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Abstract: The functionalized graphene oxide (GO)-based composites as fillers added into organic
coatings are desired for realizing the longstanding corrosion protection of carbon steel. Here, the pH-
responsive two-dimensional/three-dimensional (2D/3D) GO-based composite (ZIF–90–AAP/GO)
was developed by environmentally friendly corrosion inhibitor 4-aminoantipyrine (AAP) anchored
on the in situ growth of zeolite imidazolate framework–90 (ZIF–90) on the GO surface (ZIF–90/GO)
through the Schiff base reaction. The active filler (ZIF–90–AAP/GO) was incorporated into an
epoxy coating (EP) to obtain a high-performance self-healing coating on the surface of carbon steel.
ZIF–90–AAP can greatly improve dispersion and compatibility of GO in EP. The low-frequency
impedance modulus of ZIF–90–AAP/GO–EP can still reach up to 1.35 × 1010 Ω·cm2 after 40 days,
which is about three orders of magnitude higher than that of the EP containing GO (GO–EP) relying
on its passive and active corrosion protection. Meanwhile, ZIF–90–AAP/GO–EP exhibits excellent
self-healing performance. The self-healing rate of ZIF–90–AAP/GO changes from negative to positive
after 24 h, which results from the effective corrosion inhibition activity of ZIF–90–AAP for carbon
steel based on the pH-triggered controlled release of AAP. The developed pH-responsive 2D/3D
GO-based composite coating is very attractive for the corrosion protection of carbon steel.

Keywords: ZIF–90; graphene oxide; self-healing; coating; corrosion protection

1. Introduction

Carbon steel has extensive applications in the transportation and construction indus-
tries and marine fields because of its high thermal stability and mechanical properties as
well as affordable cost [1–7]. Nevertheless, carbon steel is susceptible to corrosion especially
in marine environments. Therefore, various methods have been taken to safeguard steel
against corrosion, including electroplating, micro-arc oxidation, thermal spraying and
the use of organic coatings [8–11]. Among them, organic coatings are the most common
anti-corrosion strategy. Organic coatings can effectively provide long-lasting protection
for carbon steel by isolating the steel substrate from corrosive media [12]. Nevertheless,
the micropores can arise from the solvent evaporation of pure organic coatings during the
curing process, which unavoidably influence the barrier properties of the coatings [13].

One effective method that has been undertaken to improve the shielding performance
of organic coatings is the incorporation of two-dimensional (2D) fillers such as graphene
oxide (GO), basalt, molybdenum disulfide and boron nitride [14–17]. GO as a prevailing 2D
material is widely used in materials science, biomedicine, environmental protection, energy
sensor and so on, originating from its unique chemical and physical properties [18–21]. GO
also has attracted considerable attention in the field of corrosion protection of metal as a
consequence of its high aspect ratio and mechanical stability, good electrical insulation and
excellent impermeable properties [22,23]. Feng et al. prepared graphene oxide flakes using
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the chemical exfoliation method and incorporated them into epoxy resin to synthetize
the GO/EP coating. The GO flakes extended the penetration path of corrosive media to
the substrate, thereby reinforcing the physical barrier properties of EP [14]. However, the
corrosion protection capabilities of organic coatings only containing GO are still restricted
for two reasons. Firstly, GO has weak dispersion in organic coatings due to its van der Waals
force and π–π interactions [24]. Secondly, it lacks active corrosion protection, which leads
to the reduction in the protection effect of coatings once the micro-defect appears [25–27].

The approach taken to overcome these problems is through introducing three-dimens-
ional (3D) fillers loaded with corrosion inhibitors on the GO surface to achieve good
dispersion and compatibility in the coating and enhance active anti-corrosion proper-
ties. The polymerized polydopamine nanospheres loaded with the corrosion inhibitor
zinc ions onto the GO surface were prepared using a method inspired by mussels [28].
The benzotriazole-loaded halloysite nanotubes (HNTs) coated by polydopamine (PDA)
were self-assembled on the GO surface [29]. Graphene oxide sheets were modified using
benzotriazole-loaded titanium dioxide nanocapsules [30]. Furthermore, zeolite imidazolate
frameworks (ZIFs), as a class of metal-organic frameworks, mainly consist of metal ions
and organic ligands. ZIFs possess tunable chemical properties and highly ordered pore
structures. ZIFs can be used as not only nanocontainers but also corrosion inhibitors. It is
found that ZIF–67 could offer epoxy coating excellent active corrosion inhibition abilities
based on its pH-responsive properties [31]. Moreover, ZIFs can significantly improve the
compatibility of GO in organic coatings. Simultaneously, ZIFs can also endow the GO-based
coating with good self-healing capabilities. For example, the pH-responsive epoxy-based
anti-corrosion coating was prepared by a polyaniline-grafted GO nano-platform deco-
rated by ZIF–9 [32]. The epoxy coating embedded with 2-mercaptobenzimidazole-inbuilt
ZIF–8 modified GO nanosheets exhibited remarkable self-healing performance through
pH-stimuli triggers [25]. Hence, organic coatings containing the ZIFs/GO composite loaded
with corrosion inhibitors will have great potential application in the realm of the corrosion
protection of metal.

