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Abstract 

 
Sugar, produced from cane or beet, is a vital energy source and a globally traded commodity. Most business 

happens in a futures exchange market where speculators, hedgers, and institutional consumers and producers, 

make decisions based on their understanding of the future supply and demand situation. Sugar is sometimes 

bought and sold before the cane or beet is planted. Hence, improving sugar production forecast accuracy is 

vital to maximize gains and enable effective planning. The study considered the annual sugar production total 

as a function of the monthly output rather than a scalar quantity and analyzed historical data using three 

functional time series techniques. In particular, the methods used for k-steps and dynamic updating prediction 

of sugar production include Local Polynomial Regression (LPR), Ridge Regression (RR), and Penalized Least 
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Squares (PLS). The performance of the three models was compared to that of the automatic ARIMA method 

using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) measures to establish 

the suitability of each technique in sugar production forecasting. The LPR, RR, and PLS outperformed the 

ARIMA method in all three cases. However, the prediction accuracy was lower for highly volatile datasets 

from countries that overly depend on rainfall for cane development. 

 

 

Keywords: Local polynomial regression; ridge regression; penalized least squares; functional time series. 

 

1 Introduction 
 

Most of the global sugar trade occurs in a futures market setting where parties buy or sell the commodity through 

financial contracts that obligate them to execute the agreement at a future date. In recent years, the sugar market 

has been one of the most volatile alongside forex and equities. Participants in the sugar futures market make key 

trading decisions based on their knowledge of future production and demand situations. Hedgers, for example, are 

in the business to reduce the risk of financial loss and maximize the value of their assets from price movements. 

While speculators intend to make profits from price changes [1]. Significantly large variations in sugar production 

forecasts could have financial ramifications for various market parties. Hence, there is a need to consistently 

improve methods of predicting output.  

 

Irrespective of the prediction model chosen, the number of historical values used is a key parameter in determining 

the accuracy of the final forecast. Insufficient past data makes the model less flexible, but a large volume of 

historical observations can also be troublesome in nonparametric statistics due to the asymptotic patterns of 

exponentially decaying estimates. According to Shang and Hyndman [2] functional ideas, such as splitting the 

time series into several segments, effectively resolve the problem that arises from incorporating a large volume of 

past data in a forecasting model. Many time series also evolve in a constantly changing environment where data 

patterns vary over time. Hence, it is reasonable to design methods that consider possible alterations that affect the 

study phenomenon. 

 

Different methodologies have been applied to forecast sugar and sugarcane output and yields during the last 

decade. One prominent method is the random forest algorithm, which has been implemented to predict yields for 

various crops, including mangoes and switch grass [3], [4]. Despite its extensive application, the technique has 

produced mixed results regarding prediction accuracy. Garc´ia-Gutierrez et al. [5] noted that while random forest 

models have demonstrated significant predictive power in numerous cases, there have been several instances 

where conventional time series forecasting algorithms outperformed them. 

 

Mehmood et al. [6] applied the ARIMA time series technique to forecast sugarcane production in Pakistan. Using 

the Box-Jenkin methodology, the study fitted an ARIMA (2, 1, 1) model on 71 yearly cane output data to develop 

a k-step ahead forecast for the next 12 years’ annual sugarcane crop outturn. This approach highlighted the 

ARIMA model’s robustness in providing reliable forecasts over an extended period. 

 

Paswan et al. [7] combined the ARIMA technique with ANN to create a model for predicting sugarcane output in 

the Bihar region of Pakistan. The study utilized 76 observations for training and the remaining five data points for 

testing the models’ accuracy. It found that the ANN method outperformed ARIMA in forecast accuracy using 

common evaluation metrics, including the root mean squared error (RMSE) and the mean absolute percentage 

error (MAPE), particularly producing a smaller MAPE and RMSE. 

 

Beyond traditional time series models, geospatial and remote sensing techniques have also been explored for yield 

forecasting. Bezuidenhout and Singels [8] used satellite mapping to predict sugarcane yields in South Africa. The 

study combined remote sensing techniques with conventional statistical models, requiring frequent satellite 

flyovers to capture the desired images and identify crop changes, an exercise noted to be potentially expensive in 

the long run. Luciano et al. [9] also used remote sensing techniques to predict cane yield in Brazil. They 

incorporated several agronomic and meteorological variables using the random forest model to enhance 

predictions from Landsat images, taking four years to calibrate the model for actual yield estimation. 
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Other innovative approaches have contributed to the diversity of methodologies in sugarcane yield forecasting. 

