
 

_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: manojvarma57282@gmail.com; 
 
Cite as: Chhalotre, Rakesh, B. Samuel Naik, V C Karthik, Manoj Varma, Akarsh Singh, Balan C, and Ashish Gupta. 2024. 
“Evaluating Model-Assisted Estimators: A Comparative Study in High-Dimensional Survey Data”. Journal of Scientific Research 
and Reports 30 (9):707-18. https://doi.org/10.9734/jsrr/2024/v30i92398. 
 

 
 

Journal of Scientific Research and Reports 
 
Volume 30, Issue 9, Page 707-718, 2024; Article no.JSRR.123076 
ISSN: 2320-0227 

 
 

 

 

Evaluating Model-assisted Estimators: 
A Comparative Study in High-

dimensional Survey Data 
 

Rakesh Chhalotre a, B. Samuel Naik b, V C Karthik a,  

Manoj Varma a*, Akarsh Singh a, Balan C a  

and Ashish Gupta a 
 

a ICAR – Indian Agricultural Statistics Research Institute, New Delhi – 110012, India. 
b Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221 005, India. 

 

Authors’ contributions  
 

This work was carried out in collaboration among all authors. All authors contributed to the study 
conception and design. Material preparation, data collection and analysis were performed by authors 

RC, BSN, VCK, MV. The first draft of the manuscript was written by authors RC, BSN, AS, AG, BC 
commented on its improvement. Reviewing is done by authors BSN, RC, VCK, MV. All authors read 

and approved the final manuscript. 
 

Article Information 
 

DOI: https://doi.org/10.9734/jsrr/2024/v30i92398  
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  

peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/123076  

 
 

Received: 01/07/2024 
Accepted: 03/09/2024 
Published: 05/09/2024 

 
 

ABSTRACT 
 
Model-assisted estimators have gained significant attention due to their ability to efficiently utilize 
auxiliary information during the estimation process. These estimators rely on a working model that 
links the survey variable to the auxiliary variables, which is then fitted to the sample data to 
generate predictions. These predictions are subsequently integrated into the estimation procedures. 
In this study, were explores various model-assisted estimators including Generalized Regression 
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(GREG), Ridge regression, Lasso regression, CART (Classification and Regression Tree), Random 
Forest, Cubist and Principal Components Regression (PCR) estimator. The analysis involved 2,000 
samples of size 50 (n/N ≈ 10%) and employed a stepwise variable selection method to determine 
the most significant auxiliary variables, incrementally adding them to the model. The performance of 
these estimators was assessed using relative bias (RB), relative root mean square error (RRMSE) 
and relative efficiency (RE). Our findings reveal that tree-based models like CART and Random 
Forest and penalized regression estimators such as Ridge and Lasso display robustness with 
increased number of auxiliary variables. Among all the estimators, Random Forest consistently 
yielded the lowest RRMSE, particularly with five auxiliary variables, demonstrating superior 
efficiency. Conversely, the GREG estimator exhibited poor performance as the number of auxiliary 
variables increased. This study underscores the importance of selecting suitable model-assisted 
estimation procedures tailored to the data characteristics and the relationship between survey and 
auxiliary variables within this high-dimensional dataset. 
 

 

Keywords: Design consistency; GREG; CART; random forest; cubist; PCR; RB; RRMSE; RE. 
 

1. INTRODUCTION 
 
“The purpose of a sample survey is to gather 
information about a population by sample of that 
population. Since surveying an entire population 
can be costly, time-consuming, or impractical in 
some situation, sample surveys allow 
researchers to make inferences about the 
population's characteristics. One of the key 
purposes of sample surveys is to estimate 
various characteristics or parameters of a 
population, such as averages, proportions, totals, 
or variances. Population totals can be estimated 
unbiasedly using the well-known Horvitz–
Thompson estimator” [1]. “In the absence of non-
sampling errors, the Horvitz–Thompson 
estimator is unbiased, where the properties of 
estimators are assessed based on the sampling 
design, as discussed in” [2]. “However, in certain 
cases, the Horvitz–Thompson estimator can 
exhibit high variance. Its efficiency can be 
enhanced by incorporating auxiliary information 
that leverages the relationship between the 
survey variable Y and a set of auxiliary variables” 
𝑿  [3]. “This approach, known as model-assisted 
estimation, utilizes a working model to                   
construct point estimators. When the working 
model accurately captures the relationship 
between Y and the auxiliary variables, model-
assisted estimators are expected to be more 
efficient than the Horvitz–Thompson estimator” 
[4]. 
 