Herein, we developed the pH-responsive 2D/3D composite (ZIF–90–AAP/GO) based
on eco-friendly corrosion inhibitor 4-aminoantipyrine (AAP) anchored on ZIF–90 grown
in situ on GO (ZIF–90/GO) via the Schiff base reaction. ZIF–90–AAP/GO was embedded
into the epoxy coating to construct the ZIF–90–AAP/GO composite coating (ZIF–90–AAP/
GO–EP) in order to strengthen the passive and active corrosion protection. The morphology
and structure of ZIF–90–AAP/GO were characterized by transmission electron microscopy
(TEM) and scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform
infrared (FT-IR) and Nuclear Magnetic Resonance (NMR), respectively. Additionally, elec-
trochemical impedance spectroscopy (EIS) and SEM-energy dispersive X-ray spectrometry
(EDS) were utilized to evaluate the corrosion resistance and self-healing properties of
ZIF–90–AAP/GO–EP. Finally, the anti-corrosion mechanism of ZIF–90–AAP/GO–EP for
carbon steel was proposed.

2. Experimental Methods
2.1. Materials

2-Imidazolecarboxaldehyde (IC) was purchased from Shanghai Shaoyuan Chemical
Technology Co., Ltd. (Shanghai, China). Zinc nitrate hexahydrate (Zn (NO3)2·6H2O) was
bought from China National Pharmaceutical Holdings Chemical Reagent Co., Ltd. (Shang-
hai, China). 4-Aminoantipyrine (AAP) was purchased from Shanghai Yuanye Biotechnol-
ogy Co., Ltd. (Shanghai, China). Q235 steel plate with the size of 60 × 35 × 3 mm was
bought from Guangdong Jilong Metal Materials Co., Ltd. (Foshan, China). N-N dimethyl-
formamide (DMF), methanol (MeOH), ethanol (EtOH), n-butanol (n-BuOH), triethylamine
(TEA), potassium permanganate (KMnO4) and hydrogen peroxide (H2O2) were purchased
from Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). Natural graphite was bought
from Nanjing Pioneer Nanomaterials Technology Co., Ltd. (Nanjing, China). Sulfuric
acid and hydrochloric acid (HCl) were purchased from Harbin Reagent Chemical Factory
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(Harbin, China). Sodium nitrate (NaNO3) was bought from Shanghai Aladdin Co., Ltd.
(Shanghai, China). Polyurethane-modified epoxy resin (EP) was purchased from China
Qingdao Ocean New Material Technology Co., Ltd. (Qingdao, China).

2.2. Synthesis of ZIF–90

Typically, 4.8 mmol of IC was dissolved in 10 mL of n-BuOH and heated to 60 ◦C until
it was fully dissolved. TEA (670 µL) was added to the above solution, cooled again to room
temperature, and stirred for 5 min to get solution A. Then, Zn (NO3)2·6H2O (1.2 mmol)
dissolved in 10 mL of n-BuOH was added to solution A. The resulting mixture was stirred
under reflux at 75 ◦C for 10 min, centrifuged (10,000 rpm), rinsed with MeOH solution and
dried overnight at 80 ◦C. Finally, ZIF–90 was obtained.

2.3. Synthesis of GO

GO was prepared using a modified Hummers process. First, NaNO3 was added to
70 mL of sulfuric acid under high-speed stirring in an ice-water bath. Then, 1 g of natural
graphite and 3 g of KMnO4 were slowly added in turn under vigorous stirring and stirred
for 1 h. Then, they were again stirred for 3 h at 35 ◦C and diluted to 500 mL by water.
Finally, H2O2 was added. The mixture was centrifugated, washed with HCl solution and
deionized water, and dried at −80 ◦C to ultimately obtain GO.

2.4. Synthesis of ZIF–90/GO

Typically, 0.1 g of GO was introduced into 10 mL of n-BuOH and ultrasonicated for 2 h.
Next, 1.2 mmol of Zn (NO3)2·6H2O was added and dynamically agitated for 1 h to ensure
that the zinc ions could anchor on the oxygen functional groups of GO. The anchored zinc
ions furnished uniform nucleation sites for the growth of ZIF–90. Following this, 670 µL of
TEA and 4.8 mmol of IC fully dissolved in 10 mL of n-butanol were added to the above
solution to realize ZIF–90 in situ grown on the GO surface. The mixture was refluxed and
stirred at 75 ◦C for 10 min. Finally, it was centrifugated, washed with MeOH and dried at
80 ◦C for 12 h to acquire ZIF–90/GO.

