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ABSTRACT 
 

Objectives: Local anesthetics (LAs) are widely used in dentistry for their ability to block nerve 
impulses, particularly lidocaine. However, LAs can commonly cause neurotoxicity In vitro and                 
In vivo. Our study investigated the neurotoxic effects of lidocaine and the occurrence of peripheral 
nerve injury when lidocaine is injected for local or regional anesthesia in the oro-facial area. 
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Methods: Sprague-Dawley rats were used in trigeminal ganglion (TG) neuron preparation and 
incubated with lidocaine. Cell death was assessed using a visual microscope. Nerve injury was 
detected by activating transcription Factor 3 (ATF3) expression in TG neurons after lidocaine 
injection into the trigeminal nerve endings in the infraorbital area. 
Results: The rat TG neurons were killed by lidocaine after 24 hours of incubation. Cell death 
depends on the concentration of lidocaine, resulting in 39.83% cell death at 10 mM lidocaine, 
75.20% at 20 mM lidocaine, and 89.90% at 50 mM (p<0.03), compared to 1.56% in saline. The cell 
membrane was damaged, and the nuclei showed signs of fragmentation in DAPI staining. Nerve 
injury was indicated by ATF3 immunoreactivity (IR) in the nuclei of TG neurons in the maxillary 
area of the TG in naïve (n=10), saline (n=50), 1% lidocaine (n=95), 2% lidocaine (n=319) (p<0.02), 
and 5% lidocaine (n=433) groups (p<0.01). 
Conclusion: Lidocaine may induce neurotoxicity and nerve injury in vitro and in vivo at clinical 
concentrations or in cases of overdose. 
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1. INTRODUCTION 
 

The local anesthetics have been commonly used 
in dentistry for several years for the purpose of 
local or regional anesthesia in the clinical field. 
The local anesthetic, especially lidocaine, is 
activated directly on the neuronal membrane 
voltage-gated Na+ channels, blocking the 
propagation of action potentials. Lidocaine also 
excites sensory neurons and induces neuronal 
toxicity, leading to cell death, including direct 
membrane disruption, and activation of p38 
mitogen-activated protein kinase involved in 
apoptosis [1,2]. In human chondrocytes, the 
lidocaine cause delayed mitochondrial 
dysfunction and apoptosis [3,4]. Lidocaine-
induced increase in intracellular Ca+2 is a 
mechanism of neuronal toxicity [5]. Local 
anesthetics especially at high concentration of 
lidocaine can activate caspase3/-7 triggering 
apoptosis [6]. Lidocaine may cause changes in 
cytoplasmic calcium homeostasis and 
mitochondrial membrane potential [7]. The effect 
of lidocaine is sufficient to release Calcitonin 
gene-related peptide (CGRP), a key component 
of neurogenic inflammation, and warrants 
investigation into the role of TRPV1 and TRPA1 
in lidocaine-induced neurotoxicity [8]. In local or 
regional anesthethia the Local anesthetics (LAs) 
were showing peripheral nerve injury as loss or 
damaged of large-diameter fibers [9]. Sciatic 
nerve intraneural lidocaine injection induced 
neuropathic pain and expression of ATF-3 in 
DRG neurons [10]. 
 

In the present study, we conducted research on 
lidocaine-induced neurotoxicity activated in 
trigeminal ganglion (TG) neurons leading to cell 
death and peripheral trigeminal nerve injury 
indicated by ATF3 immunoreactivity in TG 
neurons. 

2. METHODS  
 

2.1 Animal 
 

All surgical and experimental procedures were 
reviewed and approved by the Institutional 
Animal Care and Use Committee at Seoul 
National University. Animal treatments were 
performed according to the Guidelines of the 
International Association for the Study of Pain. 
Male Sprague-Dawley rats (approximately 
weighing 180-200 g at the time of surgery) were 
used. Rats were housed at a temperature of 
23±2°C with a 12-hour light-dark cycle and fed 
food and water ad libitum. The animals were 
allowed to habituate to the housing facilities for 1 
week before the experiments, and eff orts were 
made to limit distress to the animals. 
 