“The class of model-assisted estimators 
encompasses a diverse range of procedures, 
many of which have been extensively explored 
both theoretically and empirically in the literature. 
When the working model is a standard linear 
regression model, the resulting estimator is the 
well-known generalized regression estimator 

(GREG), as discussed by Särndal” [5]. 
Additionally, model-assisted methods have been 
developed using other approaches, including, 
panelise regression estimators such as ridge 
regression [6] and lasso regression [7].                        
Apart of these, machine learning based 
estimators are also available in literature such as 
principal component regression [8],                 
regression trees [9.10], random forests [11] and 
Cubist [12] 
 
“With the rapid advancements in information 
technology, now we can access to a diverse 
array of data sources, many of which encompass 
a vast number of observations across a wide 
range of variables. Traditionally, the properties of 
model-assisted estimators have been well 
established within the customary asymptotic 
framework of finite population sampling. This 
framework assumes that both the population size 
N and the sample size n increase indefinitely, 
while the number of auxiliary variables p remains 
fixed, implying that n must be large relative to p. 
However, this conventional approach is 
insufficient when dealing with high-dimensional 
data sets where p may be comparable to n, or 
even exceed it, i.e., p > n” [13]. A more suitable 
asymptotic framework would account for the 
scenario where p, in addition to N and n, also 
tends to infinity. In this context, [8] explored 
dimension reduction via principal component 
analysis and demonstrated the design 
consistency of the resulting calibration estimator 
and [14] describes feature selection techniques 
for high-dimensional data with very small sample 
sizes. More recently, [15] examined the 
properties of the Generalized Regression 
(GREG) estimator from a model-based 
perspective, allowing for p to diverge, while [16] 
investigated the asymptotic variance of the 
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calibration estimator as the number of calibration 
variables p approaches infinity. Dagdoug et al. 
[17] provided an empirical comparison of several 
model-assisted estimators using data from the 
Irish Commission for Energy Regulation (CER) 
Smart Metering Project that was conducted in 
2009–2010 (CER, 2011), first they generate 
study variable then applied different model-
assisted estimators and draw the conclusions. To 
establish a general consistency result for a class 
of model-assisted estimators when the number of 
auxiliary variables p is permitted to grow to 
infinity. This class encompasses not only the 
Generalized Regression (GREG) estimator but 
also model-assisted estimators that utilize 
random forest, CART (classification and 
regression tree), principal component regression, 
penalization methods, including ridge regression 
and lasso. Despite these advancements, there 
remains a significant research gap. Specifically, 
there is a lack of comprehensive comparative 
analyses that assess the performance and 
consistency of various model-assisted 
estimators, particularly machine learning-based 
approaches, under high-dimensional conditions 
where 𝑝  can exceed or be comparable to 𝑛 . 
Addressing this gap through a thorough 
comparative study would provide valuable 
insights into the effectiveness of different 
estimators in such high-dimensional settings. In 
this study, we utilize real data that already 
includes the study variable, eliminating the need 
to generate it for our analysis. We compare 
various model-assisted estimators using several 
evaluation criteria, including Relative Bias, 
Percent Relative Root Mean Square Error (% 

RRMSE), and Relative Efficiency with respect to 
the Horvitz–Thompson estimator. 
 

2. MATERIALS AND METHODS 
 

2.1 Data Description 
 
In this study, data were used regarding 
applicability on real world scenario. The Boston 
Housing dataset used in this study is publicly 
available on the UCI Machine Learning 
Repository. The original dataset was first 
published by Harrison and Rubinfeld [18], 
available:https://archive.ics.uci.edu/ml/datasets/H
ousing. The following figure shows all variables 
in this dataset. It consisted of 13 auxiliary 
variables with one study variable and 506 
observations. Description of Boston Housing 
dataset as given in list 1. 
 

2.2 Methodology 
 

We consider a finite population 𝑈 of size 𝑁, and 𝑠 
a sample selected from 𝑈  according to a 

sampling design 𝑑(𝑠). Let 𝜋𝑖 = 𝑃(𝑘 ∈ 𝑠) and 𝜋𝑖𝑗  = 

𝑃(𝑖, 𝑗 ∈ 𝑠) be the first and second-order inclusion 
probability for any units 𝑖 , 𝑗 ∈  𝑈 . We are 
interested in estimating 
 

𝑡𝑦  =  ∑ 𝑦𝑖

 𝑖∈𝑈

                                                     . . . (1) 

 

the population total of the survey variable Y. In 
the absence of non-sampling errors, the Horvitz– 
Thompson estimator is design-unbiased for 
𝑡𝑦 provided that  𝜋𝑖  ˃ 0 for all 𝑖 ∈  𝑈. 

