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Abstract
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Numerical examples demonstrate the effectiveness of MADM in handling complex nonlinear PDEs. Compared
to traditional ADM, MADM consistently achieves more accurate and rapidly converging solutions. This
enhancement is attributed to the novel integral operator, which addresses the limitations of ADM for intricate
nonlinear problems.
The paper outlines the application of MADM, its solution procedure, and its effectiveness through numerical
examples. Comparisons with standard ADM solutions and exact solutions validate MADM’s accuracy and
superiority. The results suggest that MADM is a promising tool for expanding the applicability of Adomian
methods in the field of solving PDEs.

Keywords: Adomian decomposition method; system of PDEs; numerical methods; accuracy; convergence;
approximate solutions.

1 Introduction

Partial Differential Equations (PDEs) are indispensable tools for modeling diverse scientific and engineering
phenomena. Accurately solving these equations is vital for predicting system behavior, optimizing designs, and
analyzing experimental data (Wazwaz, 2000; Wazwaz, 2007; Loyinmi, 2024). Traditional methods, however,
may not be suitable for all PDEs, especially nonlinear ones. This has led to the exploration of alternative
approaches ( Loyinmi, 2024), such as the well-established Adomian Decomposition Method (ADM).

ADM addresses nonlinear PDEs by decomposing the solution into an infinite series ( Adomian, 1990; Sekgothe,
2021). Researchers have continuously explored modifications and extensions to ADM ( Adomian and Rach, 1992;
Aland and Singh, 2022; Babolian et al., 2004; Daftardar-Gejji and Jafari, 2005; Hasan, 2014; Kanth and Aruna,
2008; Kaya and El-Sayed, 2004), broadening its applicability to various types of differential equations (Fadaei,
2011; Loufouilou et al., 2021; Nuruddeen et al., 2018; Almardy et al., 2023; Alomari and Hasan, 2023) Recent
advancements, including the integration of integral transforms, have significantly enhanced ADM’s capability to
solve complex, higher-order, and fractional differential systems (Dubey et al., 2020; Rab et al., 2024; Alsidrani
et al., 2024; Khan et al., 2020).

This research introduces a novel approach, the Modified Adomian Decomposition Method (MADM), which
builds upon ADM. MADM incorporates a new integral operator specifically (Hasan, 2012; AL-Mazmumy et al.,
2022) designed to improve convergence and accuracy for complex nonlinear problems. Numerical experiments
demonstrate MADM’s superior performance in obtaining approximate solutions compared to traditional methods.
The potential applications of MADM in fields such as fluid dynamics and heat transfer highlight its significance
as a valuable tool for computational mathematics.

The following sections provide a detailed explanation of ADM and MADM, including their application to specific
nonlinear PDEs. Numerical examples are presented to showcase MADM’s effectiveness in handling nonlinearities
and converging towards approximate solutions. The conclusion emphasizes the potential benefits of MADM in
solving complex nonlinear problems.

2 ADM and MADM for PDE System Solutions

2.1 Analysis of ADM

The system of partial differential equations that will be studied in this section takes the general form of:

uit(x, t) + λi(t)ui(x, t) +Ni(u1, . . . , um) = gi(x), i = 1, 2, . . . ,m. (2.1)

The initial conditions are given by
ui(x, 0) = fi(x).

27



Alomari and Hasan; Asian Res. J. Math., vol. 20, no. 11, pp. 26-41, 2024; Article no.ARJOM.124434

The equation (2.1) is equivalent to

Liui(x, t) + λi(t)ui(x, t) +Ni(u1, . . . , um) = gi(x), i = 1, 2, . . . ,m. (2.2)

where Li = d
dt

represents partial differential operators, Ri and Ni represent linear and nonlinear operator
respectively.

Applying the inverse operators L−1
i () =

∫ t
0

() dt to system (2.2) and applying beginning conditions, then

ui(x, t) = fi(x) + L−1
i gi(x) − L−1

i λi(t)ui(x, t) − L−1
i Ni(u1, . . . , um), i = 1, 2, . . .m. (2.3)

The Adomian decomposition method approach presupposes that the unknown functions ui(x, t) can be written
as an infinite series of the form

ui(x, t) =

∞∑
n=0

uin(x, t), i = 1, 2, . . . ,m. (2.4)

The nonlinear operator Ni(u1, · · · , um) is defined using Adomian polynomials.