2.2 Lidocaine Injection 
 

After 1 week of housing, rats were given general 
anesthesia with sodium pentobarbital (50 mg/kg, 
IP). The rats were then separated into 5 groups, 
each consisting of 5 rats. The infraorbital area 
was injected with saline (2Ca/Na) and various 
concentrations of lidocaine (1%, 2%, and 5%) in 
a 2 mL solution. After the injections, the rats 
were housed for 3 days for the next procedures 
at a temperature of 23±2°C with a 12-hour light-
dark cycle and fed with food and water ad 
libitum. 
 

2.3 Lidocaine Treating  
 
The trigeminal ganglia from 5 rats were 
harvested and incubated in HBSS containing 
0.25% trypsin (Sigma-Aldrich, St. Louis, MO, 
USA). The cells were washed and triturated to 
separate them. Cells were placed on coverslips 
coated with poly-L-ornithine (0.5 mg/mL; Sigma-
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Aldrich), and then maintained at 37°C under 5% 
CO2 [11]. After 12 hours of trigeminal neuron 
preparation, the cells were treated with 1%, 2%, 
and 5% lidocaine, and a control group was 
treated with saline (2Ca/Na) and 10 µM 
capsaicin for 24 hours. Osmolarity was                 
adjusted to 400 mOsm, and pH to 7.4. The               
dead cells were evaluated using a light 
microscope.   
 

2.4 Immunohistochemistry 
 
Rats were perfused with physiological saline and 
sequentially with 4% paraformaldehyde in 0.1 
mol/L phosphate buffer (pH 7.4) at 3 days after 
lidocaine injection. The trigeminal ganglion was 
removed and immersed in the postfixative at 4°C 
overnight and then transferred to 30% sucrose in 
PBS for 48 hours. Serial frozen transverse 
sections (14 μm thickness) were mounted on 
gelatin-coated slides. All immunohistochemical 
procedures were performed as previous at room 
temperature unless otherwise stated. Slides were 
washed in PBS and then incubated in the 
blocking solution containing 5% normal goat 
serum, 2% BSA, 2% FBS, for 1 hour at room 
temperature. The sections were incubated 
overnight at 4°C with rabbit anti-ATF3 antibody 
(1:500; Santa Cruz Biotechnology, Inc.). Sections 
were then washed and incubated for 1 hour at 
room temperature with a Cy3 conjugated goat 
anti-rabit IgG(H+L) antibody (1:200; Jackson 
ImmunoResearch, West Grove, PA, USA), for 1 
hour. The sections were mounted with 
Vectashield. (Vector Laboratories, Inc., 
Burlingame, CA, USA) and visualized using a 
confocal microscope using the appropriate                      
filter sets (FV-300; Olympus, Tokyo, Japan)             
[12].  
 

2.5 Data Analysis and Statistics 
 
The descriptive analysis and one-sample t-test 
were used (SPSS version 27) to compare the 
means and differences with the naïve group. 

Differences were considered significant when the 
p-value was less than 0.05. 
 

3. RESULTS 
 

3.1 Lidocaine Induced Neurotoxicity 
 
The results of the lidocaine test on rat TG 
neurons (SD rat) with a total cell count of 12,920 
cells in each group, after experimenting with 
Saline (2Ca/Na), Lidocaine at various 
concentration levels, and Capsaicin 10 µM for 24 
hours, showed that the death of neurons 
increased with the concentration of the drugs. 
The percentages of cell death were as follows: 
Saline 1.56%, Lidocaine 10mM 39.83%, 
Lidocaine 20mM 75.20%, and Lidocaine 50mM 
89.90%. In comparison, Capsaicin 10µM resulted 
in 78.27% cell death as a positive control. These 
findings indicate that the death of neurons due to 
Lidocaine occurs at a high rate starting from a 
concentration of 20 mM and above (P<0.03) (Fig. 
1). 
 
The lidocaine acts on neurons by being absorbed 
through the cell wall (lipid bilayer) into the 
cytoplasm to block sodium channels (Na+ 
channels) on the cell surface [13]. The study 
found that the cell membrane started to be 
destroyed, leading to the breakdown of neurons. 
Subsequently, the nuclei of the neurons were 
observed disintegrating into small lumps and 
eventually disintegrating completely. This was 
demonstrated in the results of the experiment 
using a fluorescence microscope (confocal 
microscope) showing the TG neuron nucleus 
capturing the blue fluorescence (DAPI) as 
depicted in the picture below (Fig. 2). 
 