 
List 1. Description of Boston housing dataset 

 

Code Description 

CRIM per capita crime rate by town 
ZN proportion of residential land zoned for lots over 25,000 sq. ft. 
INDUS Proportion of non-retail business acres per town 
CHAS Charles river dummy variable (= 1 if tract bounds river, o otherwise 
NOX Nitric oxides concentration (parts per 10 million)  
RM Average number of rooms per dwelling 
AGE Proportion of owner-occupied units built prior to1940 
DIS Weighted distance to five Boston employment centres 
RAD Index of accessibility to radial highways 
TAX Full-value property-tax rate per $ 10,000 
PTRATIO Pupil-teacher ratio by town 
B 1000 (BK-0.63)2 where Bk is the proportion of blacks by town 
LSTAT % lower status of the population 
MDEV Median value of owner-occupied homes in $1000’s 
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The Horvitz– Thompson estimator (𝑡̂𝜋): 
 

𝑡̂𝜋  =  ∑  
𝑦𝑖

𝜋𝑖
 𝑖∈𝑠

                                                      . . (2) 

 
Let ,  𝒙𝑖 = (𝒙𝑖1, 𝒙𝑖2, … , 𝒙𝑖𝑝)′  be the 𝒙 -vector of 

auxiliary variables associated with unit 𝑖 . The 

𝑁 × 𝑝  sampling design matrix is denoted 

by  𝑿𝑈  = ( 𝒙𝑖)𝑖∈𝑈   and its sample of size  𝑠 
denoted by  𝑿𝑠  = ( 𝒙𝑖)𝑖∈𝑠. 
 
In the Model-assisted estimation we assume 
following underlying model: 
 

 𝑦𝑖  =  𝑓(𝒙𝑖) +  𝑒𝑖 ,             𝑖 ∈  𝑈,                  … (3)         
                                
where, 𝑓(𝒙𝑖) is an any unknown function of 𝒙 and 
the error 𝑒𝑖 are independent noise variables with 

mean 0 and constant variances 𝜎2.  
 
The unknown function 𝑓(𝒙𝑖)  is estimated by 

𝑓(𝒙𝑖) from the sample data (𝒙𝑖 , 𝑦𝑖 ); 𝑖 ∈ 𝑠. Then 
the model-assisted estimator based on fitted 
model is: 
 

𝑡̂𝑚𝑎  =  ∑  𝑓(𝒙𝑖)

 𝑖∈𝑈

 +  ∑  
𝑦𝑖 − 𝑓(𝒙𝑖)

𝜋𝑖
 𝑖∈𝑠

          . . . (4) 

 

where, 𝑓(𝒙𝑖) denotes the predicted value of 𝑓(𝒙𝑖) 
under the working model. 
 
2.2.1 The GREG estimator  

 
Suppose that the regression function 𝑓(𝒙𝑖) is 

approximated by a linear combination of 𝑝 
auxiliary variables. The working model (4) 
reduces to 

 
 𝑦𝑖  =  𝒙𝑖𝜷 +  𝑒𝑖 ,             𝑖 ∈  𝑈,              . . . (5) 

 
here, 𝜷 is a vector of unknown coefficients. The 
least square estimate of 𝜷 at the population level 
is given by: 

 
𝜷̂ =
(𝑿𝑈

′𝑿𝑈)−𝟏𝑿𝑈𝒚𝑈                                             . . . (6)   

 
𝜷̂ = ( ∑ 𝒙𝑖 𝑖∈𝑈 𝒙𝑖

′
)−𝟏 ∑ 𝒙𝑖 𝑖∈𝑈 𝑦𝑖                     . . . (7)    

 
In sampling scenario, the 𝜷̂ cannot be computed 
because the y-values are recorded for sample 

units only. The estimate of 𝜷̂  at the                   
sample level can be estimated through following 
adjustment: 

𝜷̂𝒔  =    (∑  
𝒙𝑖 𝒙𝑖

′

𝜋𝑖
 𝑖∈𝑠

)

−1

 ∑  
𝒙𝑖𝑦𝑖

𝜋𝑖
 𝑖∈𝑠

                 . . . (8) 