Gupta and Agarwal [10] modeled sugar output using multivariate linear regression on a time series of annual 

production totals collected between 1931 and 2018. The analysis considered various factors, including milling 

capacity, cane tons per hectare yields, cane crushed volumes, and area under cane. The researchers split the 

historical data into two segments, using 80 percent as the training sample and the remaining 20 percent for model 

validation. Similarly, Megha et al. [11] set out to identify the most suitable approach for predicting sugar 

production in India using a 36-year dataset collected between 1990 and 2015. They fitted several linear and non-

linear methods, concluding that the cubic model outperformed all others in prediction accuracy. 

 

Several studies within the East African setup have also aimed to develop frameworks for forecasting sugar or 

sugarcane crop outturn. Kwamboka et al. [12] modeled sugarcane yields in Kenya using the seasonal ARIMA 

(SARIMA) methodology, selecting SARIMA (0,1,1) (0,0,0) 12. The study recommended adopting alternative 

techniques to provide comparative forecasts. Mwanga et al. [13] also predicted Kenya’s sugarcane crop yield 

using the seasonal ARIMA technique, choosing SARIMA (2,1,2) (2,0,3) 4 for quarterly yield forecasting.  

 

In Uganda, Yuma et al. [14] evaluated three machine learning techniques, including the random forest algorithm, 

decision tree methodology, and multiple linear regression, to establish the most suitable method for cane yield 

estimation. They found that the random forest methodology, which provided up to 94.6 percent accuracy, was the 

most suitable model for forecasting Ugandan cane yields. The study recommended future investigations employ 

more data and explore web-based machine-learning techniques and deep-learning methods to improve forecast 

accuracy. 

 

Most studies have relied on ARIMA models, which perform well for the short-term point forecast but rapidly 

accumulate errors, leading to less reliable long-term predictions. Again, the majority of the investigations have 

concentrated on sugarcane yield forecasting, not directly predicting sugar output. Studies have also shown that 

functional time series models outperform conventional time series approaches in producing more accurate 

forecasts in other sectors [15]. 

 

Other researchers modeled sugar and sugarcane production using remote sensing and other geospatial information 

systems (GIS) crop mapping techniques. The GIS or remote sensing technique could be expensive, especially 

when it involves flying drone cameras over the fields every few days. Also, sugarcane takes 12-19 months to 

mature in Africa, making it difficult to distinguish the current year from next year’s crop by only examining 

satellite images. Also, the model calibration to enable Landsat imagery in crop prediction takes a long time before 

a suitable solution is obtained.  

 

Additionally, most recent investigations have been conducted outside the African continent. In some countries, 

such as Brazil, sugarcane production is almost fully mechanized, unlike in many African producer nations. While 

some forecasting models developed outside Africa could be applied to project sugar output in the continent, others 

may not be directly useful.   

 

The choice of the models proposed in this study is based on the comparative analysis from previous studies. Shang 

and Hyndman [15] showed that the PLS and RR produced more accurate functional time series forecasts than 

other methods such as block moving, conventional time series forecast, and the ordinary least squares. Also, 

Kihara [16] proposed local polynomial regression as a suitable solution for estimating trends when the underlying 

distribution cannot be explicitly specified. In our case, the underlying distribution of the sugar production trends 

in the three countries is unknown. Hence the need to train, test, and compare the performance of several models 

to identify the most appropriate strategy for adoption. 

 

2 Methodology 
 

The study analyzed data collected between 1990 and 2023 from the international sugar organization, Eswatini 

Sugar Association, and Agriculture and Food Authority-Kenya. Production conditions differ in various locations 

across the region. In East Africa, sugar milling happens all year in most countries, while in southern Africa, most 

sugarcane harvesting and processing happens between April and December. Also, in some producer states, the 

crop is fully irrigated, and cane development is more mechanized. Therefore, this study used data from Kenya, 

South Africa, and Eswatini, representing the varied nature of the sugar production landscape within Sub-Saharan 
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Africa. South Africa and Eswatini are surplus producers, while Kenya is a net deficit country. The weather patterns 

are also different making the three suitable representatives of the industry representation.  