Ni(u1, . . . , um) =

∞∑
n=0

Ain, i = 1, 2, . . . ,m, (2.5)

where

Ain =
1

n!

[
dn

dµn
Ni

(
∞∑
n=0

u1nµ
n, . . . ,

∞∑
n=0

umnµ
n

)]
µ=0

, n ≥ 0,

is an Adomian polynomial that can be constructed for all forms of all nonlinearity.

By (2.4) and (2.5) in (2.3) yields:

∞∑
n=0

uin(x, t) = fi(x) + L−1
i gi(x) − L−1

i

[
λi(t)

(
∞∑
n=0

u1
n, . . . ,

∞∑
n=0

umn

)]
− L−1

i

(
∞∑
n=0

Ain

)
. (2.6)

Identifying the Zeroth component uio for all terms. The recurrence relations can be used calculate the remaining
components fi and gi, u

i
n, n ≥ 0 can be determined by using the recurrence relations:

ui0 = fi(x) + L−1
i gi(x),

uin+1 = −L−1
i

[
λi(t)

(
∞∑
n=0

u1
n, . . . ,

∞∑
n=0

umn

)]
− L−1

i

(
∞∑
n=0

Ain

)
, i = 1, 2, . . . ,m, n ≥ 0.

2.2 Analysis of MADM

In order to solve a system (2.1) that matched the following conditions. We can rewrite the system (2.1) as

uit(x, t) + λi(t)ui(x, t) = gi(x) −Ni(u1, . . . , um), i = 1, 2, . . . ,m. (2.7)

We define the direct operator and its corresponding inverse operator as follows

Li = e−
∫
λi(t) dt d

dt
e
∫
λi(t) dt, L−1

i () = e−
∫
λi(t) dt

∫ t
0
e
∫
λi(t) dt() dt

Therefore
Liui(x, t) = gi(x) −Ni(u1, . . . , um), i = 1, 2, . . . ,m. (2.8)

Taking the operator L−1
i for uit + λi(t)ui in the equation (2.7), we get

L−1
i (uit(x, t) + λi(t)ui(x, t)) = e−

∫
λi(t) dt

∫ t

0

e
∫
λi(t) dt(ui(x, t) + λi(t)ui(x, t))dt

= ui(x, t) − ui(x, 0)Φ(0)Φ−1(t),
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where Φ−1(t) = e−
∫
λi(t)dt. Applying the inverse operators to the equation (2.8),we get

ui(x, t) = ui(x, 0)Φ(0)e−
∫
λi(t)dt + L−1

i gi(x) − L−1
i (Ni(u1, . . . , um). (2.9)

The recursive relation is identified by:

ui0 = fi(x)Φ(0)Φ−1(t) + L−1
i gi(x),

uin+1 = −L−1
i

(
∞∑
n=0

Ain

)
i = 1, 2 . . . ,m.

3 Numerical Examples

Example 3.1. Consider the system of nonlinear PDEs

ut + vxwy − vywx + u = 0,

vt + wxuy + wyux − v = 0,

wt + uxvy + uyvx − w = 0.

(3.1)

With initial conditions
u(x, y, 0) = ex+y,

v(x, y, 0) = ex−y,

w(x, y, 0) = e−x+y.

To solve the system by the proposed method, we well be using the following direct and inverse operators

L1 = e−
∫
dt d

dt
e
∫
dt, L2 = e

∫
dt d

dt
e−

∫
dt, L3 = e

∫
dt d

dt
e−

∫
dt,

L−1
1 () = e−

∫
dt
∫ t
0
e
∫
dt()dt, L−1

2 () = e
∫
dt
∫ t
0
e−

∫
dt()dt, L−1

3 () = e
∫
dt
∫ t
0
e−

∫
dt() dt.

So we can write the equation (3.1) in the form

L1(u) = −(vxwy − vywx),

L2(v) = −(wxuy + wyux),

L3(w) = −(uxvy + uyvx).