2.5. Preparation of ZIF–90–AAP/GO

The preparation of ZIF–90–AAP/GO is shown in Figure 1. ZIF–90/GO was incorpo-
rated into 25 mL of EtOH and sonicated to obtain solution A. Solution B was prepared
by adding AAP to 25 mL of EtOH. Solution B was slowly dripped into solution A under
stirring and refluxed for 6 h. The mixed solution was filtered, washed with MeOH and
dried under vacuum overnight. Finally, the collected precipitate was ZIF–90–AAP/GO.
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2.6. Preparation of ZIF–90–AAP/GO–EP

Firstly, Q235 carbon steel was polished by 400, 800, 1200 and 2000 mesh abrasive paper,
then degreased with EtOH. Next, DMF solution of ZIF–90–AAP/GO was added to EP,
which was coated to the pre-treated steel by the coating method to synthesize ZIF–90–AAP/
GO–EP. The thickness of the prepared coatings was 40 ± 5 µm. Similarly, pure EP, EP
containing GO coating (GO–EP), EP containing ZIF–90 (ZIF–90–EP) and EP containing
ZIF–90/GO (ZIF–90/GO–EP) were also prepared using the above method, respectively.

2.7. Material Characterizations

The ZIF–90–AAP/GO morphology and structure were observed by SEM (TESCAN
AMBER, Brno, South Moravia, Costa Rica) and TEM (Tecnai G2 S-Twin, Hillsboro, OR,
USA). FT-IR was obtained by ATR-FT-IR (Nicolet iS20, Waltham, MA, USA). XRD was mea-
sured by Rigaku D/max-TTR-III (Tokyo, Honshu, Japan). NMR of ZIF–90–AAP/GO was
analyzed using a fully automated NMR spectrometer (AVANQIII, Saarbrucken, Saarland,
Germany). Raman spectra (Raman) were characterized by a confocal Raman microscope
(WITec alpha300R, Ulm, Baden-Wuerttemberg, Germany). The release behaviors of AAP
from ZIF–90–AAP/GO were examined by UV-visible spectroscopy (UV-vis, TU-1901, Bei-
jing, China) spectrophotometer. EIS was performed using an electrochemical workstation
(Autolab PGSTAT302 N, Utrecht, The Netherlands), which is a three-electrode system
consisting of a working electrode (carbon steel with a test area of 3.14 cm2), a reference
electrode (saturated calomel electrode) and a counter electrode (platinum sheet) with the
amplitude sinusoidal voltage of 20 mV in the frequency range of 10−2–105 Hz.

3. Results and Discussion
3.1. Characterization of ZIF–90–AAP/GO

TEM and SEM images of ZIF–90–AAP/GO are shown in Figure 2. GO exhibits silk-
like texture with a few wrinkles and high transparency. ZIF–90 has a typical rhombic
crystal structure with an average particle size of 400–500 nm. For ZIF–90/GO, ZIF–90 is
densely distributed on the ZIF–90/GO surface, demonstrating that GO has no effect on the
nucleation and growth of ZIF–90. For ZIF–90–AAP/GO, ZIF–90 retains its original crystal
structure even after AAP is introduced. Meanwhile, for the particle size, ZIF–90–AAP is
slightly larger than ZIF–90. Additionally, as shown in Figure 3, the average elemental N
content of the ZIF–90/GO is 15.94%, whereas ZIF–90–AAP/GO is 22.89%, which correlates
with AAP with nitrogen heterocycles anchored onto ZIF–90/GO.
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The XRD patterns of various samples are shown in Figure 4a. For GO, the sharp peak
at 9.7◦ is attributed to the characteristic diffraction peak of the GO (001) crystal plane [33].
The characteristic diffraction peaks of ZIF–90 can be observed at 7.3◦, 14.5◦ and 17.9◦,
which are consistent with those of ZIF–90 reported in the literature [34]. For ZIF–90/GO,
the diffraction peaks of ZIF–90 and GO can be detected. Meanwhile, the characteristic
diffraction peak of GO becomes clearly weaker. These results show that ZIF–90 can grow
in situ on the GO surface. For ZIF–90–AAP/GO, it shows the same diffraction peaks as
ZIF–90/GO, suggesting that the added AAP hardly impacts on the crystal structure of
ZIF–90. Nevertheless, the corresponding reduction in the peak intensity of ZIF–90 and GO
can be obviously observed compared with ZIF–90/GO, which is related to the loading of
AAP in ZIF–90–AAP.