Comparing the mean values of the cells in each 
experimental group, it was found that the 
increase in dead cells in the group without 
lidocaine was not statistically significant. The 
other group of cells that received lidocaine were 
found to be statistically related (P<0.03). 

 
Table 1. Comparison of mean values in a one-sample t-test 

 

Variables Mean SD Sig 95% CI 

Lower Upper 

Saline 
10 mM Li 
20 mM Li 
50 mM Li 
10 µM cap 

40.40 
1029.40 
1943.40 
2271.40 
2026.60 

37.43 
712.66 
1423.81 
1625.01 
1501.02 

0.73 
0.03 
0.03 
0.03 
0.03 

-6.08 
144.52 
175.49 
253.69 
162.83 

86.88 
1914.28 
3711.31 
4289.11 
3890.37 
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Fig. 1. The expression of cell death after 24 hours of treated with lidocaine is shown. (Aa) The 
control group treated with saline shows surviving cells. (Ab) The group treated with 10 mM 
lidocaine shows many dead cells. (Ac) The group treated with 20 mM lidocaine shows even 

more dead cells. (Ad) The group treated with 50 mM lidocaine shows almost all cells dead. (B) 
The percentage of cell death in various concentrations of lidocaine is shown in the bar chart. 

Capsaicin is used as the positive control 
 

 
 

Fig. 2. DAPI staining of nuclei (blue fluorescent dye). (A) The normal nucleus of the TG neuron 

(blue), DIC and Merged, (B) Photograph of TG neuron shows nuclear fragmentation (blue) after 

treated with lidocaine, DIC and merged 
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Table 2. Comparison of mean values in a one-sample t-test 
 

Variables Mean SD Sig 95% CI 

Lower Upper 

Naïve 
Saline 
1% lidocaine 
2% lidocaine 
5% lidocaine 

2 
10 
19 
63.80 
86.60 

1.581 
1.581 
8.860 
39.695 
47.574 

0.23 
0.00 
0.01 
0.02 
0.01 

-96 
7.04 
7.00 
13.51 
26.53 

2.96 
10.96 
29.00 
112.09 
145.67 

 

 
 

Fig. 3. Expression of ATF3 immunoreactivity (ATF3 IR) in the nuclei of primary TG neurons in 
the maxillary nerve (V2) area after 3 days of lidocaine injection in the infraorbital region. (Aa) 

Photograph of neurons in the trigeminal ganglion showing ATF3 IR (red, Cy3 filter) treated with 
saline (2Ca/Na), DIC, and merged. (Ab) Photograph of neurons in the trigeminal ganglion 

showing ATF3 IR (red, Cy3 filter) treated with 1% lidocaine, DIC, and merged. (Ac) ATF3 IR 
(red, Cy3 filter) treated with 2% lidocaine, DIC, and merged. (Ad) ATF3 IR (red, Cy3 filter) 
treated with 5% lidocaine, DIC, and merged. (Ae) Photograph of neurons in the trigeminal 
ganglion showing ATF3 immunoreactivity (red, Cy3 filter) treated with capsaicin, DIC, and 

merged (the injured positive control). (B) The bar chart shown the ATF3 IR expression in TG 
neurons changing with each concentration of lidocaine analyzed. ATF3-positive neurons were 

significantly increased in the ipsilateral (P<0.01); compared with control. Scale bar = 50 μm 
 

3.2 Nerve Injury by Lidocaine 
 
After injecting lidocaine into the trigeminal nerve 
in the infraorbital area of the rats, 
immunohistochemistry (IHC) was performed to 
study Activating transcription Factor 3 (ATF3) 
expression in neurons of the trigeminal ganglion 
after 3 days. The results showed that in the naïve 
group, there was minimal neuron injury 
compared to the injection groups. However, 2% 
lidocaine, 5% lidocaine, and capsaicin 10 µM 

caused nerve injury by inducing ATF3 expression 
within the nuclei of TG neurons in the maxillary 
area of the trigeminal ganglion, as depicted in 
Fig. 3.  
 
