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Introduction: Streptococcus suis (S. suis) is a zoonotic pathogen threatening
public health. Aditoprim (ADP), a novel veterinary medicine, exhibits an
antibacterial effect against S. suis. In this study, a physiologically based
pharmacokinetic/pharmacodynamic (PBPK/PD) model was used to determine
the dosage regimens of ADP against S. suis and withdrawal intervals.

Methods: The PBPK model of ADP injection can predict drug concentrations in
plasma, liver, kidney, muscle, and fat. A semi-mechanistic pharmacodynamic (PD)
model, including susceptible subpopulation and resistant subpopulation, is
successfully developed by a nonlinear mixed-effect model to evaluate antibacterial
effects. An integrated PBPK/PD model is conducted to predict the time-course of
bacterial count change and resistance development under different ADP dosages.

Results: ADP injection, administrated at 20 mg/kg with 12 intervals for
3 consecutive days, can exert an excellent antibacterial effect while avoiding
resistance emergence. The withdrawal interval at the recommended dosage
regimen is determined as 18 days to ensure food safety.

Discussion: This study suggests that the PBPK/PD model can be applied as an
effective tool for the antibacterial effect and safety evaluationof novel veterinary drugs.
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1 Introduction

Aditoprim {ADP, 5-[(4-dimethylamino-3,5-dimethoxy-phenyl)methyl] pyrimidine
-2,4-diamine}, belonging to diaminopyrimidines, can perform excellent antibacterial
effects on Gram-positive and Gram-negative pathogens of swines (Cheng et al., 2017;
Wang et al., 2022). The antimicrobial mechanism of ADP is the same as its structural
analogs, such as trimethoprim (TMP) and diaveridine (DVD), which can block the folic
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acid synthesis of sensitive bacteria, inhibit bacterial growth, and
enhance the antibacterial spectrum and antibacterial activity of
sulfonamide drugs (Gleckman et al., 1981). ADP has demonstrated
efficacy against S. suis (Cheng et al., 2017), a pivotal zoonotic
pathogen in China, which has resulted in bacterial meningitis
affecting thousands of humans (Feng et al., 2010). An empirical
pharmacokinetic/pharmacodynamic (PK/PD) model of ADP
against S. suis has been developed for the preclinical application
(Qu et al., 2022). Nevertheless, limitations in the empirical PK/PD
model have hindered its precision in designing dosage regimens.

(1) The empirical PK model, such as the compartmental model,
represents the body as a system of one or more virtual
compartments that do not correspond to the physiological
and anatomical mechanisms (Fan and de Lannoy, 2014). It
cannot extrapolate dose and simulate concentration–time
curves in different tissues.

(2) PK/PD parameters played important roles in the
determination of dosage regimens in veterinary
medicine. The ratio of the area under the curve of
plasma concentration to minimum inhibitory
concentration (AUC/MIC) and the proportion of time
that plasma concentration exceeds the MIC over the
dosing interval (T > MIC) are routinely used in the
empirical PK/PD model (Toutain et al., 2021). They
highly rely on MIC. Measured error and subjective error
could induce substantial uncertainty and variability in
MIC, and the PK/PD parameter value would also be
influenced (Nielsen et al., 2007). Additionally, PK/PD
parameters only reflect a point estimate of the effect
that ignores the time courses of drug concentration and
antibacterial effect.

(3) Lacked evaluation of the safety. The empirical PK/PD model
is not available for the assessment of antimicrobial resistance
and drug residues.

A physiologically based pharmacokinetic (PBPK) model is
characterized by anatomical and biochemical factors, which is a
mechanistic approach to simulate the absorption, distribution,
metabolism, and elimination of chemicals in the body. It has
been applied for dose optimization (Zhou et al., 2021; Mi et al.,
2022), food safety assessment of animal-derived food products
(Lin et al., 2016; Henri et al., 2017), and chemical risk
assessment (Chou and Lin, 2019). The semi-mechanistic PD
model can quantify resistance development and bacterial
regrowth under drug exposure. The PBPK/PD model,
integrated PBPK model, and semi-mechanistic PD model can
overcome the shortcomings of the empirical PK/PD model. By
sets of mathematical equations, the PBPK/PD model can
capture the time course of bacterial count under drug
exposure and weaken the influence of MIC and PK/PD
parameters. It can simulate the time course of bacterial count
change and drug concentration.

