.91)

For a given matrix Q ∈ Rk×k, we write Z ∈ Rn×k ∼N (0,Q⊗ In) to denote that the lines of Z are sampled
i.i.d. fromN (0,Q). Note that this is equivalent to saying that Z= Z̃Q1/2 where Z̃ ∈ Rn×k is an i.i.d. standard

normal random matrix. The notation
P' denotes convergence in probability. We start with some definitions

that commonly appear in the approximate message-passing literature, see e.g. [30, 41]. The main regularity
class of functions we will use is that of pseudo-Lipschitz functions, which roughly amounts to functions with
polynomially bounded first derivatives. We include the required scaling w.r.t. the dimensions in the
definition for convenience.

Definition 1 (Pseudo-Lipschitz function). For K,k ∈ N ∗ and any n,d ∈ N ∗, a function ϕ : Rd×k→ Rn×k is
called a pseudo-Lipschitz of order K if there exists a constant L(K,k) such that for any X,Y ∈ Rd×k,

‖ϕ(X)−ϕ(Y)‖F√
n

⩽ L

(
1+

(
‖X‖F√

d

)K−1

+

(
‖Y‖F√

d

)K−1
)
‖X−Y‖F√

d
(D.92)

where ‖ • ‖F denotes the Frobenius norm. Since kwill be kept finite, it can be absorbed in any of the constants.

For example, the function f : Rd×k→ R,X 7→ ‖X‖2F/d is pseudo-Lipshitz of order 2.

D.3.2. Moreau envelopes and Bregman proximal operators
In our proof, we will also frequently use the notions of Moreau envelopes and proximal operators, see e.g.
[42, 43]. These elements of convex analysis are often encountered in recent works on high-dimensional
asymptotics of convex problems, and more detailed analysis of their properties can be found for example in
[20, 21]. For the sake of brevity, we will only sketch the main properties of such mathematical objects,
referring to the cited literature for further details. In this proof, we will mainly use proximal operators acting
on sets of real matrices endowed with their canonical scalar product. Furthermore, proximals will be defined
with matrix valued parameters in the following way: for a given convex function f : Rd×k→ R, a given matrix
X ∈ Rd×k and a given symmetric positive definite matrix V ∈ Rk×k with bounded spectral norm, we will
consider operators of the type

argmin
T∈Rd×k

{
f(T)+

1

2
tr
(
(T−X)V−1(T−X)⊤

)}
. (D.93)

This operator can either be written as a standard proximal operator by factoring the matrix V−1 in the
arguments of the trace:

Proxf(•V1/2)(XV
−1/2)V1/2 ∈ Rd×k (D.94)
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or as a Bregman proximal operator [39] defined with the Bregman distance induced by the strictly convex,
coercive function (for positive definite V)

X 7→ 1

2
tr(XV−1X⊤) (D.95)

which justifies the use of the Bregman resolvent

argmin
T∈Rd×k

{
f(T)+

1

2
tr
(
(T−X)V−1(T−X)⊤

)}
= (I+ ∂f(•)V)−1

(X). (D.96)

Many of the usual or similar properties to that of standard proximal operators (i.e. firm non-expansiveness,
link with Moreau/Bregman envelopes,… ) hold for Bregman proximal operators defined with the
function (D.95), see e.g. [39, 40]. In particular, we will be using the equivalent notion to firmly nonexpansive
operators for Bregman proximity operators, called D− firm operators. Consider the Bregman proximal
defined with a differentiable, strictly convex, coercive function g : X → R, where X is a given input Hilbert
space. Let T be the associated Bregman proximal of a given convex function f : X → R, i.e. for any x ∈ X

T(x) = argmin
y∈X

{
f(x)+Dg(x,y)

}
. (D.97)

Then T is D-firm, meaning it verifies

〈Tx−Ty,∇g(Tx)−∇g(Ty)〉⩽ 〈Tx−Ty,∇g(x)−∇g(y)〉 (D.98)

for any x,y in X .