 

2.1 Local Polynomial Regression (LPR) 
 

Local Polynomial Regression (LPR) is essential for analyzing random variables with unknown distributions. For 

random pairs (𝑌0, 𝑌1), . . . , (𝑌𝑛−1, 𝑌𝑛) the dependent variable  𝑌𝑖 follows the model: 

 

𝑌𝑖  =  𝑚(𝑌𝑖−1)  +  𝑣(𝑌𝑖−1)
1

2 𝜖𝑖                                                                                                                 (1) 

 

where 𝜖𝑖  is an independent and identically distributed standard normal random variable; 𝑣(·) is the variance 

function; and 𝑚(·) is the function to be estimated.  

 

Let 𝑌𝑖 be the annual sugar production for the ith year, represented as; 

 

𝑌𝑖   = ∑ 𝑥𝑖𝑗
𝑝
𝑗=1                                                                                                                                          (2) 

 

where 𝑥𝑖𝑗  denotes the monthly sugar production for month 𝑗  in year 𝑖 with 𝑝 being the number of production 

months annually. Assuming that the 𝑌𝑖 ′𝑠 have a common but unknown probability distribution function 𝑓 for all  

𝑖′𝑠 . The researcher uses weighted least squares to fit a polynomial of degree 𝑞  and approximate the kernel 

estimator �̂�(𝑌; 𝑞, ℎ) for random variable pairs (𝑌𝑖  , 𝑌𝑖−1).  
 

The bandwidth ℎ satisfies the limiting conditions: 

 

lim ℎ
𝑛→∞

= 0  and  lim
𝑛→∞

𝑛ℎ = ∞ 

 

The coefficients �̂�  = (𝛽0̂, … , 𝛽�̂�)
𝑇

  are obtained by minimizing 

 

∑ (𝑌𝑖 − ∑ 𝛽𝑗(𝑌𝑖−1 − 𝑐)𝑗𝑞
𝑗=0 )

2
 𝐾ℎ(𝑌𝑖−1 − 𝑐)𝑛

𝑖=1                                                                                                      (3) 

  

Subject to the 𝛽𝑗  coefficients and 𝐾ℎ(𝑌𝑖  −  𝑐) is a Gaussian kernel function of the form;  

 

𝐾ℎ(𝑌𝑖 − 𝑐) =
1

√2𝜋ℎ2
exp (−

(𝑌𝑖 − 𝑐)2

2ℎ2
)                     (4) 

 

where c is the point at which the kernel is centered and h is the bandwidth. 

 

The estimators of the model coefficients βj, for example, the estimator of β1 regression coefficient at a particular 

point c, is then obtained as follows: 
 

 �̂�(𝑐; 𝑞, ℎ) = 𝑒1
𝑇(𝑋𝑐

𝑇𝑊𝑐𝑋𝑐)−1𝑋𝑐
𝑇𝑊𝑐𝑌 = 𝑒1

𝑇�̂�𝑗(𝑐)                  (5) 

 

where 𝑌 is the response set, 𝑊𝑐 is an 𝑛 × 𝑛 diagonal matrix of weights, 𝑋𝑐 is 𝑛 × (𝑞 + 1) design matrix with 1s 

in the first column; and  𝑒1 = [1 0 … 0]𝑇 [16]. 
 

After estimating the  �̂�𝑗 coefficients, the predicted annual sugar production for year 𝑛 is obtained as: 

 

 𝑌𝑛 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = �̂�0 + 𝛽1̂𝑌𝑛−1 + �̂�2𝑌𝑛−1
2 + �̂�3 𝑌𝑛−1

3                   (6) 
 

2.2 Ridge Regression 
 

The Ridge Regression (RR) framework modifies the standard linear regression model by introducing a constant 

𝜆 to the diagonal elements of the matrix (𝑋𝑇𝑋). The linear regression model �̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 is improved to 

obtain the RR equation given as: 
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 �̂�𝑟𝑖𝑑𝑔𝑒 = (𝑋𝑇𝑋 + 𝜆𝐼𝑝)
−1

𝑋𝑇𝑌                                 (7) 

  

The �̂�𝑟𝑖𝑑𝑔𝑒 parameters are then obtained by minimizing  

 

 𝑆𝑦 = ∑ (𝑌𝑖 − 𝑌�̂�)
2

+ 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1
𝑛
𝑖=1                                   (8) 