 
Now the GREG estimator: 
 

𝑡̂𝑔𝑟𝑒𝑔  =  ∑  𝒙𝑖
′

 𝑖∈𝑈

𝜷̂𝒔  +  ∑  
𝑦𝑖 − 𝒙𝑖

′𝜷̂𝒔

𝜋𝑖
 𝑖∈𝑠

         . (9) 

 
Consistency of GREG estimator in high 
dimensional data: Consider a growing series of 
embedded finite populations {𝑈𝑣}  𝑣 ∈ 𝑁 , with 

sizes { 𝑁𝑣 } . For each finite population 𝑈𝑣 , a 
sample of size 𝑛𝑣  is selected based on a 
sampling design, which involves first-order 
inclusion probabilities 𝜋𝑖  and second-order 

inclusion probabilities 𝜋𝑖𝑗. In this framework, as 𝑣 

increases, the finite population sizes { 𝑁𝑣 }, the 
sample size and the number of auxiliary 
variables approach infinity.  
 
The following assumptions are required to 
establish the consistency of the GREG 
estimators in a high-dimensional setting. 
 

1) There exists a positive constant 𝐶  such 

that 𝑁𝑣
−1  ∑ 𝑦𝑖

2
𝑖∈𝑈𝑣

  <  𝐶. 

2) We assume that 𝑙𝑖𝑚𝑣→∞   
𝑛𝑣

𝑁𝑣
 = π ∈ (0, 1).  

3) There exists a positive constant 𝑘  such 

that 𝑚𝑖𝑛𝑖∈𝑈𝑣
  𝜋𝑖  ≥  𝑘 >  0; also, we assume 

that 𝑙𝑖𝑚 𝑠𝑢𝑝𝑣→∞  𝑛𝑣 𝑚𝑎𝑥 𝑖≠𝑗∈𝑈𝑣
 |𝜋𝑖𝑗  −

 𝜋𝑖𝜋𝑗  |  <  ∞.  

4) There exists a positive constant 𝐷  such 

that, for all 𝑖 ∈  𝑈𝑣 , ||𝑥𝑖  ||  ≤  𝐷 𝑝𝑣 ,  
where ||  ·  || denotes the usual Euclidean 
norm.  

5) We assume that ||𝛽̂||1  =  𝑂𝑃(𝑝𝑣), where 𝛽̂ 
is the least square estimator and || .  ||1 
denotes the L 1 norm. 

 

The first three assumption used by [19] to 
establish the consistency of GREG estimator in a 
fixed dimensional setting. The additional fourth 
and fifth assumption introduced for consistency 
of GREG estimator when 𝑝𝑣  grow to infinity. 
Under the above five assumption we can 
establish: 
 

1

𝑁
(𝑡̂𝑔𝑟𝑒𝑔 −  𝑡𝑦) = 𝑂𝑃 (√

𝑝𝑣
3

𝑛𝑣
)                       . . . (10)   

 

This result highlights the fact that the rate of 
convergence decreases as the number of 
auxiliary variables increases. The result assures 
that the GREG estimator can remain consistent 
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even if the number of auxiliary variables 𝑝𝑣 

grows, as long as the growth condition 
𝑝𝑣

3

𝑛𝑣
 = 𝑂(1) 

is met. This result also reveals that if number of 
auxiliary variables 𝑝𝑣  increase the rate of 
consistency deceases [5]. 
 
2.2.2 Penalized least square estimators 
 
When multicollinearity is present in the data, the 
least squares estimates can become unstable 
and misleading, as the predictor variables are 
highly correlated, making it difficult to determine 
their individual contributions to the outcome. In a 
classical linear regression setting, penalization 
techniques like ridge regression and lasso can 
be employed to mitigate these issues. These 
methods introduce a penalty to the least squares 
criterion, which helps to shrink the coefficients 
and reduce variance, leading to more reliable 
estimates. Specifically, these estimators are 
obtained by minimizing a penalized least squares 
criterion at the population level, which balances 
the trade-off between fitting the data well and 
maintaining model simplicity. Let 𝛽𝑝𝑒𝑛  be an 

estimator of obtained through the penalized least 
square criterion at the sample level: 
 

𝜷̂𝑝𝑒𝑛 =  argmin𝜷 ∑  
(𝑦𝑖−𝒙𝑖

′𝜷)2

𝜋𝑖
 +  𝑖∈𝑠 λ𝑃(β).           (11)                 

                   
where,  𝑦𝑖  is the observed value of the                   

response variable for the 𝑖th observation.  λ is the 
regularization parameter that                                   
controls the strength of the penalty and P(β) is 
the penalty function applied to the                     
coefficients β. 