(3.2)

Taking the operator L−1
1 , L−1

2 and L−1
3 for ut + u, vt − v, wt − w of the system (3.1)

respectively, we obtain

L−1
1 (ut + u) = e−t

∫ t

0

et(ut + u)dt

= u(x, y, t) − ex+y−t,

L−1
2 (vt − v) = et

∫ t

0

e−t(vt − v)dt

= v(x, y, t) − ex−y+t,

L−1
3 (wt − w) = et

∫ t

0

e−t(wt − w)dt

= w(x, y, t) − e−x+y+t.

(3.3)

Taking the operator L−1
1 , L−1

2 and L−1
3 for equations of the system (3.2) respectively, we obtain

u(x, y, t) = ex+y−t − L−1
1 (vxwy − vywx),

v(x, y, t) = ex−y+t − L−1
2 (wxuy + wyux),

w(x, y, t) = e−x+y+t − L−1
3 (uxvy + uyvx).

(3.4)
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Using the formulae u =
∑∞
n=0 un, v =

∑∞
n=0 vn and w =

∑∞
n=0 wn in equation (3.4), yields

∞∑
n=0

un = ex+y−t − L−1
1

(
∞∑
n=0

An

)
,

∞∑
n=0

vn = ex−y+t − L−1
2

(
∞∑
n=0

Bn

)
,

∞∑
n=0

wn = e−x+y+t − L−1
3

(
∞∑
n=0

Cn

)
,

(3.5)

where An, Bn, Cn are the polynomials for the nonlinear expression

(vxwy − vywx), (wxuy + wyux), (uxvy + uyvx) respectively.

The general solution of the system is as follows

u0(x, y, t) = ex+y−t,

uk+1(x, t) = −L−1
1 Ak = 0, k ≥ 0,

v0(x, y, t) = ex−y+t,

vk+1(x, t) = −L−1
2 Bk = 0, k ≥ 0,

w0(x, y, t) = e−x+y+t,

wk+1(x, y, t) = −L−1
3 Ck = 0, k ≥ 0.

(3.6)

The exact solution of the system is given by

(u, v, w) = u0(x, y, t), v0(x, y, t), w0(x, y, t) = (ex+y−t, ex−y+t, e−x+y+t).

That is closed solution ( Ebiwareme, 2022; Wazwaz, 2000; Yavuz, 2019).

Example 3.2. Consider system of linear partial differential equations of the following form:

ut − vx − u+ v = −2,

vt − ux − u+ v = −2.
(3.7)

With initial conditions:
u(x, t) = 1 + ex,

v(x, t) = −1 + ex.

The exact solution is as follows (Loufouilou et al., 2021).

u(x, t) = 1 + ex+t, v(x, t) = −1 + ex+t,

Let L1 = e
∫
dt d

dt
e−

∫
dt, L2 = e−

∫
dt d

dt
e
∫
dt,

so L−1
1 () = e

∫
dt
∫ t
0
e−

∫
dt()dt, L−1

2 () = e−
∫
dt
∫ t
0
e
∫
dt()dt.

We can be written Eq.(3.7) as

L1(u) = −2 + vx − v,

L2(v) = −2 + ux + u.
(3.8)
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Taking the operator L−1
1 , L−1

2 for ut − u, vt + v of the system (3.7) respectively, we obtain

L−1
1 (ut − u) = et

∫ t

0

e−t(ut − u)dt

= u− (et + ex+t),

L−1
2 (vt + v) = e−t

∫ t

0

et(vt + v)dt

= v − (−e−t + ex−t).

(3.9)

Taking the operator L−1
1 , L−1

2 for equations of the system (3.8) respectively, we obtain

u(x, t) = et + ex+t + L−1
1 (−2) + L−1

1 (vx − v),

v(x, t) = −e−t + ex−t + L−1
2 (−2) + L−1

2 (ux + u).
(3.10)

The general solution of the system is as follows

u0(x, t) = et + ex+t + L−1
1 (−2)

uk+1(x, t) = L−1
1 (vkx − vk), k ≥ 0,

v0(x, t) = −e−t + ex−t + L−1
2 (−2),

vk+1(x, t) = L−1
2 (ukx + uk), k ≥ 0,

(3.11)

The first three solutions iterations are as follows

u0 = ex+t − et + 2,

v0 = ex−t + e−t − 2,

u1 =
3

2
et +

1

2
e−t − 2,

v1 = −3

2
e−t − 1

2
et + 2,

u2 =
1

2
tet − 5

4
et − 3

4
e−t + 2,

v2 =
1

2
te−t +

5

4
e−t +

3

4
et − 2.