The objective of this study is to establish a PBPK/PD model to
describe the time course of bacterial count change under drug
exposure and determine the preclinical dosage regimen of ADP
against S. suis. A populational PBPK model was developed to

determine the withdrawal intervals of the preclinical dosages to
avoid residue violations and ensure food safety.

2 Materials and methods

2.1 Data source for PBPK model calibration

The physiological parameters (organ volumes and blood flow
rates) of 25 kg of pigs were from the reported literature (Upton,
2008). The pharmacokinetic data used in the calibration and
validation of the PBPK model are summarized in Table 1. Two
different datasets were used to perform model calibration and
validation. The graphic pharmacokinetic data were extracted
from selected studies using WebPlotDigitizer (version 3.10,
https://automeris.io/WebPlotDigitizer/).

2.2 Model structure

A seven-compartment PBPK model was structured and
connected by the blood circulation system (venous blood and
arterial blood) (Figure 1A). For food safety assessment, the major
edible tissues, including the liver, kidney, muscle, and fat, were
modeled as individual compartments. To simplify the model
structure, the rest of the body was considered a pooled
compartment.

A two-compartment model is used to describe the drug
absorption into muscle after intramuscular injection (Lin et al.,
2017). It was divided into slow absorption and fast absorption at the
injection site. As shown in Figure 1A, the injection bolus was
assumed to have two steps, namely, fast and slow absorption.
Fast absorption was assumed to be homogeneously mixed at the
injection site and instantaneously available for absorption into the
venous compartment with a first-order process (kim) (Riad et al.,
2021). Slow absorption was described as releasing ADP from the
injection site at a first-order rate (kdiss) and entering the venous
compartment as a fast phase. The excreted tissue is the kidney, and
the metabolized tissue is the liver. N-Monodesmethyl-ADP and
N-didesmethyl-ADP were found in the tissue; ADP has the highest
concentration and the longest duration in tissues, which is regarded
as the marker residue. The PBPK model did not describe the
metabolism process. Berkeley Madonna (version 8.3.23.0;
University of California at Berkeley, CA, United States) was used
to develop the PBPK model and run all simulations.

2.3 Model parameterization and calibration

The PBPK model includes two types of PBPK parameters,
namely, physiological and chemical-specific parameters. As for
chemical-specific parameters, partition coefficients (PCs) in edible
tissues were calculated using the AUC method, as AUCtissue/
AUCplasma, based on the previous study (Wang et al., 2016).
These initial PCs were optimized by the residual data. After the
model calibration of ADP in tissues, the initial PCs would adjust to
more suitable values.
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The excreted rate in the kidney and the metabolized rate in the
liver were assumed as a first-order constant rate. The urine
elimination and liver metabolism rates were assumed as KurineC
and KML, respectively. For intramuscular administration, ADP was
absorbed into the blood at a first-order constant rate (Kim) under
injection dose (doseim). Drugs were distributed into fast absorption
(Frac*doseim) and slow absorption [(1-Frac) *doseim]. In slow
absorption, the drug transferred to the state of fast absorption at
a constant rate (Kdiss) (Riad et al., 2021). All the initial chemical-
specific parameter values were calibrated by the curve fitting module
in Berkeley Madonna and further optimized (Xu et al., 2020).

2.4 Validation and sensitivity analysis

The validation dataset is listed in Table 1. All parameters were
not changed from those determined by model calibration. Based on
the World Health Organization guidelines (WHO, 2010), if the

predictive results matched the kinetic profile of the experimental
data and were generally within a two-fold difference of the
experimental data, then the model could be successfully
established. The goodness of fit between observation and
simulation was analyzed by linear regression. The determination
coefficient (R2) values were derived from regression analysis, and the
model simulation was acceptable if the value of R2 was equal to or
higher than 0.75 (Lin et al., 2017). The performance of the PBPK
model was assessed by the mean absolute percentage error (MAPE)
value, which was less than 50% and considered an acceptable
prediction (Yang et al., 2022).

Sensitivity analysis was performed to determine which
parameters were important in the selected key model outputs.
Each parameter was increased by 10%, and the corresponding
AUC24h values of ADP in the liver, kidney, plasma, muscle, and
fat were computed. A normalized sensitivity coefficient (NSC) was
used to evaluate sensitive parameters, as described in Eq. 1
(Mirfazaelian et al., 2006; Lin et al., 2011).