 
Ridge regression [6] adds a penalty proportional 
to the square of the coefficients, which is 
effective in handling multicollinearity by keeping 
all predictors but shrinking their influence. The 
formula for the Ridge regression estimator 

𝜷̂𝑟𝑖𝑑𝑔𝑒  is: 

 

𝜷̂𝑟𝑖𝑑𝑔𝑒 =  argmin𝜷 ∑  
(𝑦𝑖−𝒙𝑖

′𝜷)
2

𝜋𝑖
 +  𝑖∈𝑠 λ ∑ β𝑗

2  𝑗∈𝑝  . (12)  

 
Lasso (Least Absolute Shrinkage and                     
Selection Operator) regression [7] also modifies 
the OLS estimation, but it uses a penalty 
proportional to the absolute value of the 
coefficients. The formula for the Lasso estimator 

𝜷̂𝑙𝑎𝑠𝑠𝑜 is: 

 

𝜷̂𝑙𝑎𝑠𝑠𝑜 =  argmin𝜷 ∑  
(𝑦𝑖−𝒙𝑖

′𝜷)2

𝜋𝑖
 +  𝑖∈𝑠 λ ∑ |β𝑗| 𝑗∈𝑝 (13)   

2.2.3 Classification and Regression Trees 
(CART)  

 

A decision tree is a tree-like model that is used 
for making decisions. It consists of nodes that 
represent decision points, and branches that 
represent the outcomes of those decisions. The 
decision points are based on the values of the 
input variables, and the outcomes are the 
possible classifications or predictions. A decision 
tree is constructed by recursively partitioning the 
input data into subsets based on the values of 
the input variables. Each partition corresponds to 
a node in the tree, and the partitions are chosen 
so as to minimize the impurity of the resulting 
subsets. 
 

The CART algorithm is a decision tree-based 
algorithm that can be used for both classification 
and regression problems in machine learning. It 
works by recursively partitioning the training data 
into smaller subsets using binary splits. The tree 
starts at the root node, which contains all the 
training data, and recursively splits the data into 
smaller subsets until a stopping criterion is met. 
At each node of the tree, the algorithm selects a 
feature and a threshold that best separates the 
training data into two groups, based on the 
values of that feature. This is done by choosing 
the feature and threshold that maximizes the 
information gain or the Gini impurity, which are 
measures of how well a split separates the data. 
Once the tree is built, it can be used to make 
predictions by traversing the tree from the root 
node to a leaf node that corresponds to the input 
data. For regression problems, the prediction is 
the average of the target values in the leaf node.  
 

Let we have small dataset with only 2 
explanatory variable X1 and X2. The tree begins 
at the root node, where it evaluates the condition 
X1≤ t1. If this condition is true, the tree moves to 
the left subtree; if false, it moves to the right. In 
the left subtree, another decision is made based 
on X2≤ t2, leading to either region R1 if true or 
region R2 if false. On the right side of the root 
node, the tree makes a further split at X1≤ t3. If 
this condition holds, the path leads to region R3; 
otherwise, the tree continues to a subsequent 
decision node where X2 ≤ t4 is evaluated. 
Depending on the result, the input is directed to 
either region R4 or R5. Each leaf node, 
representing regions R1 to R5, corresponds to a 
final prediction: in regression trees, the prediction 
value is the average of the target values of all the 
data points that fall into particular region while in 
classification trees, it would be the majority class 
of the data points [20]. 
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Fig. 1. Visualization of small dataset, in that Y is a vertical axis 
 

 
 

Fig. 2. Decision tree of small dataset 

 
 

Fig. 3. Region (Ri) for prediction 
 

 
 

Fig. 4. B number of decision trees by Random Forest machine learning algorithm 
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Fig. 5.  Decision tree structure by Cubist machine learning algorithm 
 
2.2.4 Random Forest  
 
Random forest is a supervised learning 
algorithm, meaning that the data on which it 
operates contains labels or outcomes. It works 
by creating many decision trees, each built on 
randomly chosen subsets of the data. The model 
then aggregates the outputs of all of these 
decision trees to make an overall prediction for 
unseen data points. In this way, it can process 
larger datasets and capture more complex 
associations than individual decision trees.  
 