D.3.3. Approximate message-passing
Approximate message-passing algorithms are a statistical physics inspired family of iterations which can be
used to solve high dimensional inference problems [44]. One of the central objects in such algorithms are the
so called state evolution equations, a low-dimensional recursion equations which allow to exactly compute the
high dimensional distribution of the iterates of the sequence. In this proof we will use a specific form of
matrix-valued approximate message-passing iteration with non-separable non-linearities. In its full
generality, the validity of the state evolution equations in this case is an extension of the works of [30]
included in [31]. Consider a sequence Gaussian matrices A(n) ∈ Rn×d with i.i.d. Gaussian entries,
Aij(n)∼N (0,1/d). For each n,d ∈ N, consider two sequences of pseudo-Lipschitz functions

{ht : Rn×k→ Rn×k}t∈N {et : Rd×k→ Rd×k}t∈N (D.99)

initialised on u0 ∈ Rd×k in such a way that the limit

lim
d→∞

1

d
‖e0(u0)⊤e0(u0)‖F (D.100)

exists, and recursively define:

ut+1 = A⊤ht(v
t)− et(ut)〈h ′

t 〉⊤ (D.101)

vt = Aet(u
t)− ht−1(v

t−1)〈e ′t 〉⊤ (D.102)

where the dimension of the iterates are ut ∈ Rd×k and vt ∈ Rn×k. The terms in brackets are defined as:

〈h ′
t 〉=

1

d

n∑
i=1

∂hit
∂vi

(vt) ∈ Rk×k 〈e ′t 〉=
1

d

d∑
i=1

∂eit
∂ui

(ut) ∈ Rk×k. (D.103)

We define now the state evolution recursion on two sequences of matrices {Qr,s}s,r⩾0 and {Q̂r,s}s,r⩾1

initialised with Q0,0 = limd→∞
1
de0(u

0)⊤e0(u0):

Qt+1,s = Qs,t+1 = lim
d→∞

1

d
E
[
es(Ẑ

s
)⊤et+1(Ẑ

t+1
)
]
∈ Rk×k (D.104)

Q̂t+1,s+1 = Q̂s+1,t+1 = lim
d→∞

1

d
E
[
hs(Z

s)⊤ht(Z
t)
]
∈ Rk×k (D.105)

where (Z0, . . . ,Zt−1)∼N (0,{Qr,s}0⩽r,s⩽t−1⊗ In),(Ẑ
1
, . . . , Ẑ

t
)∼N (0,{Q̂r,s}1⩽r,s⩽t⊗ Id). Then the

following holds
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Algorithm 1. Approximate message passing.

Input: data matrix X ∈ Rn×d and label matrix Y ∈ Rn×k

Initialise ŵ0
j ∈ Rk and Ĉ

0
j , f

0
out,ν ∈ Rk×k

for j= 1, . . . ,d and ν = 1, . . . ,n at t= 0
repeat

Channel updates

Mean ων ∈ Rk and variance Vν ∈ Rk×k

V t
ν = 1

d

∑d
j=1 x

2
jν Ĉ

t
j

ωt
ν = 1√

d

∑d
l=1 ŵ

t
j − (V t

ν)
⊤f t−1

out,ν

Denoisers fout,ν ∈ Rk and ∂ωfout,ν ∈ Rk×k

f tout,ν ← fout
(
yν ,ω

t
ν ,V

t
ν

)
∂ωf

t
out,ν ← ∂ωfout

(
yν ,ω

t
ν ,V

t
ν

)
Prior updates

Mean γ j ∈ Rk and varianceΛj ∈ Rk×k

Λt
j =− 1

d

∑n
ν=1 x

2
jν∂ωf

t
out,ν

γ t
j =

1√
d

∑n
ν=1 xjν f

t
out,ν +Λt

jŵ
t
j

Posterior estimators ŵj ∈ Rk and Ĉj ∈ Rk×k

ŵt
j = fw

(
γ t
j ,Λ

t
j

)
Ĉ
t
j = ∂γ fw

(
γ t
j ,Λ

t
j

)
t← t+ 1

until Convergence on ŵj and Ĉj

Output:{ŵj}dj=1 and {Ĉj}dj=1.