 

The penalty term 𝜆, restricts the �̂�𝑟𝑖𝑑𝑔𝑒  parameters, resulting in a reduction of the sum of squared residuals. If the 

covariates are independent, then  

 

 𝑋𝑇𝑋 = 𝑛𝐼𝑝 ,  leading to �̂�𝑟𝑖𝑑𝑔𝑒 =
𝑛

𝑛+𝜆
   �̂�𝑂𝐿𝑆,  

 

where �̂�𝑟𝑖𝑑𝑔𝑒  is the ridge regularization estimator, 𝑛 is the number of observations, and �̂�𝑂𝐿𝑆 is the ordinary Least 

squares estimator. The degrees of freedom associated with the regularization parameter 𝜆 can be expressed as  

𝑑𝑓(𝜆) = 𝑡𝑟 (𝑋(𝑋𝑇𝑋 + 𝜆𝐼𝑝)
−1

 𝑋𝑇) =  ∑
𝑑𝑗

2

𝑑𝑗
2+𝜆

𝑝
𝑗=1   

 

Where 𝑑𝑓(𝜆) is the degrees of freedom as a function of 𝜆, 𝑋  is the design matrix of input features , 𝐼𝑝 is the 

identity matrix of size 𝑝 × 𝑝 and 𝑑𝑗  are the singular values of the matrix 𝑋.  Additionally,  the variance-covariance 

matrix is given by: 

 

 𝑣𝑎𝑟(�̂�𝑟𝑖𝑑𝑔𝑒) = 𝜎2(𝑋𝑇𝑋 + 𝜆𝐼𝑝)
−1

𝑋𝑇𝑋 (𝑋𝑇𝑋 + 𝜆𝐼𝑝)
−1

                                  (9) 

 

When 𝜆 = 0, there is no penalization, and all the 𝑝 parameters are retained . For 𝑝 = 2, RR corresponds to a circle,  

∑ 𝛽𝑗
2 < 𝑐

𝑝
𝑗=1 . Future production values are predicted as; 

 

 �̂� = 𝑋�̂�                                (10) 

 

where 𝑌 and 𝑋 are the future response and design matrix, respectively. 

 

2.3 Penalized Least Squares 
 

Penalized Least Squares (PLS) is an improvement of the Ordinary Least Squares (OLS) approach designed to 

reduce over-fitting and enhance curve smoothness. Studies by Shang and Hyndman [15] and Kan et al. [17] 

showed that PLS provides more accurate forecasts than OLS when dealing with longitudinal data.  

 

We assume the random variable 𝑌𝑖  is associated with 𝑌𝑖−1 and that there is an unknown nonlinear interrelationship 

between 𝑌𝑖 and 𝑌𝑖−1. The random variables are modeled as:  

 

 𝑌𝑖 = 𝑓(𝑌𝑖−1) + 𝜖𝑖                  (11) 

  

where 𝜖𝑖  is independent and identically normally distributed with zero mean and constant variance. 𝑌𝑖   is the 

annual sugar production for the 𝑖th year. In OLS, 𝛽 and 𝑓(𝑌𝑖−1) are estimated by minimizing: 

 

 𝑆(𝑓) =
1

𝑛
∑ (𝑌𝑖 − 𝑓(𝑌𝑖−1))

2𝑛
𝑖=1                    (12) 

  

The PLS approach introduces a penalty function to obtain a function 𝑓 that best interpolates 𝑓(𝑌𝑖−1) with an 

acceptable degree of smoothness. In PLS, the function to be minimized is: 

 

 𝑆𝜆(𝑓) =
1

𝑛
∑ (𝑌𝑖 − 𝑓(𝑌𝑖−1))

2
+ 𝜆𝐽2(𝑓)𝑛

𝑖=1                   (13) 

 

 where 𝐽2(𝑓) is the penalty designed to achieve smoothness in 𝑓. The penalty is approximately equal to the square 

of the second derivative of the function 𝑓.   𝑆𝜆(𝑓) is broken down into two parts: the first represents the goodness 
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of fit, while the second, which contains the 𝜆 parameter, measures the smoothness.  An increase  𝜆 emphasizes 

smoothness, while a decrease improves the goodness of fit. The function 𝑓𝜆(𝑌𝑖) is approximated as: 

 