When comparing the mean values of the 
experimental rats in each sample group, it was 
found that the increase of neurons with ATF3 (+) 
in the experimental rats without any stimulation 
was not statistically significant. The rats that 
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received lidocaine were found to be statistically 
related (P<0.01). 
 

4. DISCUSSION 
 
Lidocaine is a specific drug widely used in the 
field of dentistry because it blocks the nerve 
action potential of nerves or neurons, including 
sensory and motor nerves. Lidocaine has unique 
properties, as it dissolves in fat, allowing it to be 
absorbed through the cell wall or lipid bilayer into 
the cytoplasmic membrane. Once inside, it can 
block the sodium channel, preventing sodium 
ions from passing through. This blockade inhibits 
the action potential from being carried out for a 
period of time until the drug is metabolized, 
typically within 2 hours [13,14]. Lidocaine, which 
is widely used today, may be toxic to the nervous 
system in experiments at a concentration of 10 
mM or higher. After directly incubating lidocaine 
with the TG neurons of the experimental SD rat 
at various concentrations (P<0.03) and 
Capsaicin 10 µM, a large amount of cell death 
occurred depending on the concentration, similar 
to previous reports in another cell line in vitro 
[15,16]. In the intracellular pathway, lidocaine 
acts on neurons by being absorbed through the 
cell wall (lipid bilayer) into the cytoplasm to block 
sodium channels (Na+ channels) on the cell 
surface. The study found that the cell membrane 
started to be destroyed, leading to the 
breakdown of neurons. Subsequently, the nuclei 
of the neurons were observed disintegrating into 
small lumps and eventually disintegrating 
completely, with nuclei fragmentation occurring. 
This action may include direct membrane 
disruption, activation of p38 mitogen-activated 
protein kinase involved in apoptosis [1,2], 
delayed mitochondrial dysfunction and apoptosis 
[3,4,17], an increase in intracellular Ca+2 as a 
mechanism of neuronal toxicity [5,18], and 
activation of caspase3/-7 triggering apoptosis [6]. 
Lidocaine may cause changes in cytoplasmic 
calcium homeostasis and mitochondrial 
membrane potential [7]. In addition to releasing 
intracellular Ca+2 ions, the effect of lidocaine is 
sufficient to release Calcitonin gene-related 
peptide (CGRP), a key component of neurogenic 
inflammation, warranting investigation into the 
role of TRPV1 and TRPA1 in lidocaine-induced 
neurotoxicity [8,19]. In vitro, cell apoptosis 
occurred via the intrinsic pathway, but the 
mechanism of nucleus fragmentation in the TG 
neuron is still unknown. It may be caused by 
apoptosis factors released from mitochondria 
binding to the nucleus and DNA, leading to 

fragmentation [20,21]. This apoptosis pathway 
still needs further validation.  
 
The peripheral nerve damage induces change in 
gene expression in neurons, including ATF3 [22]. 
ATF3 is a neuronal marker of nerve injury or 
damage. The rat model of inferior alveolar nerve 
and mental nerve transection (IAMNT) showed 
the expression of ATF3 immunoreactivity (IR) in 
the TG neurons [23]. In primary neurons of 
dorsal root ganglion (DRG), ATF3 expression 
was also found in cases of peripheral axotomy, 
cell stress, or inflammation [24,25,26]. The key 
finding of our study indicates that peripheral 
nerve injury results in ATF3 immunoreactivity 
expression in the nucleus of trigeminal ganglion 
neurons. The results indicate that even a clinical 
concentration of lidocaine (2%) can cause 
peripheral nerve injury in rat models (P<0.02). 
Researchers believe that the injection may 
induce tissue damage, inflammation, and 
peripheral nerve injury. The data suggest that 
injecting lidocaine into peripheral nerve endings 
may lead to nerve injury and neuropathic pain 
[9,10,27,28,29,30]. In normal conditions, our 
study showed that a few cells with ATF3 
immunoreactivity have been found in naïve rats. 
This result may be consistent with previous 
reports, as ATF3 has been detected in the nuclei 
of a very small percentage of primary sensory 
neurons in the dorsal root ganglion of uninjured 
rats [31,32].  
 

5. CONCLUSION 
 
Lidocaine may induce neurotoxicity and 
peripheral nerve injury either In vitro or In vivo at 
clinical concentrations or in cases of overdose. 
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