TheoremD.1. In the setting of the previous paragraph, for any sequence of pseudo-Lipschitz functions
ϕn : (Rn×K×Rd×k)t→ R, for n,d→+∞:

ϕn(u
0,v0,u1,v1, . . . ,vt−1,ut)

P' E
[
ϕn

(
u0,Z0, Ẑ

1
,Z1, . . . ,Zt−1, Ẑ

t
)]

(D.106)

where (Z0, . . . ,Zt−1)∼N (0,{Qr,s}0⩽r,s⩽t−1⊗ In),(Ẑ
1
, . . . , Ẑ

t
)∼N (0,{Q̂r,s}1⩽r,s⩽t⊗ In).

Appendix E. Approximate massage-passing algorithm: pseudo-code

In this appendix we present in Algorithm 1 a pseudo-code for the Approximate message Passing (AMP)
algorithm used in this work.

The update functions fw(γ,Λ) and fout(y,ω,V) are defined in appendix C.1. For a general and detailed
derivation of the algorithm see [37, 44].

Appendix F. AMP implementation: channel and prior updates for k= 3

In this appendix we present the expression of the integrals numerically computed for the implementation of
Algorithm 1 in the present case.

Apart from the update functions fw(γ,Λ) and fout(y,ω,V) in appendix C.1, the approximate message
passing algorithm also requires the variance updates. Using the mapping from appendix A, the updates are
computed though (k− 1)× (k− 1)matrices constructed from the derivatives of the denoising functions:

∂γ fw(γ,Λ) = EQ0 [ww
⊤]− fw(γ,Λ)f⊤w (γ,Λ) , (F.1a)

∂ωfout(y,ω,V) = V−1EQout

[
(z−ω)(z−ω)⊤

]
−V−1− fout(γ,Λ)f⊤out(γ,Λ). (F.1b)

F.1. Channel updates
Under the mapping from appendix A, for k= 3 we have two sets of integrals related to the channel: one when
y= [0,0]⊤ and other when y= [1,0]⊤ or y= [0,1]⊤. A simple flip on the variables distinguishes these two
latter cases.
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We introduce the notation,

V−1 ≡
[
V11 V12
V21 V22

]
, (F.2a)

as well as the quantities

V̄ ≡ V12 +V21
2

, (F.2b)

ν ≡ V11V22
V̄2

. (F.2c)

Additionally, the standard Gaussian measure is denoted as

Dz≡ dz√
2π

e−
1
2 z

2

, (F.3)

and the cumulative distribution function of the standard Gaussian distribution as

Φ(x)≡
ˆ x

−∞
Dz. (F.4)

F.1.1. Case y= [0,0]⊤

The channel function fout(y,ω,V) is obtained through the numerical computation of the following
quantities:

Z(00)
out =

√
π2

V22
ω1

α12
J (00)
0 , (F.5a)

∂

∂ω1
Z(00)

out =−
√
2π

V̄√
V11V222

e−
1
2α

2
21Φ(−γ12)+

√
π2

V22
J (00)
1 , (F.5b)

∂

∂ω2
Z(00)

out =−
√

2π

V11
e−

1
2α

2
21Φ(−γ12) , (F.5c)

and its derivative ∂ωfout(y,ω,V) by computing

∂2

∂ω2
1

Z(00)
out =

√
2π

V̄3

V11V222
e−

1
2α

2
21

[
e−

1
2γ

2
12

√
2π

(2ν− 1)− V̄ω2√
V11

(ν− 1)Φ(−γ12)

]

− α2
12

ω2
1

Z(00)
out +

√
π2

V22
α12

ω1
J (00)
2 ,

(F.5d)

∂2

∂ω2
2

Z(00)
out =

√
2π
V̄
V11

e−
1
2α

2
21

[
e−

1
2γ

2
12

√
2π

+

√
V11
ω2V̄

α2
21Φ(−γ12)

]
, (F.5e)