Figure 4b shows the FT–IR spectra of different samples. For GO, the peak at 1052 cm−1

is assigned to the stretching vibration of C–O–C in the epoxy group on GO. The peaks
at 1715 cm−1 and 3430 cm−1 correspond to the stretching of C=O in the carboxyl group
and the hydroxyl group with O–H stretching vibrations, respectively [35]. For ZIF–90/GO,
another peak at 1675 cm−1 corresponds to the stretching vibration of C=O of the IC ligand
of ZIF–90 [36]. The absorption peaks at 1200–1500 cm−1 are ascribed to the stretching
vibrational bands of the IC ligand on ZIF–90. The peak at 540 cm−1 is the Zn–N stretching
vibration, implying the coordination of zinc ions with imidazole of IC [37–39]. All results
obviously indicate that ZIF–90 is grown in situ on GO. In contrast, ZIF–90–AAP/GO shows
a C=N stretching vibrational peak at 1630 cm−1, demonstrating that the aldehyde group on
ZIF–90 can form Schiff base bonds with the amino group of AAP [40]. Furthermore, the
two extra peaks at 1035 cm−1 and 875 cm−1 correspond to the in-plane bending vibration
and out-of-plane bending vibration of the benzene ring on the loaded AAP [41]. The above
results show that AAP can be anchored on ZIF–90/GO by the Schiff base reaction.
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Figure 5a shows the 1H NMR spectrum of ZIF–90–AAP/GO. The signals that appear
at 7–8 ppm belong to the protons of the aromatic ring [42]. Among them, the signal at
7.1 ppm is attributed to the imidazole ring of ZIF–90 [43]. Interestingly, there is a peak at
9.7 ppm, confirming the presence of the imine proton. This implies the formation of the
Schiff base between the amino group in AAP and the aldehyde group in the IC ligand of
ZIF–90 [42,44].

Nanomaterials 2024, 14, x FOR PEER REVIEW 7 of 21 
 

 

Figure 5c illustrates the release behaviors of AAP in ZIF−90−AAP/GO at various pH 
conditions. The release of AAP from ZIF−90−AAP/GO is inhibited to a great degree un-
der neutral (pH 7) and basic (pH 11) conditions. After 240 min, the total amount of re-
leased AAP is only 2.38 mg/L at pH 7 and 4.59 mg/L at pH 11. Unlike neutral and basic 
conditions, AAP can be quickly released in 15 min and reach the maximum amount 
(11.59 mg/L) in acidic conditions (pH 3), suggesting ZIF−90−AAP/GO possesses 
pH−responsive characteristics. In acidic conditions, disintegration of ZIF−90 is readily 
induced, and the Schiff base between AAP and ZIF−90/GO is also unstable [48]. These 
can cause the rapid release of AAP from ZIF−90−AAP/GO. 

 
Figure 5. (a) The 1H NMR spectrum of ZIF−90−AAP/GO; (b) Raman spectra of different samples; 
(c) the release behaviors of AAP in ZIF−90−AAP/GO at different pH values. 

3.2. Dispersion and Compatibility of ZIF−90−AAP/GO in Epoxy Resin 
The cross-sectional SEM images of various coatings are shown in Figure 6. EP pre-

sents a relatively smooth cross section without any fillers (Figure 6a). For GO−EP, its 
cross section becomes rough and exhibits an uneven distribution. These can be attribut-
ed to the fact that GO has poor dispersion in epoxy (Figure 6b, inset) resulting from the 
van der Waals force and π−π interactions of GO [24]. For ZIF−90−EP, it displays a rela-
tively flat fracture cross section due to its homogeneous dispersion in epoxy (Figure 6c, 
inset). For ZIF−90/GO−EP, it shows a uniform scale−like cross section (Figure 6d), indi-
cating that ZIF−90, as an active 3D MOF material, makes dispersion of GO good in the 
epoxy coating. Furthermore, for ZIF−90−AAP/GO−EP, the scale−like cross section be-
comes finer and more homogenous (Figure 6e), exhibiting the most compactness among 
the coatings. These indicate that AAP can further improve the dispersion and compati-
bility of ZIF−90/GO in EP, which will favor enhancing the barrier properties of the coat-
ing. 

  

Figure 5. (a) The 1H NMR spectrum of ZIF–90–AAP/GO; (b) Raman spectra of different samples;
(c) the release behaviors of AAP in ZIF–90–AAP/GO at different pH values.