 𝑓𝜆(𝑌𝑖) = 𝜃0 + ∑ 𝜃𝑗𝑌𝑖−1
𝑛
𝑗=1 + ∑ 𝛿𝑗𝐵𝑗(𝑌)𝑛

𝑗=1                  (14) 

 

where 𝐵𝑗  is the basis function and 𝑌 = [𝑌1, … , 𝑌𝑛]𝑇.  Fourier series basis functions effectively represent periodic 

functions and are suitable for signal processing [18]. Also, Saputro et al., [19] noted that the Fourier series 

trigonometric functions cosine and sine are flexible and can easily adjust to the local patterns in data. Hence, the 

cosine and sine trigonometric polynomials are suitable for modeling data when the underlying distribution is 

unknown. Therefore, 𝐵𝑗  (𝑌𝑖−1) = sin (
𝑗𝜋𝑌𝑖−1 

𝑝
) or 𝐵𝑗  (𝑌𝑖−1) = cos (

𝑗𝜋𝑌𝑖−1

𝑝
) , where 𝑝 is the period of the function, 

in this case, the number of production months in a year. Parameter 𝜆 is obtained by minimizing: 

 

 
𝑉(𝜆) =

(
1

𝑛
)‖𝐼−𝐻(𝜆)) 𝑌‖2

[(
1

𝑛
)𝑡𝑟(𝐼−𝐻(𝜆))]

2  
               (15) 

 

which is the Generalized Cross Validation (GCV) function, and 𝐻(𝜆) is the hat matrix. 

 

 𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇                (16) 

 

Matrix 𝐻 projects the observed values 𝑌 onto the space spanned by the columns of  𝑋, giving the fitted values �̂�. 

The predicted annual sugar output is obtained by plugging in the calculated values of the coefficients into the 

equation               (14), which serves as the forecast of 𝑌𝑖 . 

 

The performances of the LPR, RR, and PLS techniques proposed for predicting future years’ sugar production are 

then compared to that of the ARIMA model, the most common prediction method used in the sugar industry.  The 

automatic ARIMA model handles both seasonal and non-seasonal data and is generally expressed as ARIMA 

(p,d,q)(P,D,Q)s where p is the order of the non-seasonal autoregressive 24 (AR) part, d is the degree of non-

seasonal differencing, and q is the order of the non-seasonal moving average (MA) part. Also, P is the order of 

the seasonal AR, D is the degree of seasonal differencing, Q is the order of the seasonal MA, and s is the seasonal 

period. Ideally, an ARIMA (p,d,q)(P,D,Q)s model would be of the form; 

 

 
Φ(𝐵). Φ𝑠(𝐵𝑠). ∆𝐷 . ∆𝑠

𝐷. 𝑦𝑡 = Θ(𝐵). Θ𝑠(𝐵𝑠). 𝜖𝑡 

 

               (17) 

 where: 

 

Φ(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 −  … . −𝜙𝑝𝐵𝑝  is the non-seasonal AR part, 

Φ𝑠(𝐵𝑠) = 1 − Φ1𝐵𝑠 − Φ2(𝐵𝑠)2 − ⋯ − Φ𝑃(𝐵𝑠)𝑃 is the seasonal AR part.  

∆𝐷= (1 − 𝐵)𝐷  is the seasonal differencing operator, ∆𝑠
𝐷= (1 − 𝐵𝑠)𝐷  is the seasonal differencing operator, 

Θ(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞  is the non-seasonal MA polynomial, 

Θ𝑠(𝐵𝑠) = 1 + Θ1(𝐵𝑠) + Θ2(𝐵𝑠)2 + ⋯ + Θ𝑄(𝐵𝑠)𝑄 is the seasonal MA polynomial,  

 

𝑦𝑡  is the value of the time series at time 𝑡, 𝜖𝑡 is the white noise at time 𝑡, 𝐵 is the backshift operator for non-

seasonal differencing and 𝐵𝑠 is the backshift operator for seasonal differencing.  

 

3 Results and Discussion 
 

Table 1 gives a summary of the descriptive statistics of the data used in the study. Among the three countries, 

South Africa is the largest sugar producer, followed by Eswatini. 

 

Also, from Table 1, Kenya’s sugar production trend has the highest volatility with a 20% coefficient of variation 

(standard deviation as a percentage of the mean). The Eswatini dataset has the lowest volatility (13%) compared 

to South Africa (17%) and Kenya.  