TABLE 1 Data on ADP pharmacokinetic studies used for the calibration and validation of the PBPK model.

PK study/purpose Route Animal number Dose regimen Dose Tissue

Calibration

Wang et al. (2022) IMa 6 Single injection 5 mg/kg Plasma

(Wang, 2020)b IM 40 12-h interval 14 doses 10 mg/kg Liver, kidney, muscle, and fat

Validation

Qu et al. (2022) IM 6 Single injection 5 mg/kg Plasma

(Wang, 2016)b IM 40 24-h interval 7 doses 5 mg/kg Liver, kidney, muscle, and fat

aIM means intramuscular injection.
bThe data can be found in the Supplementary Material.

FIGURE 1
Schematic diagram of the physiologically based pharmacokinetic/pharmacodynamic model for aditoprim against S. suis in swines. The structure of
the PBPK model and semi-mechanistic PD model is, respectively, described in (A,B).
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NSC � △r

r
×

p

△p
, (1)

where r is the response variable (AUCs of ADP in plasma and
tissues), Δr is the change in the response variable, p is the original
value of the model parameter, and Δp is the 10% change in the
parameter value. A parameter was considered sensitive when at least
one of the absolute values of the NSCs was greater than or equal to
0.25 (Leavens et al., 2014).

2.5 Monte Carlo analysis and the
populational PBPK model

Considering the population variability of model parameters, a
populational (pop) PBPK model was established by integrating the
PBPK model and Monte Carlo analysis. Only sensitive parameters
were subject to Monte Carlo analysis. Log-normal distributions of
model parameters were assumed for chemical-specific parameters,
such as tissue partition coefficients. Normal distributions were
assumed for physiological parameters, such as bodyweight. The
distributions within the lower bound (2.5%) and upper bound
(97.5%) were described by the model code, as previously
introduced (Li et al., 2018). The coefficients of variance (CVs) for
chemical-specific parameters and physiological parameters were
defined as default values, 30% and 40%, respectively. Monte
Carlo analysis was conducted for 1,000 iterations by bath runs in
Berkeley Madonna.

2.6 Semi-mechanistic PD model

The minimum inhibitory concentration of ADP was determined
against ATCC 49619, followed by CLSI documents. Time-killing
curves of ADP against ATCC 49619 were conducted in triplicate, as
previously described (Mi et al., 2022). These datasets were applied to
build a semi-mechanistic PD model. Because of bacterial regrowth
under ADP exposure, a two-compartment semi-mechanistic PD
model was developed, as shown in Figure 1B (Jacobs et al., 2016).
This model includes susceptible subpopulation (Eq. 2) and resistant
subpopulation (Eq. 3), which are assumed to be regulated by the
natural growth rate and kill rate of an antimicrobial drug. The
antibacterial effect was modeled by the Emax equation.

dS

dt
� kgrowth ×

S + R( )
Bmax

× S − Emax × Cγ
stastic

ECγ
50S + Cγ

stastic

× S, (2)

where S (CFU/mL) is the bacterial concentration in the
susceptible subpopulation; kgrowth, a first-order constant, is
described as the bacterial net growth rate. Bmax is the maximum
amount of bacteria in the system; Emax (1/h) is the maximum
bacteria killed by ADP representing drug efficacy, EC50_S (mg/L)
is the concentration of ADP that produces half of the maximum
effect of a susceptible subpopulation, γ is a sigmoid coefficient
expressing the slope of antimicrobial effect curves and presenting
drug sensitivity, and Cstastic is the concentration of ADP at time (t).

dR

dt
� kgrowth ×

S + R( )
Bmax

× R − Emax × Cγ
stastic

ECγ
50R + Cγ

stastic

× R, (3)

where R (CFU/mL) is the bacterial concentration in the resistant
subpopulation. EC50_R is assumed as the antibacterial effect on the
resistant subpopulation.

The estimations of semi-mechanistic PD parameters were
operated by the non-linear mixed-effect analysis (Monolix,
version 2018R1, Lixofit, France). Diagnostic plots, such as
goodness fit of prediction versus observation, residuals of IPRED
(individual prediction) versus the dependent variables, and time,
were adopted to determine whether the model is adequate. In
addition, visual predictive check (VPC) was used to validate the
prediction of the model.