Figure 5b displays Raman spectra of various samples. For GO, two prominent char-
acteristic peaks are observed at 1350 cm−1 (D peak) and 1600 cm−1 (G peak) [45]. For
ZIF–90/GO and ZIF–90–AAP/GO, the G bands slightly shift to 1590 cm−1, respectively,
implying the interaction between ZIF–90 and GO. In addition, the intensity ratio of the D
band to G band (ID/IG) is generally applied to evaluate the disordered degree of GO [46].
The ID/IG value of ZIF–90/GO (1.05) is higher than that of GO (0.91), indicating that the
ZIF–90 growth on the GO surface increases the defective sites of GO. Moreover, the ID/IG
value of ZIF–90–AAP/GO (1.0) becomes lower compared with ZIF–90/GO after loading
AAP, reflecting that AAP can compensate for the vacancy of GO [47].

Figure 5c illustrates the release behaviors of AAP in ZIF–90–AAP/GO at various
pH conditions. The release of AAP from ZIF–90–AAP/GO is inhibited to a great degree
under neutral (pH 7) and basic (pH 11) conditions. After 240 min, the total amount of
released AAP is only 2.38 mg/L at pH 7 and 4.59 mg/L at pH 11. Unlike neutral and
basic conditions, AAP can be quickly released in 15 min and reach the maximum amount
(11.59 mg/L) in acidic conditions (pH 3), suggesting ZIF–90–AAP/GO possesses pH-
responsive characteristics. In acidic conditions, disintegration of ZIF–90 is readily induced,
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and the Schiff base between AAP and ZIF–90/GO is also unstable [48]. These can cause the
rapid release of AAP from ZIF–90–AAP/GO.

3.2. Dispersion and Compatibility of ZIF–90–AAP/GO in Epoxy Resin

The cross-sectional SEM images of various coatings are shown in Figure 6. EP presents
a relatively smooth cross section without any fillers (Figure 6a). For GO–EP, its cross section
becomes rough and exhibits an uneven distribution. These can be attributed to the fact that
GO has poor dispersion in epoxy (Figure 6b, inset) resulting from the van der Waals force
and π–π interactions of GO [24]. For ZIF–90–EP, it displays a relatively flat fracture cross
section due to its homogeneous dispersion in epoxy (Figure 6c, inset). For ZIF–90/GO–EP,
it shows a uniform scale-like cross section (Figure 6d), indicating that ZIF–90, as an active
3D MOF material, makes dispersion of GO good in the epoxy coating. Furthermore, for
ZIF–90–AAP/GO–EP, the scale-like cross section becomes finer and more homogenous
(Figure 6e), exhibiting the most compactness among the coatings. These indicate that AAP
can further improve the dispersion and compatibility of ZIF–90/GO in EP, which will favor
enhancing the barrier properties of the coating.
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Figure 6. SEM images of the cross section for EP (a), GO–EP (b), ZIF–90–EP (c), ZIF–90/GO–EP
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filler-added epoxy (b–e).

3.3. Anti-Corrosion Properties of Different Coatings

EIS is used to evaluate the long-term anti-corrosion properties of the different intact
coatings (Figure 7) [47]. The impedance modulus at 0.01 Hz (|Z|0.01Hz) is generally
indicative of the corrosion protection properties of the coating, so is the radius of the
capacitive loop [49]. For EP, |Z|0.01Hz dramatically declines from 8.44 × 109 Ω·cm2 at
the beginning of immersion to 3.38 × 106 Ω·cm2 after 40 days, indicating that EP owns
relatively poor barrier performance, owing to the rapid penetration of the electrolyte to
the coating/substrate interface without fillers. For GO–EP, |Z|0.01Hz gradually drops from
initial 9.66 × 109 Ω·cm2 to final 6.06 × 107 Ω·cm2 over 40 days. On the one hand, |Z|0.01Hz
of GO–EP is much higher than that of EP in the later immersion, revealing that GO can boost
barrier properties of EP due to its “labyrinth effect” from its two-dimensional nanosheet
layer structure [50]. On the other hand, the continuous decline of |Z|0.01Hz during the
whole immersion can be related to poor dispersion of GO in EP originating from its
strong van der Waals force [51]. Simultaneously, the capacitive arc radii of EP and GO–EP
always shrink with immersion time, indicating their inadequate corrosion protection
abilities due to the absence of active corrosion inhibitors. For ZIF–90–EP, |Z|0.01Hz appears
to fluctuate. Notably, there exists an apparent rising process between 10 and 20 days.
This can correlate with the fact that ZIF–90–EP possesses certain self-repairing abilities.
Interestingly, for ZIF–90/GO–EP and ZIF–90–AAP/GO–EP, |Z|0.01Hz and the capacitive
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reactance arc radius basically has a similar trend with time over 40 days. There are at
least two stages of first decreasing and then increasing. Furthermore, |Z|0.01Hz can be
further demonstrated; in Figure 8a, these two coatings exhibit much higher |Z|0.01Hz than
other coatings, indicating that they combine the barrier properties and the active corrosion
inhibition. These greatly improve the corrosion protection for the substrate. Obviously,
|Z|0.01Hz of ZIF–90–AAP/GO–EP is greater than that of ZIF–90/GO–EP, suggesting that
AAP can further endow the coating with extra self-healing properties [52].