 

    

 



 
 

 

 
Agwingi et al.; Asian J. Prob. Stat., vol. 26, no. 9, pp. 27-38, 2024; Article no.AJPAS.122028 

 

 

 
33 

 

Table 1. Annual Sugar Output 1990 to 2023 

 

Country Mean Standard 

Deviation 

Minimum Maximum Median 

Eswatini 586,971 77,887 413,945 746,981 594,921 

Kenya 499,024 98,254 328,844 796,554 489,603 

South Africa 2,119,434 363,183 1,259,208 2,844,165 2,121,366 

 

3.1 Model Performance for K-steps Sugar Production Forecasting  
 

To evaluate the performance of the LPR, RR, and PLS models, annual production data (variable Y) was 

normalized using the standard deviation approach as: 

 

 𝑌𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑌 − 𝜇𝑌

𝜎𝑌

                 (18) 

 

The most appropriate parameters in each case were determined though cross validation. The results are shown in 

Table 2. 

 

Table 2. Model Performance for K-Step Sugar Production Forecasting 

 

Local Polynomial Regression 

Country Bandwidth 

(h) 

LPR order MAPE 

Training 

MAPE Test RMSE 

Training 

RMSE Test 

Eswatini 0.25 0 3.6696 7.0201 26914 63681 

1 3.1761 9.1728 23379 70766 

2 2.4905 5.8759 18645 48936 

3 1.6486 5.3566 12264 47784 

4 0.9771 13.0971 10538 102028 

5 1.0178 105.1289 10667 787355 

Kenya 0.25 0 6.0882 20.9415 34393 141532 

1 4.9932 29.3922 29346 156815 

2 4.3095 38.4024 26819 208070 

3 3.2915 47.5184 20499 252748 

South Africa 0.25 0 10.3118 6.6104 256725 142348 

1 9.4728 14.9377 227576 322420 

2 7.2571 18.1532 189139 381917 

3 6.5453 11.6525 162504 245142 

4 5.0809 32.3652 136196 780787 

Penalized Least Squares 

 𝜆 𝛼 MAPE 

Training 

MAPE Test RMSE 

Training 

RMSE Test 

Eswatini 0.28 0 3.6194 5.9520 24522 45400 

1 6.5324 7.1995 45196 56206 

0.1 4.0392 5.8812 26762 45841 

Kenya 0.08 0 5.5549 31.8729 31699 174329 

1 6.4341 28.6934 36150 160465 

0.1 5.5939 31.5715 31858 172891 

South Africa 0.1 0 9.3030 9.1949 240667 221719 

1 11.3004 9.2498 273080 194749 

0.1 9.4033 8.9816 241565 215493 

0.2 9.5490 8.7172 243055 210121 

0.3 9.6961 8.5516 245163 205399 

 

Ridge Regression 
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Local Polynomial Regression 

Country Bandwidth 

(h) 

LPR order MAPE 

Training 

MAPE Test RMSE 

Training 

RMSE Test 

 𝜆 MAPE 

Training 

MAPE Test RMSE 

Training 

RMSE Test 

Eswatini 0.08 6.2148 8.1095 44137 66070 

Kenya 0.10 5.0714 18.0759 39755 119759 

South Africa 0.04 14.9503 10.0011 350660 220955 

Automatic ARIMA 

 MAPE (Training) MAPE 

(Test) 

RMSE (Training) RMSE 

(Test) 

Eswatini 5.1227 9.8293 40134 75878 

Kenya 9.6899 29.3891 54893 158417 

South Africa 14.4385 12.1043 346042 245506 

 

In all three cases, 25 percent of the range was selected as the most appropriate bandwidth through cross-validation. 

LPR models of degrees 0 to 5 were fitted to the data successively, and the following results were obtained. From 

Table 2, the quadratic local polynomial (order 2) outperformed both the Nadaraya-Watson kernel regression (order 

0) and the linear local polynomial regression (order 1) for Eswatini. The cubic polynomial (order 3) was the most 

accurate, achieving a training MAPE of 1.6486% and a test MAPE of 5.3566%, with RMSE values of 12,264.4 

and 47,783.6. Higher-order polynomials (order 4 and above) overfitted the training data, leading to poor 

generalization. 