2.7 Application of the PBPK/PD model

Integrated with the PBPK model and semi-mechanistic PD
model to build a PBPK/PD model in Mlxplore (Lixoft version
2018a, France), the predicted dynamic concentrations from the
PBPK model replace the static ADP concentration (Cstastic) in the
semi-mechanistic PD model. Thereby, time courses of the bacterial
count and drug concentration under a variety of drug exposures can
be simulated. The efficacy of dosage and the best PK/PD parameters
related to bacterial response were assessed by the PBPK/PD model.
For food safety, a withdrawal interval is determined by the pop-
PBPK model.

2.7.1 Determining the best PK/PD parameter
PK/PD parameters, which enable a description of the whole-

time course of bacterial kill and growth, can be determined in an in
silico model (Nielsen and Friberg, 2013). Dose fractions of 0, 2.5, 5,
10, 15, 20, and 25 mg/kg for single administration and twice-daily
administration were inputted in the PBPK/PD model.
Concentration–time curves of ADP and bacterial count–time
curves can be simulated. PK/PD parameters (AUC/MIC and %
T >MIC) are directly calculated by the PBPKmodel (Mi et al., 2023).
The cumulative area under the curve of the total bacterial count over
24 h (AUC0-24h (Bacterial count)) was used as a bacteriological effect
(Pelligand et al., 2019; Ronaghinia et al., 2021). PK/PD parameters
(AUC/MIC and %T >MIC) versus the bacteriological effect, AUC0-

24h (Bacterial count), were fitted with an inhibitory sigmoid model (Eq.
4). Curve fitting was performed in Phoenix (version 8.3, Certara,
United States), and the best PK/PD parameter related to
bacteriological effect was selected.

E � E0 − Imax · INDEXN

INDEXN + INDEX50
N, (4)

where E0 was the effect under a drug concentration of zero. The
maximum possible observed effect is Imax. INDEX was the value of
the PK/PD parameters (AUC24h/MIC or %T >MIC). INDEX50 was
the value of AUC24h/MIC or %T >MIC, producing a 50% reduction
in Imax, and N was the Hill coefficient that described the steepness of
the curve.

2.7.2 Dosage optimization
By the PBPK/PD model, the time courses of bacterial count can

be, respectively, simulated under the dosages of 5, 12.5, 15, and
20 mg/kg twice a day. The bacterial count change curves of the
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susceptible subpopulation, the resistant subpopulation, and the total
are presented. Based on the antibacterial effect, the dosage can be
determined.

2.7.3 Withdrawal interval assessment
For food safety assessment, the withdrawal interval needs to be

determined. The datasets of 1,000 iterations are simulated by the

FIGURE 2
Calibration of the PBPK model. Comparison of model prediction (blue line) and observed data (red dot) in plasma (A) via 5 mg/kg, and in the kidney
(B), liver (C), fat (D), and muscle (E) via IM repeated 14 doses at 10 mg/kg. The R2 value was 0.86 of the regression analysis (F).

FIGURE 3
Evaluation of the PBPK model. Comparison of model prediction (blue line) and observed data (red dot) in plasma (A) via 5 mg/kg, and in the kidney
(B), liver (C), fat (D), and muscle (E) via IM repeated 7 doses at 5 mg/kg. The R2 value was 0.81 of the regression analysis (F).
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pop-PBPK model. The concentration–time curves of the 1st
percentile, median, and 99th percentile in the liver and kidney
were presented. The MRL of ADP in the liver is 0.303 ug/g and
in the kidney is 0.084 ug/g (Wang et al., 2016). The 99th percentile
curve is used to compare with the maximum residue limits to
determine the withdrawal intervals. The time point when the
ADP concentration falls under the MRL is selected to determine
the withdrawal interval (Li et al., 2017).

3 Result

3.1 PBPK model calibration

Model predictions of ADP concentrations in plasma and edible
tissues at different time points after the administration were
compared with the observed concentrations for different dosage
regimens, as shown in Figure 2.

TABLE 2 Physiological parameters of swines and chemical-specific parameters of ADP used in the PBPK model.