∂2

∂ω1ω2
Z(00)

out = e−
1
2 (α

2
21+γ2

12) , (F.5f )

with

J (00)
l ≡

ˆ −α12

−∞
Dz zlerfc

(
− zV̄ω1

α12
+V22ω2√
2V22

)
, (F.6)

for l= 0,1,2 and

α12 ≡ ω1

√
V11−

V̄2
V22

. (F.7a)

γ12 ≡
V11ω1 + V̄ω2√

V11
. (F.7b)
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F.1.2. Case y= [1,0]⊤

The channel function fout(y,ω,V) is obtained through the numerical computation of the following
quantities:

Z(10)
out =

√
π2

V22
ω1

α12
J (10)
0 , (F.8a)

∂

∂ω1
Z(10)

out =−
√
2π

V̄√
SVV222

e−
1
2 (Ω

2−β2)Φ̃(−β)+

√
π2

V22
J (10)
1 , (F.8b)

∂

∂ω2
Z(10)

out =−
√

2π

SV
e−

1
2 (Ω

2−β2)Φ̃(−β) , (F.8c)

and its derivative ∂ωfout(y,ω,V) by computing

∂2

∂ω2
1

Z(10)
out =−

(
α12

ω1

)2

Z(10)
out +

√
π2

V22
J (10)
2 +

√
2π
V̄3

SVV222
σ12e

− 1
2 (Ω

2−β2)

×

[
e−

1
2β

2

√
2π

+

(
β−

√
SV
((

1+
V22
V̄σ12

)
ω1−

V22
V̄σ12

ω2

))
Φ̃(−β)

]
,

(F.8d)

∂2

∂ω2
2

Z(10)
out =−

√
2π
V̄ +V22
SV

e−
1
2 (Ω

2−β2)

[
e−

1
2β

2

√
2π

+

(
β−

√
SV
(
V̄ω1 +V22ω2

V̄ +V22

))
Φ̃(−β)

]
, (F.8e)

∂2

∂ω1ω2
Z(10)

out =−
√
2π
V̄ +V11
SV

e−
1
2 (Ω

2−β2)

[
e−

1
2β

2

√
2π
− V11V22− V̄

2

SV(V̄ +V11)
√
SV(ω1−ω2)Φ̃(−β)

]
, (F.8f )

where

J (10)
l ≡

ˆ ∞

−α12

Dz zlerfc

(
− zω1(V̄+V22)

α12
+V22(ω2−ω1)√
2V22

)
, (F.9)

for l= 0,1,2 with α12 given by equation (F.7a) and

Φ̃(x)≡ 1−Φ(x) , (F.10a)

β ≡ ω1(V11 + V̄)+ω2(V22 + V̄)√
V11 +V22 + 2V̄

, (F.10b)

Ω2 ≡ V11ω1 +V22ω2 + 2V̄ω1ω2 , (F.10c)

SV ≡ V11 +V22 + 2V̄ , (F.10d)

σ12 ≡
V̄2− 2V̄11V̄22− V̄22V̄

V̄2
. (F.10e)

If the label vector is y= [0,1]⊤, one just needs to perform the following trivial changes in the equations
above for y= [1,0]⊤:

V11→V22 , (F.11a)

V22→V11 , (F.11b)

ω1→ ω2 , (F.11c)

ω2→ ω1 , (F.11d)

Observe that the mapping from appendix A has allowed us to reduce the number of integrals to be
numerically computed at each AMP iteration to three, given by equation (F.6) or equation (F.9), depending
on the one-hot output representation y. These integrals were solved through the integrate.quad module
from SciPy [45]. To speed up the integration, we have also used Numba [46] decorators.
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F.2. Prior updates
F.2.1. Gaussian prior
Under the mapping of appendix A, the prior partition function is written as

Zw(γ,Λ) =

ˆ
Rk−1

dw√
(2π)k−1 det(Σ̃)

exp

[
−1

2
w⊤
(
Σ̃−1 +Λ

)
w+γ⊤w

]
, (F.12)

and can be analytically computed,

Zw(γ,Λ) =
1√

det(Σ̃)det(Σ̃−1 +Λ)
exp

[
1

2
γ⊤
(
Σ̃−1 +Λ

)−1
γ

]
, (F.13a)

as well as the denoising functions:

fw(γ,Λ) = ∂γ logZw(γ,Λ) =
(
Σ̃−1 +Λ

)−1
γ , (F.13b)