The breakpoint frequency (Fb) is the frequency corresponding to the phase angle
of −45◦. Fb is generally employed to evaluate the coating delamination degree. The
lower Fb implies the smaller coating delamination [53]. As shown in Figure 8b, for EP,
Fb continuously booms, implying the relatively large coating delamination, which can
be resulted from the constant accumulation of corrosion products. For GO–EP, Fb slowly
rises in the entire process, indicating that GO as the filler can prevent the electrolyte from
penetrating to the substrate, thereby lowering the microscopic layered area of the coating.
Additionally, for ZIF–90–EP, ZIF–90/GO–EP and ZIF–90–AAP/GO–EP, the growth of Fb
from the initial to the final stage is extremely slow, especially for ZIF–90–AAP/GO–EP.
These indicate that ZIF–90–AAP/GO–EP is hardly peeled from the substrate.

The equation reported by Ramamurthy was used to calculate the coating delamination
index (D) to assess the peeling degree at the coating/substrate interface [54]. Equation (1)
is as follows.

D(%) = 100 ×
(

Z1 − Z2

Z1

)
0.01Hz

(1)

where Z1 and Z2 are |Z|0.01Hz at the beginning and the end of each stage, respectively.
Figure 8c shows the curves of the D (%) value of each coating with the soaking time. The D
values of all the coatings show a growing trend throughout the process, which is due to the
gradual penetration of the electrolyte solution into the coatings. EP and GO–EP have the
relatively high delamination index after 40 days, suggesting that they have poor protection
for the steel substrate. ZIF–90–AAP/GO–EP shows a lower delamination index than EP
and GO–EP after 40 days. This reveals that ZIF–90–AAP/GO can effectively hinder the
penetration of the electrolyte into the EP matrix, thus minimizing the coating delamination
and damage.

In addition, water absorption also can reflect the protective performance of the coat-
ings [55]. It is determined by the following Brasher and Kingsbury Equation (2) [56].

Xv(%) = 100 ×
log

(
Cc(t)
Cc(0)

)
log(80)

(2)

where Xv(%), Cc(0) and Cc(t) represent the volume fraction of water in the coating matrix,
the coating capacitance at the initial time (t = 0) and time t, respectively. Figure 8d displays
the evolution of the water uptake of various coatings with time. ZIF–90/GO–EP has a
lower water adsorption rate compared with the above three coatings after 40 days, which
results from the fact that the well-dispersed GO augments the barrier performance of the
coating, and the imidazole groups on ZIF–90 also improve the crosslink density of the
coating [31,57]. ZIF–90–AAP/GO–EP has the lowest water absorption rate after 40 days,
indicating that ZIF–90–AAP/GO is able to significantly diminish the coating porosity,
enhance the coating compaction and confer favorable water-proof qualities on the coating.

The equivalent circuit in Figure 9a is used for the EIS data fitting of the coatings except
for EP and GO–EP after 20 days. Rs, CPEc, Rc, CPEdl, Rct and W denote the solution
resistance, coating constant phase element, coating resistance, double-layer constant phase
element, charge transfer resistance and the Warburg impedance, respectively [58]. The
evolution of Rc and Rct with time is shown in Figure 10. ZIF–90–AAP/GO–EP has higher
Rc and Rct than other coatings after 40 days, which can be ascribed to the passive and active
corrosion protection given by ZIF–90–AAP/GO.
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3.4. Self-Healing Properties of Different Coatings

The self-healing properties of the different coatings are evaluated by the EIS measure-
ment of the scratched EP (S–EP), ZIF–90/GO–EP (S–ZIF–90/GO–EP) and ZIF–90–AAP/
GO–EP (S–ZIF–90–AAP/GO–EP) coatings (Figure 11). The capacitance arc radius can gen-
erally reflect the corrosion protection performance of the coating. For S–EP, the capacitance
arc radius continuously decreases with time, and there is an extra inductive arc after 12 h,
suggesting that EP only possess passive protection abilities. For S–ZIF–90/GO–EP, the
capacitance arc radius first reduces in the first 36 h, then rises after 48 h and finally drops
with time, implying that ZIF–90/GO–EP has a certain degree of self-repairing abilities. For
S–ZIF–90–AAP/GO–EP, it is worth mentioning that it exhibits first decreasing and then
rising trends two times throughout the immersion process. Furthermore, its |Z|0.01Hz also
has a similar change trend (Figure 12a). Meanwhile, it has the highest |Z|0.01Hz. These
demonstrate that ZIF–90–AAP/GO–EP has excellent self-healing performance.