Parameter (unit) Abbreviation Mean Resource

Bodyweight (kg) BW 30 —

Cardiac output (L/h/kg) QCC 4.944 Upton (2008)

Organ blood flow (% of QCC)

Muscle QMC 0.2524 Upton (2008)

Rest QRC 0.3055 Calculated

Liver QLC 0.3053 Upton (2008)

Kidney QKC 0.1398 Upton (2008)

Lung QLUC 1 Upton (2008)

Organ volume (% of BW)

Lung VLUC 0.01 Upton (2008)

Muscle VMC 0.4 Upton (2008)

Rest VRC 0.232 Calculated

Liver VLC 0.0294 Upton (2008)

Kidney VKC 0.004 Upton (2008)

Arterial blood VartC 0.016 Upton (2008)

Venous blood VvenC 0.044 Upton (2008)

Tissue to blood partition coefficient

Liver PL 5.249 Calculated/optimized

Kidney PK 6 Calculated/optimized

Muscle PM 0.79 Calculated/optimized

Fat PF 1.1 Calculated/optimized

Rest PT 0.18 Calculated/optimized

Absorption rate constant (/h)

Kim 1.3 Model fitting

Frac 0.92 Model fitting

Kdiss 0.0118 Model fitting

Hepatic clearance (L/h/kg) KML 0.01 Model fitting

Renal clearance (L/h/kg) KurineC 0.1 Model fitting

Percentage of plasma protein binding PB 0.82 Model fitting
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3.2 PBPK model validation and evaluation

Comparing the observed concentration of ADP in the plasma, liver,
kidney, muscle, and fat with the model prediction from the validation
dataset, good consistency between the observed data with model
prediction is shown in Figure 3. The goodness of fit was evaluated
using the determination coefficients (R2). The value of R2 between
measured and simulated concentrations of ADP in edible tissues and
plasma was 0.81 for the PBPK model. Except for the predicted
concentration at the first time point of fat (6 h after administration)
being out of the two-fold difference of observed data, all are within the
two-fold difference. For the determination of withdrawal intervals, at
the later time points, simulated versus measured concentrations for
ADP need to be similar. The liver and kidney are assumed as residual
target tissues, and the elimination of ADP in the liver or kidney is slower
than that in other tissues (Wang et al., 2016). If themodel can accurately
predict the ADP concentration in the liver and kidney, it can be used in
the prediction of withdrawal intervals. The results of MAPE show that
the prediction of ADP in plasma and edible tissues, in addition to fat, is
acceptable (Supplementary Figure S1).

Overall, the PBPK model can accurately describe the kinetic of
ADP concentrations in tissues and plasma. The PBPK parameters
are shown in Table 2.

3.3 Sensitivity analysis and Monte Carlo
simulation

TheAUCswere insensitive to all physiological parameters. TheAUCs
ofADP in four edible tissueswere positively related to partition coefficients
with NSC values of 1. The renal clearance rate (KurineC) and the fraction
of the dose allocated to fast absorption (Frac) influence the AUC24h in all
edible tissues and plasma. The protein-binding rate only influences the
AUC in plasma. All the sensitive parameters described above were
included in the Monte Carlo analysis. The values and distributions of
parameters used in Monte Carlo analysis are provided in Table 3.

3.4 Semi-mechanistic PD model

TheMIC of ADP against ATCC 49619 is 0.5 ug/mL, followed by
CLSI documents (CLSI, 2018). The parameters of the semi-

mechanistic PD model are shown in Table 4. The maximum
effect of ADP was 1.45 h−1, which was 1.74 folds of the net
bacterial growth rate of 0.833 h−1. To achieve half of the
maximum effect for the susceptible subpopulation (EC50_S), the
ADP concentration needs to reach 0.685 ug/mL. In addition, to
achieve half of the maximum effect for the resistant subpopulation
(EC50_R), the ADP concentration needs to reach 1.63 ug/mL, which
was about 2.5-fold to EC50_S. Model fits for bacterial time courses are
shown in Figure 4. For the model evaluation, a core set of diagnostic
plots is shown in Supplementary Material.