∂γ fw(γ,Λ) =
(
Σ̃−1 +Λ

)−1
. (F.13c)

For k= 3, the reduced covariance matrix is given by

Σ̃=

[
2 1
1 2

]
. (F.14)

F.2.2. Rademacher prior
Considering k= 3, the reduced prior given by equation (A.11) becomes

Pw̃(w̃1, w̃2) =
1

23
[2δ(w̃1)δ(w̃2)+ δ(w̃1)δ(w̃2 + 2)+ δ(w̃1 + 2)δ(w̃2)+ δ(w̃1)δ(w̃2− 2)

+δ(w̃1− 2)δ(w̃2)+ δ(w̃1 + 2)δ(w̃2 + 2)+ δ(w̃1− 2)δ(w̃2− 2)] .
(F.15)

The denoising functions for this case are computed numerically, via Monte Carlo sampling of the
distribution given equation (F.15).

For more details, see the amp folder on Github12.

Appendix G. Details on the numerical simulations

In this section we provide some more details on the numerical simulations implemented to test our theory
for the learning curves of ERM (figures 3 and 4). The solution of the convex optimisation problem defined in
equation (2) can be computed by a standard gradient descent algorithm. We ran simulations using the
squared loss and the cross-entropy loss. The simulations for the cross-entropy loss have been implemented
using the LogisticRegression module of the scikit-learn package [33]. The solution for the square
loss is analytical. The results from numerical simulations that we show in the figures of the main text are
averaged over 250 instances of the problem at dimension d= 1000.

In figure 7, we show the comparison between the generalisation error curves derived by our theory and
experiments at various system sizes (d= 100,200,400) for both the cross-entropy and the square loss at fixed
regularisation λ= 1. We find that our theoretical predictions—derived in the infinite-dimensional limit—are
still valid at moderately large system sizes. We notice that in our experiments we fix the dimension d and vary
n= αd accordingly. This choice is arbitrary and the opposite procedure would have led to similar results.

In figure 8, we explore the role of regularisation for ERM on labels generated by a Rademacher teacher
prior. Notice that we do not enforce any constraints on the weights other than ridge regularisation during the
optimisation. We notice a qualitatively similar behaviour with respect as for the Gaussian teacher prior,
reproduced in figure 4 of the main text. Also in this case, we observe a very mild dependence of the optimal
regularisation on the sample complexity α. However, at variance with the Gaussian case, here we observe a
clear sub-optimality with respect to the Bayes-error. Indeed, the ERM error is bounded away from zero even
at large values of the sample complexity, where the Bayes-optimal AMP algorithm is able to achieve perfect
classification.

12 Code repository: https://github.com/rodsveiga/mc_perceptron.
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Figure 7. Gaussian teacher prior: theory VS experiments at different sizes. Generalisation error εgen as a function of the sample
complexity α, at fixed regularisation λ= 1, for the cross-entropy loss (left panel) and the square loss (right panel). The symbols
mark the results of numerical simulations performed at different dimensions d= 100,200,400, averaged over 250 instances. The
dashed black line marks our theoretical prediction in the infinite-dimensional limit.

Figure 8. Rademacher teacher prior: the role of regularisation in ERM. Left: Cross-entropy loss: Generalisation error εgen as a
function of the regularisation strength λ, at fixed sample complexity α. Different values of α are depicted with different colours.
The full lines are the result of numerical simulations performed at dimension d= 1000, averaged over 250 instances. The crosses
mark the theoretical predictions. Right: Square loss: Generalisation error εgen as a function of the regularisation strength λ, at
fixed α. Different values of α are depicted with different colours. The full lines are the result of numerical simulations performed
at dimension d= 1000, averaged over 250 seeds. The crosses mark the theoretical predictions.
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