(3.12)

...

Summing the above iterations yields

u(x, t) = u0 + u1 + u2 + · · · = ex+t − 1

4
e−t +

1

2
tet − 3

4
et + 2 + · · ·

v(x, t) = v0 + v1 + v2 + · · · = ex−t +
1

4
et +

1

2
te−t +

3

4
e−t − 2 + · · ·

(3.13)

Which are the series of the approximate solution for u(x, t)and v(x, t) given using MADM.

And

The series of the approximate solution for u(x, t)and v(x, t) which are given using ADM as

u(x, t) = u0 + u1 + u2 + · · · = 1 + ex + tex +
1

2
t2ex + · · ·

v(x, t) = v0 + v1 + v2 + · · · = −1 + ex + tex +
1

2
t2ex + · · ·

(3.14)
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Fig. 1. 3D plots of the exact solution and 3-approximate solutions of the ADM and MADM for
Example(3.2)

Example 3.3. Consider the coupled system of nonlinear partial differential equations of the following form:

ut + wux − αu = β,

wt − uwx + αw = β.
(3.15)

With initial conditions:
u(x, t) = eβx,

w(x, t) = e−βx.

The exact solution is as follows (( Ebiwareme, 2022),(Wazwaz, 2000)).

u(x, t) = eβx+αt,

w(x, t) = e−βx−αt,

where α and β are constants.

To utilize the proposed technique, we start with this system representation:

L1u = β − wux,

L2w = β + uwx,
(3.16)

where L1 = e
∫
αdt d

dt
e
∫
−αdt, L2 = e−

∫
α dt d

dt
e
∫
αdt,

so L−1
1 () = e

∫
α dt

∫ t
0
e
∫
−α dt()dt, L−1

2 () = e−
∫
α dt

∫ t
0
e
∫
α dt() dt
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Using the inverse integration operator L−1
1 , L−1

2 for ut − αu, wt + αw of the system (3.15) respectively, possible
to get

L−1
1 (ut − αu) = eαt

∫ t

0

e−αt(ut − αu) dt = u− eβx+αt,

L−1
2 (wt + αw) = e−αt

∫ t

0

eαt(wt + αw) dt = w − e−βx−αt.

(3.17)

Using the inverse integration operator L−1
1 , L−1

2 for the equations of the system (3.16) respectively, we get

u(x, t) = eβx+αt + L−1
1 (β) − L−1

1 (wux),

w(x, t) = e−βx−αt + L−1
2 (β) + L−1

2 (uwx).
(3.18)

The complete solution set of system as follows

u0(x, t) = eβx+αt + L−1
1 (β),

uk+1(x, t) = −L−1
1 Ak, k ≥ 0,

w0(x, t) = e−βx−αt + L−1
2 (β),

wk+1(x, t) = L−1
2 Bk, k ≥ 0.

(3.19)

Therefore

u0(x, t) = eβx+αt + L−1
1 (β) = eβx+αt + eαdt

∫ t

0

e−αdt(β)dt

= eβx+αt +
eαtβ

α
− β

α
,

w0(x, t) = e−βx−αt + L−1
2 (β) = e−βx−αt + e−αdt

∫ t

0

eαdt(β)dt

= e−βx−αt − e−αtβ

α
+
β

α
.

u1(x, t) = −L−1
1 A0 = −eαt

∫ t

0

e−αt(w0u0x)dt

= −β
2

α
teβx+αt +

β2

α2
eβx+αt − β

α
eαt − β2

α2
eβx +

β

α
,

w1(x, t) = L−1
2 B0 = e−αt

∫ t

0

eαt(u0w0x)dt

=
β2

α
te−βx−αt +

β2

α2
e−βx−αt +

β

α
e−αt − β2

α2
e−βx − β

α
.

...