Random forests start by creating multiple 
decision trees. Each tree is built using a subset 
of the training data, selected through a process 
called bootstrapping. Bootstrapping involves 
randomly selecting 𝑁  observations (rows) from 
the training dataset with replacement. This 
means some observations may be selected 
multiple times, while others may not be selected 
at all. 
 
Ensemble learning is the process of using 
multiple models, trained over the same data, 
averaging the results of each model ultimately 
finding a more powerful predictive/classification 
result. Random forests combine multiple trees to 
make a prediction [21]. 
 
2.2.5 Cubist  
 
Cubist is a rule-based machine learning model. 
Introduced by Quinlan [22]. It is an algorithm that 
combines regression trees with linear models. 
These elements work together to improve 
prediction accuracy. 
 

A basic model tree is created using fit the linear 
regression model corresponding for each node. 
The data is recursively split into subsets based 
on the values of the predictor variables, forming 
a decision tree. Each split is chosen to minimize 
the prediction error for the target variable. For 
each terminal node (leaf) in the tree, a rule is 
created. This rule represents the path from the 
root of the tree to that particular leaf. The rule is 
composed of the conditions on the predictor 
variables that define the splits along the path. In 
each node of the tree, a linear model is fitted 
between the target variable Y and the auxiliary 
variables are used to split the tree.  
 

Let consider the 𝑗th terminal node 𝐴𝑗. There is a 

path leading from the root node to this terminal 
node 𝐴𝑗 , which involves a subset of the total 

auxiliary variables. For example, suppose the 
tree in Fig. 5 partitions the data into five 
segments. The linear model at node 𝐴1 would be 
constructed using the variables 𝑋1 , 

𝑋4 and 𝑋6 which form the red path in the figure, 
making the number of auxiliary variables is 3. On 
the other hand, the linear model at node 
𝐴4 would be based solely on 𝑋1 (the green path). 

The coefficients 𝛽𝑗  ∈ ℝ𝑝 ( 𝑝  is the number of 

auxiliary variables) for the linear model at node 
𝐴𝑗  are estimated using standard weighted least 

squares [22]. 
 

2.2.6 Principal Components regression 
 

Principal Component Regression (PCR) is a 
regression technique that combines Principal 
Component Analysis (PCA) with linear 
regression. It is used primarily when dealing with 
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multicollinearity in a dataset, where predictor 
variables are highly correlated with each other. 
The PCA transforms the original correlated 
variables into principal components, which are 
orthogonal to each other and have variances in 
decreasing order.  
 
Let 𝑿  be the matrix of 𝑝  original auxiliary 

variables then 𝑗th principal component, denoted 

by 𝒁𝒋 , is defined as follows  

 
𝒁𝒋  =  𝑿𝒗𝒋 

 
Where, 𝒗𝒋 is a 𝑗th eigen vector, 𝑗 =  1, 2, … , 𝑝. 

 
The important property of principal component 
regression is that, instead of using all the 
principal components, PCR typically selects the 
first few components that capture most of the 
variance in the predictors. The number of 
components to retain is usually determined by 
examining a scree plot or by cross-validation. 
The selected principal components are then used 
as predictors in a linear regression model to 
predict the response variable. Since the principal 
components are uncorrelated, the 
multicollinearity problem is effectively removed. 
 
Let, consider the only first 𝑟  (with 𝑟 <  𝑝 ) 

principal components, 𝒁𝟏, 𝒁𝟐 , . . ., 𝒁𝒋 , which 

correspond to the 𝑟 largest eigenvalues. 
 
The least squares estimation, at the population 

level, of 𝜷̂, is 
 

𝜷̂ =  (∑  
𝒛𝑖𝑟 𝒛𝑖𝑟 

′

𝜋𝑖
 𝑖∈𝑠 )

−1

 ∑  
𝒛𝑖𝑟 𝑦𝑖

𝜋𝑖
 𝑖∈𝑠                . . . (14)     

 

Where, 𝒛𝑖𝑟  = ( 𝑧𝑖1 , . . . , 𝑧𝑖2 ) is the vector 

containing the values of the first 𝑟 PCs computed 

for the 𝑖 th individual. 𝜷̂ cannot be computed 
because the y-values are recorded for sample 
units only.  
 