 

For South Africa, the Nadaraya-Watson kernel regression (order 0) was the most suitable, with a training MAPE 

of 10.3118% and a test MAPE of 6.6104%, showing consistent performance and lower error margins compared 

to higher-order models. Similarly, for Kenya, the Nadaraya-Watson kernel regression (order 0) provided the best 

results, with a training MAPE of 6.0882% and a test MAPE of 20.9415%, indicating reasonable forecasting 

accuracy. 

 

The most suitable values of the penalty λ were determined as 0.08 for Eswatini, 0.10 for Kenya, and 0.04 for 

South Africa. From the result in Table 2, the RR model achieved a MAPE of 5.0714% on the training data and 

18.0759% on the test data for Eswatini, with RMSE values of 39,755 and 119,759, respectively. For South Africa, 

the RR model resulted in a MAPE of 14.9503% on the training data and 10.0011% on the test data, with RMSE 

values of 350,660 and 220,955, respectively. Overall, the RR model fits the Eswatini sugar data better than the 

data for South Africa or Kenya. It provides highly accurate results for Eswatini and South Africa and a good 

forecast for Kenya's annual sugar output.  

 

The PLS model with α = 0.1 and λ = 0.28 achieved high accuracy for Eswatini, with a training MAPE of 4.0392% 

and a test MAPE of 5.8812%. RMSE values were 26,762 for training and 45,841 for testing, indicating an effective 

balance between fit and smoothness. For South Africa, the optimal PLS model used ridge regularization (α = 0) 

with λ = 0.1, resulting in a training MAPE of 9.3030% and a test MAPE of 9.1949%. The RMSE values were 

240,667 for training and 221,719 for testing. The lasso regularization (α = 1) model under-fitted the training data 

and may need feature engineering for better performance. For the Kenyan dataset, the best PLS model had α = 1 

and λ = 0.08, yielding a training MAPE of 6.4341% but a much higher test MAPE of 28.6934%. While it provided 

reasonable forecasts, it was less effective compared to the models for Eswatini and South Africa, reflecting 

difficulties in capturing Kenyan sugar production trends. 

 

ARIMA is the most widely used technique for forecasting sugarcane yields and production based on our 

investigations. It auto-ARIMA model provided accurate predictions for Eswatini's annual sugar production, with 

MAPE values of 5.1227% and 9.8293% and RMSE values of 40,134 and 75,878 for the training and test samples, 

respectively. However, the ARIMA method could not match the performance of the LPR, RR, and PLS 

techniques. Among the models, PLS (λ = 0.28, α = 0.1) proved to be the most suitable for Eswatini, with LPR and 

RR also outperforming auto-ARIMA. LPR (order 3, bandwidth = 0.25) achieved MAPE values of 1.6486% and 

5.3566%, while RR (λ = 0.08) resulted in MAPE values of 6.2148% and 8.1095%.  For Kenya, auto-ARIMA 

fitted the training data well (9.6899% MAPE) but performed poorly on the test data (29.3891% MAPE). Although 

none of the models were highly accurate for Kenya, RR (λ = 0.1) was the most effective, with MAPE values of 

5.0714% and 18.0759% for the training and test samples. In modeling the South African sugar data, PLS (λ = 0.1, 
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α = 0) was the best for forecasting yearly sugar output, outperforming other techniques, including auto-ARIMA, 

which under-fitted the data. RR and LPR models also showed lower RMSE compared to auto-ARIMA. Overall, 

LPR, RR, and PLS were superior to auto-ARIMA for k-step sugar production forecasting.  

       

3.2 Five-Year Annual Sugar Production Forecast 
 

We forecasted annual sugar production quantities for South Africa, Eswatini, and Kenya for the five years from 

2024 to 2028. 

 

The predicted pattern obtained using LPR, RR, and PLS are shown in Fig. 1 with 𝑌𝑡 being the actual output.  While 

the predicted production quantities are given Table 3 where the bold values are forecast obtained from the most 

suitable model. 