The self-healing rate is employed to further investigate the self-repairing performance
of the coating [59]. Equation (3) is used as follows.

rself−healing =
|Z|end − |Z|start

tend − tstart
× 100% (3)

where |Z|start and |Z|end mean |Z|0.01Hz at the beginning and the end of each immersion
stage, respectively. As can be shown in Figure 12b–d, for S–EP, rself-healing of all stages is
always negative, indicating EP withstands severe corrosion without self-healing capabili-
ties. Unlike EP, rself-healing of ZIF–90/GO–EP varies from negative to positive in 36–48 h,
suggesting that the self-healing process surpasses the corrosion process based on the fact
that zinc ions and IC can be constantly released from ZIF–90/GO and absorbed on the sur-
face of the substrate to heal the scratch. However, rself-healing becomes negative in the later
immersion stage (48–72 h), implying that ZIF–90/GO–EP only has the limited self-repairing
effect. Interestingly, as for ZIF–90–AAP/GO–EP, rself-healing still remains positive in the
final stage (60–72 h), confirming that the continuous release of AAP from ZIF–90–AAP/GO
can further enhance the self-healing performance of ZIF–90/GO.

The EIS data of S–EP, S–ZIF–90/GO–EP and S–ZIF–90–AAP/GO–EP after 72 h of
immersion were analyzed using the equivalent circuit shown in Figure 9a. The resulting
fitted parameters are presented in Table S1. The inhibitory efficiency (IE) obtained from Rct
was calculated by Equation (4) [60,61] as follows:

IE(%) =
Rct 2 − Rct 1

Rct 2
× 100 (4)
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where Rct 1 and Rct 2 represent the charge transfer resistance values of S–EP and other
scratched coatings (S–ZIF–90/GO–EP and S–ZIF–90–AAP/GO–EP), respectively. The fitted
data and IE are included in Table S1. The IE of S–ZIF–90–AAP/GO–EP reaches 89.37%,
implying that ZIF–90–AAP/GO–EP possesses remarkable self-healing properties.
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Figure 13 shows SEM, EDS and elemental mappings of the substrates of different
scratched coatings. For S–EP, many corrosion products appear inside and around the
scratch because EP is short on active protection properties. For S–ZIF–90/GO–EP, there
are less corrosion products inside and around the scratch. Meanwhile, Zn and N elements
can be observed, which can originate from the adsorption of IC released from ZIF–90/GO
in the scratch and the disposition of zinc hydroxide generated by the interaction between
the released zinc ions from ZIF–90/GO and hydroxide ions produced in the cathodic
region. Furthermore, for S–ZIF–90–AAP/GO–EP, any corrosion products can hardly be
observed inside and around the scratch, indicating that AAP can further enhance self-
healing properties of ZIF–90/GO–EP. Additionally, it is known that iron oxides and/or
hydroxides mainly constitute the corrosion products of the steel [62]. So, the O element
content is indicative of the degree of the corrosion of the steel. Among the three scratched
coatings, S–ZIF–90–AAP/GO–EP has the lowest O element content (0.49%). These reveal
that ZIF–90–AAP/GO–EP possesses supreme active corrosion protection performance.
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Figure S1 displays the potentiodynamic polarization curves of the steel immersed in
0.35 wt% NaCl solution (Steel) with ZIF–90/GO or ZIF–90–AAP/GO (Steel–ZIF–90/GO
or Steel–ZIF–90–AAP/GO) for 72 h. The related electrochemical parameters are shown in
Table S2. Meanwhile, the corrosion inhibition efficiency (η) obtained from the corrosion
current density (icorr) was determined using the following formula (Equation (5)) [63].

η =
icorr(0) − icorr

icorr(0)
(5)

where icorr(0) and icorr denote icorr of Steel and other steels (Steel–ZIF–90/GO or Steel–ZIF–
90–AAP/GO), respectively. Obviously, Steel–NaCl/ZIF–90–AAP/GO possesses the highest
corrosion inhibition efficiency and corrosion potential (Ecorr) and the smallest icorr. These
reveal that the released inhibitors can effectively decelerate the corrosion rate of the steel.

3.5. Anti-Corrosion Mechanism of ZIF–90–AAP/GO–EP

Figure 14 represents the corrosion protection mechanism of ZIF–90–AAP/GO–EP.

(i) Passive corrosion protection mechanism

ZIF–90–AAP/GO as 2D/3D fillers can effectively enhance the passive corrosion re-
sistance of EP. This is mainly attributed to the “labyrinth effect” provided by the 2D GO,
which can lengthen the diffusion path of corrosive media to the coating/metal interface,
thereby mitigating the corrosion of the substrate [64].