2.3 Criteria for Evaluating Estimators 
 

The measure of bias of the model-assisted 

estimators 𝑡̂𝑚𝑎 , computed the Monte Carlo 
percent Relative Bias defined as:  
 

%𝑅𝐵 =  100 ×
1

𝑅
∑

(𝑡̂𝑚𝑎
(𝑟)

− 𝑡𝑦)

𝑡𝑦

𝑅

𝑟=1

         . . .      (15) 

 

where, 𝑡̂𝑚𝑎
(𝑟)

 and  𝑡𝑦  denotes the estimator 𝑡̂𝑚𝑎 at 

the 𝑟th iteration, 𝑟 = 1,2, . . , 𝑅 and population total 
respectively. 

The Relative Root Mean Square Error 
(%RRMSE) is defined as: 
 

%𝑅𝑅𝑀𝑆𝐸 =  100 × √
1

𝑅
∑ (

𝑡̂𝑚𝑎
(𝑟)

− 𝑡𝑦

𝑡𝑦

)

2𝑅

𝑟=1

             . . .         (16) 

 

The %RRMSE measures how much the model's 
predictions differ from the actual true values, on 
average. This comparison is done multiple times 
(over several replications), and the result is 
expressed as a percentage. The lower the 
%RRMSE, indicating better accuracy. 
 
The measure of efficiency, they computed the 
percentage Relative Efficiency (%RE), using the 

Horvitz–Thompson estimator given by 𝑡̂𝜋. That is, 
 

%𝑅𝐸 =  100 ×
𝑀𝑆𝐸(𝑡̂𝑚𝑎)

𝑀𝑆𝐸(𝑡̂𝜋)
                   . .   .  (17) 

 
where,  
 

𝑀𝑆𝐸(𝑡̂𝑚𝑎) =  
1

𝑅
∑ (𝑡̂𝑚𝑎

(𝑟)
− 𝑡𝑦)

2
𝑅
𝑟=1             .  . . (18)  

 

 𝑀𝑆𝐸(𝑡̂𝜋) =  
1

𝑅
∑ (𝑡̂𝜋

(𝑟)
− 𝑡𝑦)

2
𝑅
𝑟=1                .  . . (19) 

 

3. RESULTS AND DISCUSSION 
 
This study conducts a comprehensive 
comparison of model-assisted estimators, 
focusing on their efficiency and bias in estimating 
population totals using Simple Random Sampling 
Without Replacement (SRSWOR) under varying 
conditions of auxiliary variables. We                       
selected R = 2000 samples, of size 50 which 
corresponds to a sampling fraction n/N of about 
10% with simple random sampling without 
replacement. 
 
In the analysis, we employed a stepwise variable 
selection method to identify the most significant 
auxiliary variables, arranging them in descending 
order of significance. This approach enabled us 
to systematically assess the impact of 
progressively incorporating additional auxiliary 
variables into the model. Our objective was to 
observe the evolutionary changes in the 
performance of estimators as the number of 
auxiliary variables used in model prediction 
increased. 
 
To achieve this, we initiated the analysis with a 
base model including only three auxiliary 
variables and incrementally increased the 
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number by two, up to a maximum of eleven 
variables. This incremental approach allowed us 
to carefully evaluate and compare the 
performance of various model-assisted 
estimators under different conditions, thereby 
providing insights into the relationship between 
the number of auxiliary variables and estimator 
efficiency. 
 
In each sample, we computed model-assisted 
estimators of the form 
 

𝑡̂𝑚𝑎  =  ∑  𝑓(𝒙𝑖)

 𝑖∈𝑈

 +  ∑  
𝑦𝑖 − 𝑓(𝒙𝑖)

𝜋𝑖
 𝑖∈𝑠

          . (20) 

where the predictors 𝑓(𝒙𝑖) , were obtained using 
the different model procedures such as GREG, 
Ridge regression, Lasso regression, CART, 
Random Forest with 500 trees, Cubist and 
Principal components regression based on the 
first few components kept which exhibit more 
than 90% of total variability. 
 

The performance metrics, including relative bias 
(RB), relative root mean square error (RRMSE), 
and relative efficiency (RE) for various regression 
models, are summarized in Tables 1, 2, and 3, 
respectively. Fig. 6 presents a comparative study 
of the performance of different estimators, 
illustrating the variations in relative efficiency 
across the models. 