 

The PLS model (λ = 0.28, α = 0.1) is the best forecasting approach for Eswatini’s annual sugar output, providing 

the lowest error margins. Based on the selected PLS technique, Eswatini's sugar output is expected to rise 

gradually over the next three years (2024-2026). In 2027, output is predicted to be slightly lower than in 2026 but 

still above the long-term average production level.  
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Fig. 1. Actual (1990-2023) and Predicted (2024-2028) Sugar Output 

 

Table 3. Five year sugar production forecast using the proposed models (in metrics tons) 

 

Model 2024 2025 2026 2027 2028 

Eswatini 

LPR 635132 623012 607813 589380 567560 

RR 710567 655835 664158 611614 620140 

PLS 658831 666793 686043 674421 710540 

Kenya 

LPR 537676 538831 539985 541139 542293 

RR 473323 544630 586864 629036 487363 

PLS 657348 642293 592436 567096 552973 

South Africa 

LPR 2153064 2235038 2331690 2443849 2572345 

RR 2169082 2066650 1995415 2023522 2056982 

PLS 1941827 2034203 1687262 1601052 1906542 

 

On the other hand, Kenya’s sugar production trend has experienced significant shocks in recent years. Among all 

three countries, Kenya’s sugar output trend exhibits the highest volatility (20%), making it difficult to consistently 

and accurately predict the yearly sugar output. Even the selected ridge regression model (λ = 0.1), which produced 

the lowest error margins among all three techniques for forecasting the country’s yearly output, still had up 18% 

error margin.  Based on the chosen RR technique, annual production is expected to increase gradually between 

2024 and 2027. However, it could fall by about 23 percent in 2028. 

 

For South Africa, a PLS model with λ = 0.1 and assuming ridge regularization, is the best overall technique for 

predicting South Africa's yearly sugar production. The most suitable LPR and RR models were unreliable, as they 

significantly underfit the training dataset even after being optimized through cross-validation. Therefore, it may 

be necessary to do feature engineering on the South African data before implementing LPR or RR.  Using the 

selected model, South Africa's sugar production is predicted to be between 1.6 million and 2 million tons annually 

over the next five years. The historical data shows a standard deviation of 361,183, about 17% of the long-term 

average, indicating higher volatility than Eswatini (13%), but lower than Kenya. 

 

4 Conclusions and Recommendations 
 

The ARIMA model is the most common methodology for sugar, sugarcane quantity, and sugarcane yield 

forecasting. However, all the techniques suggested in this study outperformed the ARIMA in predicting the total 

annual sugar production in the three selected countries (South Africa, Kenya, & Eswatini). The LPR, RR, and 



 
 

 

 
Agwingi et al.; Asian J. Prob. Stat., vol. 26, no. 9, pp. 27-38, 2024; Article no.AJPAS.122028 

 

 

 
37 

 

PLS all produced significantly lower error margins and more consistent results when compared in terms of the 

MAPE and RMSE measures on the training and test samples. 

 

In particular, the PLS (𝜆 = 0.28;  𝛼 = 0.1) and PLS (𝜆 = 0.1;  𝛼 = 0) were the best overall models for forecasting 

future years’ sugar production volumes for Eswatini and South Africa, respectively. While RR (𝜆 = 0.1) was the 

chosen technique for predicting production outcomes for the Kenyan case. Still, all the proposed methodologies 

(LPR, RR, & PLS) and the auto-ARIMA methodology produced higher error margins when implemented on the 

Kenyan data than the Eswatini and South African sugar datasets.  Kenya’s sugar production data had the highest 

volatility (20%), adversely affecting the prediction accuracy. 

 

The Kenya sugar production trend showed more pronounced shocks (extreme values) than Eswatini and South 

Africa. In Kenya, sugarcane is grown under rain-fed agriculture, while the crop in Eswatini is almost fully 

irrigated. Whereas for South Africa, about 25% of sugar is produced from irrigated farms while the rest is rainfall-

dependent.  Also, the milling capacity is consistently increasing in Kenya but almost constant in Southern Africa.  

Therefore, we can conclude that overreliance on rainfall and milling capacity changes leads to increased volatility 

of sugar production, making the outcomes more difficult to predict. 

 

We recommend the PLS, LPR, and RR models for adoption in predicting annual sugar output in Eswatini, South 

Africa, Kenya, and the wider East and Southern Africa for countries with similar experiences.  Where cane 

production is overly dependent on rainfall, it could be important to investigate whether an additional categorical 

weather variable can improve the accuracy levels. Also, for highly volatile datasets, we recommend that the 

methods can be used together with dynamic updating models discussed in our other study to improve forecast 

accuracy. 
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