(ii) Active corrosion protection mechanism

The electrochemical process of carbon steel can be generally described as follows [25,65–67].



Nanomaterials 2024, 14, 323 14 of 19
Nanomaterials 2024, 14, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 13. SEM (a,f,m) and EDS images (b,g,n) and the corresponding elemental mappings (c–e,h–
l,o–s) of S−EP, S−ZIF−90/GO−EP and S−ZIF−90−AAP/GO−EP immersed in 0.35 wt% NaCl solution 
after 72 h. 

3.5. Anti−Corrosion Mechanism of ZIF−90−AAP/GO−EP 

Figure 13. SEM (a,f,m) and EDS images (b,g,n) and the corresponding elemental mappings
(c–e,h–l,o–s) of S–EP, S–ZIF–90/GO–EP and S–ZIF–90–AAP/GO–EP immersed in 0.35 wt% NaCl
solution after 72 h.
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Figure 14. Schematic illustration of the anti-corrosion mechanism of ZIF–90–AAP/GO–EP.

Anodic region:
Fe → Fe2+ + e− (6)

Fe2+ → Fe3+ + e− (7)

2Fe2++2H2O+O2 → 2FeOOH+2H− (8)

Cathodic region:
O2+2H2O+4e− → 4OH− (9)

It is obvious that corrosion causes the local pH to change. In the anodic region, the
local pH drops. This acidic environment results in the breaking of the Schiff base bond
between AAP and ZIF–90/GO [68–71], thus AAP is released from ZIF–90–AAP/GO, which
has been confirmed by the UV-vis results. By virtue of its amino group and benzene ring,
AAP can coordinate with ferrous ions to form the protective film to hinder the corrosion
of steel. Meanwhile, the ligand IC of ZIF–90 can be protonated in the acidic conditions,
which can accelerate the collapse of ZIF–90 [72–75], thereby releasing IC and Zn2+ from
ZIF–90–AAP/GO. The released IC with the lone pair of electrons can react with iron ions
with the empty d-orbitals. In addition, electrostatic attraction arises from the positively
charged IC and few negatively charged Cl− ions adsorbed on the substrate surface, which
also can attenuate the corrosion [76]. In the cathodic region, local corrosion leads to the
increase in pH. The released Zn2+ ions can interact with the generated hydroxide ions to
form Zn (OH)2 deposited in the scratched area, which can curb the further corrosion of the
substrate.

Fe2++xH2O + yAAP + zCl− →
[
FeAAPy(OH)xClz

]2−x−z
+ xH+ (10)

Fe2++xH2O + yIC + zCl− →
[
FeICy(OH)xClz

]2−x−z
+ xH+ (11)

Zn2++2OH− → Zn(OH)2 (12)

Therefore, ZIF–90–AAP/GO–EP can provide carbon steel with long-term corrosion
protection based on its excellent passive and active corrosion protection.

4. Conclusions

We developed pH-responsive 2D/3D ZIF–90–AAP/GO composite for enhancing
corrosion-resistant epoxy composite coating by self-assembling ZIF–90 on GO nanosheets
and grafting the corrosion inhibitor AAP on surface of ZIF–90 via the Schiff base reaction.



Nanomaterials 2024, 14, 323 16 of 19

ZIF–90–AAP/GO presents superior dispersion and compatibility in EP, which can be
attributed to the fact that the stacking of GO nanosheets is suppressed because of the
steric hindrance effect of ZIF–90–AAP grown on the GO surface. ZIF–90–AAP/GO–EP
has the lower coating delamination index and water adsorption rate than the others after
40 days of immersion. Its |Z|0.01Hz still reaches 1.35 × 1010 Ω·cm2 after 40 days. These
show that ZIF–90–AAP/GO–EP can supply long-lasting efficient protection to the steel.
Steel–NaCl/ZIF–90–AAP/GO has the highest inhibition efficiency, thereby effectively
inhibiting the steel corrosion. Additionally, the EIS, SEM and EDS results show that ZIF–
90–AAP/GO can greatly reinforce the self-healing performance of the GO-based epoxy
coating based on the cooperative effects of controllably released AAP, IC and Zn2+ ions
from ZIF–90–AAP/GO in response to pH stimuli. ZIF–90–AAP/GO–EP exhibits excellent
passive barrier performance and active corrosion resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14040323/s1, Table S1. Fitted parameters of the EIS results and
inhibition efficiency of different scratch coatings after 72 h of immersion; Figure S1. Potentiodynamic
polarization curves of Steel, Steel–ZIF–90/GO and Steel–ZIF–90–AAP/GO; Table S2. Electrochemical
parameters extracted from polarization curves of the different steels after 72 h of immersion.
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