3.5 Model application

3.5.1 PK/PD parameters
The PBPK/PD model is applied to simulate the time courses of the

bacterial count under different dosages, which are shown in
Supplementary Result. T > MIC and AUC/MIC of different dosage
regimens were calculated by the PBPK model. The PK/PD relationship
between PK/PD parameters and AUC0-24h (Bacterial count) was conducted
in Phoenix, and the PK/PD relationships are shown in Figure 5. The
goodness-of-fit values were better for fAUC/MIC (r2 = 0.99) than for f
T >MIC (r2 = 0.98). Similar to the result of the empirical PK/PDmodel
(Qu et al., 2022), AUC/MIC is also the best PK/PD parameter.

3.5.2 Assessment of the dosage regimen
The time courses of different bacterial subpopulations, total,

susceptible subpopulation, and resistant subpopulation were
simulated under different dosage regimens. As shown in Figure 6,
while the dose was 5 mg/kg, the susceptible subpopulation gradually
decreased and the resistant subpopulation increased, after 48-h time
points, almost a resistant subpopulation in the total bacterial system.
The dose of 12.5 mg/kg can accomplish the bacteriostat action. The
dose of 15 mg/kg can reach the bacterial reduction of approximately
3-log10 CFU/mL and inhibit the growth of resistant subpopulations.
At an ADP dose of 20 mg/kg, the susceptible and resistant
subpopulations rapidly declined after being twice administered,
and bacteria were eliminated.

3.5.3 Withdrawal intervals
The residual depletion rates in the kidney and liver are the

slowest, and they are selected as target residual tissues.

TABLE 3 Values and distributions of parameters used in Monte Carlo analysis for the PBPK model.

Parameter Distribution Mean CV SD Lower Upper

PL Lognormal 5.249 0.40 2.0996 2.29 10.37

PK Lognormal 6.00 0.40 2.4 2.62 11.85

PM Lognormal 0.79 0.40 0.316 0.34 1.56

PF Lognormal 1.10 0.40 0.44 0.48 2.17

KurineC Lognormal 0.10 0.40 0.04 0.04 0.20

Frac Lognormal 0.92 0.10 0.092 0.75 1.00

PB Lognormal 0.82 0.40 0.328 0.36 0.99

PL,PK,PM and PF respectively represent liver, kidney, muscle and fat to blood partition; Frac represents fraction of intramuscular doses allocated to fast absorption; PB represents protein binding rate;

CV represents coefficients of variance; SD represents standard deviation; Lower represents lower bounds of statistical distribution; Upper represents upper bounds of statistical distribution.
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Concentration–time curves of 1,000 iterations in the kidney and
liver were simulated. The median and 1st and 99th percentiles of
1,000 iterations were selected and are shown in Figure 7. TheMRL of
ADP in swine has been investigated previously (Wang et al., 2016);
in the liver it is 0.303 ug/g, and in the kidney, it is 0.084 ug/g.
Compared with MRL, the WDI is conservatively determined to be
12.6 days in the liver and 17.4 days in the kidney. Note that if the
estimatedWDI was a fraction of a day, it was rounded up to the next
whole day. Therefore, the WDI after 20 mg/kg with 12 intervals for
3 consecutive days is 18 days.

4 Discussion

S. suis is the highest isolated common bacterial pathogen in
Chinese pig farms (Zhang et al., 2019). Given its virulence in
humans and animals, it poses a significant threat to public
health. Our group has successfully developed an empirical PK/
PD model to determine PK/PD parameters for various
antibacterial effects and dosage regimens of ADP injection
against S. suis. However, the empirical PK/PD model exhibited
several limitations, as mentioned above. In this manuscript, we

TABLE 4 Parameters for the semi-mechanistic PD from the time-killing curves of ADP against S. suis.

Parameter Unit Explanation Value (R.S.E. %)

Kgrowth 1/h Rate constant of net natural bacterial growth 0.833 (15.6)

MF — Mutation frequency 10–3 (fixed)

Bmax CFU/mL Bacterial count in the stationary phase 4.61*107 (−)

Emax 1/h Maximum kill rate constant 1.45 (4.47)

EC50_S mg/L Antibacterial concentration that produces 50% of Emax for the susceptible population 0.685 (8.12)

EC50_R mg/L Antibacterial concentration that produces 50% of Emax for the resistant population 1.63 (4.2)

γ — Hill factor 2.5 (6.5)

FIGURE 4
Visual predictive checks for the bacterial count in time-killing curves. The red circles correspond to the observed data, while the blue lines
correspond to themedian simulated data. The shaded area corresponds to the 95% confidence interval (CI) around the simulatedmedian data. The y-axis
represents the Log10 bacterial count (CFU/mL), and the x-axis represents time (h).
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have further adopted a PBPK/PD model to determine an optimized
dosage of ADP and a withdrawal interval.