 
Table 1. Relative bias (%) of model-assisted estimators for the estimation of the population 

total of with SRSWOR (𝒏 = 50) and increasing number of auxiliary variables 
 

Estimators RB (%) 

No. of X’s 3 5 7 9 11 

HT 0.18 0.18 0.18 0.18 0.18 
GREG -0.39 -0.52 -0.76 -0.67 -0.69 
Ridge -0.32 -0.38 -0.45 -0.36 -0.34 
Lasso -0.39 -0.48 -0.63 -0.52 -0.51 
CART -0.11 -0.2 -0.23 -0.21 -0.16 
Random Forest -1.17 -1.16 -1.24 -0.87 -0.6 
Cubist -2.06 -1.79 -2.12 -1.96 -1.81 
PCR -0.23 -0.22 -0.16 0.04 0.05 
 

Table 2. Percentage relative root mean square error of model-assisted estimators for the 
estimation of the population total of with SRSWOR (𝒏 = 50) and increasing number of auxiliary 

variables 
 

Estimators %RRMSE 

No. of X’s 3 5 7 9 11 

HT 5.50 5.50 5.50 5.50 5.50 
GREG 3.48 3.30 3.39 3.47 3.76 
Ridge 3.48 3.26 3.28 3.31 3.44 
Lasso 3.49 3.33 3.39 3.43 3.55 
CART 3.52 3.59 3.60 3.62 3.61 
Random Forest 2.98 2.86 3.02 2.90 2.93 
Cubist 5.09 4.22 4.35 4.16 4.05 
PCR 3.79 3.66 3.81 4.92 4.92 
 

Table 3. Relative efficiency (%) of model-assisted estimators for the estimation of the 
population total of with SRSWOR (𝒏 = 50) and increasing number of auxiliary variables 

 

Estimators RE (%) 

No. of X’s 3 5 7 9 11 

GREG 39.88 35.98 37.99 39.79 46.77 
Ridge 40.07 35.02 35.44 36.2 39.06 
Lasso 40.12 36.64 37.83 38.73 41.56 
CART 40.85 42.54 42.89 43.3 42.97 
Random Forest 29.32 27.03 30.14 27.82 28.44 
Cubist 85.68 58.89 62.36 57.19 54.05 
PCR 47.37 44.25 47.8 79.89 79.85 
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Fig. 6. Relative efficiency of model-assisted estimators for the estimation of the population 
total of with SRSWOR (𝒏 = 50) and increasing number of auxiliary variables 

 
The Table 1 presents the elative bias 
percentages of various model-assisted 
estimators used for estimating population totals 
in simple random sampling without replacement 
(SRSWOR) while varying the number of auxiliary 
variables. The Generalized Regression (GREG) 
estimator shows increasing negative bias from -
0.39 to -0.69 as auxiliary variables increase, 
suggesting potential overfitting. Ridge and Lasso 
estimators exhibit slight negative bias but remain 
less effective with more variables. Tree-based 
estimators like CART and Random Forest 
present decreased bias with added variables, 
indicating robustness. In contrast, Cubist shows 
the highest negative bias values, hinting at 
sensitivity to complexity. Table 2 shows that the 
Random Forest estimator achieves the lowest 
percentage relative root mean square error 
(%RRMSE), peaking at 2.86 with five auxiliary 
variables, indicating superior efficiency compared 
to others. Conversely, the Generalized 
Regression (GREG) estimators demonstrate an 
increase in error as more variables are added, 
highlighting its diminished efficacy. The 
accompanying figure depict the relative 
efficiencies with respect to HT estimator of the 
different modal assisted estimators, where 
Random Forest stands out, significantly 
improving as the number of auxiliary variables 
rises, while estimators like Lasso and CART 

show stability but lower overall efficiency. 
Overall, these results underscore the             
importance of estimator selection based on both 
bias and error metrics to optimize estimation 
accuracy. 
 

4. CONCLUSIONS 
 

Our examination of model-assisted estimation 
procedures in high-dimensional settings reveals 
significant insights into the performance of 
various methodologies. Analysis based on 
Boston household pricing data reveal the 
relationship between the survey variable and 
auxiliary information is well-captured by 
penalized estimators such as ridge and lasso 
demonstrate, CART and Random Forest based 
estimators gave robust performance, exhibiting 
high efficiency. Conversely, the model-assisted 
estimators based on random forests give best 
estimator with low value of %RRMSE. All the 
model-assisted estimators perform better than 
HT estimator. However, the Generalized 
Regression Estimator (GREG) demonstrates 
limitations in scenarios with numerous auxiliary 
variables, suffering from poor performance. 
These findings underscore the importance of 
selecting appropriate estimation methods based 
on the characteristics of the data and the nature 
of the relationships involved. 
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