The PBPK model is a mechanism-based simulation process that
describes the absorption, distribution, metabolism, and elimination
of drugs in the body by considering the relationship among
physiological, biochemistry, anatomical, and compound

properties. In recent years, PBPK models have been widely used
in various fields, including drug discovery and development
(Rowland et al., 2011; Jones et al., 2015), risk assessment of
environmental chemicals (Lu et al., 2016; Tan et al., 2018), safety
assessment of animal-derived food products (Lin et al., 2016; Henri
et al., 2017), and residue prediction of veterinary drugs in various

FIGURE 5
Fitting of the Imax sigmoid model for the bacteriological effect [AUC0-24h (bacterial count)] with T >MIC (A) and AUC/MIC (B). Red circles are the AUC0-

24h (bacterial count) values under different dose exposure.

FIGURE 6
Model prediction of S. suis for different ADP doses (5, 12.5, 15, and 20 mg/kg) with 12 administrated intervals for 3 consecutive days. The blue line
represents the total bacterial count. The green dashed line represents the susceptible subpopulation. The red dashed line represents the resistant
subpopulation. The black arrow means administered time.
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edible tissues (Viel et al., 2023). The advantages of PBPK models in
the prediction of drug residues in edible tissues in a diverse
population of food animals make them an ideal tool in veterinary
drug residue monitoring. In the current study, the PBPK model is
calibrated and validated with two independent datasets. Based on
the result of model evaluation including the visual comparison
between the observed and predicted data, R2, and RMSE, the
prediction of the PBPK model is acceptable and reliable. By
inserting Monte Carlo analysis into the PBPK model, a pop-
PBPK model can be developed and applied to predict the drug
concentration in 1,000 virtual animals, and the withdrawal interval
can be determined.

The semi-mechanistic PD model was established by
mathematical equations to capture the time-killing curves and
elucidate bacterial growth, bacterial death, and antibacterial
effects under antibiotic exposure. It can integrate with the PBPK
model to develop the PBPK/PD model. A PBPK/PD model of
ceftiofur against Pasteurella multocida was established to validate
the dosage regimen (Mi et al., 2022). A whole-body PBPK/PDmodel
of ciprofloxacin was developed to predict the antibacterial effect in
different tissues (Sadiq et al., 2017). In addition, it was also applied to
the definition of the PK/PD breakpoint (Iqbal et al., 2020). Upon
examining the time-killing curves of ADP against S. suis, bacterial
regrowth was observed (Figure 4). A model consisting of susceptible
and resistant subpopulations was adopted. The value of EC50 is used
to describe the sensitivity of different subpopulations to ADP. The
EC50_S is smaller than EC50_R, whichmeans it is more easily killed by
antimicrobial agents. Based on the goodness of fit, residual plots, and
VPC, the semi-mechanistic PD model can describe the time courses
of bacterial growth under ADP exposure.

The PBPK/PD model was integrated with the PBPK model and
semi-mechanistic PD model, and it can simulate bacterial growth
under ADP exposure. ADP was determined at a dose of 4.1 mg/kg
against S. suis by the empirical PK/PD model. However, in our

paper, by the PBPK/PD model, S. suis cannot be eradicated, and the
resistant subpopulation is still alive under a dose of 5 mg/kg/12 h
(Figure 6). The dose of 20 mg/kg is much better because it can
perform antibacterial effects and inhibit resistance. ADP has turned
out to be less toxic and not mutagenic (Wang et al., 2015a; Wang
et al., 2015b). The preclinical study has stated that ADP can perform
an antibacterial effect on swine Streptococcus (Cheng et al., 2017).
Given its status as a novel veterinary drug, further clinical
development, specifically in phases II and III, is imperative.

In this study, we adopt a model-informed drug development
(MIDD) approach to determine the dose that was employed in the
clinical trial. In addition, it is expected to apply the hollow fiber
infectious model to monitor the resistance change under drug
exposure, which can support clinical usage.
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