The decomposition series solution for the system which we obtained by MADM are given by:

u(x, t) = u0 + u1 + · · ·

= eβx+αt − β

α
+
β

α
− β2

α
teβx+αt +

β2

α
teβx+αt +

β4

2α2
t2eβx+αt + · · ·

= eβx+αt +
β4

2α2
t2eβx+αt + · · ·
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w(x, t) = w0 + w1 + · · ·

= e−βx−αt +
β

α
− β

α
+
β2

α
te−βx−αt − β2

α
te−βx−αt +

β4

2α2
t2e−βx−αt + · · ·

= e−βx−αt +
β4

2α2
t2e−βx−αt + · · ·

The decomposition series solution for system (3.15)which we got via ADM are given by:

u(x, t) = u0 + u1 + u2 + · · ·

= eβx + αteβx + α2 t
2

2
eβx + α2β

t3

6
− αβ2 t

3

3
eβx + β3 t

3

3
+ β4 t

4

8
eβx + · · ·

w(x, t) = w0 + w1 + w2 + · · ·

= e−βx − αte−βx + α2 t
2

2
e−βx + α2β

t3

6
+ αβ2 t

3

3
e−βx + β3 t

3

3
+ β4 t

4

8
e−βx + · · ·

Fig. 2. 3D plots of the exact solution and 3-approximate solutions of the ADM and MADM at
α =-3, β =2 for Example(3.3)
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Example 3.4. Consider the system of nonlinear PDEs

ut + vux − 2u = 1,

vt − uvx + 2v = 1.
(3.20)

With initial conditions
u(x, 0) = ex,

v(x, 0) = e−x.

This example is a special case of example (3.2), with α = 2, β = 1 and the exact solution is u = ex+t, v = e−x−t.

The system can be expressed as follows
L1u = 1 − vux,

L2v = 1 + uvx,
(3.21)

where L1 = e
∫
2dt d

dt
e−

∫
2dt, L2 = e−

∫
2dt d

dt
e
∫
2dt,

L−1
1 () = e

∫
2dt
∫ t
0
e−

∫
2dt() dt, L−1

2 () = e−
∫
2dt
∫ t
0
e
∫
2 dt()dt.

Using L−1
1 , L−1

2 for ut − 2u, vt + 2v of the system (3.20) respectively, we may obtain

L−1
1 (ut − 2u) = e2t

∫ t

0

e−2t(ut − 2u) dt = u− ex+2t,

L−1
2 (vt + 2v) = e−2t

∫ t

0

e2t(vt + 2v) dt = v − e−x−2t.

(3.22)

Applying L−1
1 , L−1

2 for equations of the system (3.21) respectively, we may obtain

u(x, t) = ex+2t + L−1
1 (1) − L−1

1 vux,

v(x, t) = e−x−2t + L−1
2 (1) + L−1

2 uvx.
(3.23)

The general solution of the system is as follows

u0(x, t) = ex+2t + L−1
1 (1),

uk+1(x, t) = −L−1
1 Ak, k ≥ 0,

v0(x, t) = e−x−2t + L−1
2 (1),

vk+1(x, t) = +L−1
2 Bk, k ≥ 0.

(3.24)

The first two solutions iterations are as follows

u0 = ex+2t +
e2t

2
− 1

2
,

u1 = −L−1
t A0 = −1

2
tex+2t +

1

4
ex+2t − 1

2
e2t − 1

4
ex +

1

2
,

...

v0 = e−x−2t − e−2t

2
+

1

2
,

v1 = L−1
t B0 =

1

2
te−x−2t +

1

4
e−x−2t +

1

2
e−2t − 1

4
e−x − 1

2
,

...
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Summing the above iterations yields

uapp(x, t) = u0 + u1 + · · · =
5

4
ex+2t +

1

2
tex+2t − 1

4
ex + · · ·

vapp(x, t) = v0 + v1 + · · · =
5

4
e−x−2t +

1

2
te−x−2t − 1

4
e−x + · · ·

(3.25)

Which are the series of the approximate solution for u(x, t)and v(x, t) given using MADM. And

u =

∞∑
n=0

un = u0 + u1 + u2 + · · · = ex + 2tex + 2t2ex + t3 − 2
t3

3
ex +

t4

8
ex + · · ·

v =

∞∑
n=0

vn = v0 + v1 + v2 + · · · = e−x − 2te−x + 2t2e−x + t3 + 2
t3

3
e−x +

t4

8
e−x + · · ·

(3.26)

Which are the series of the approximate solution for u(x,t), v(x,t) that we produced via ADM.

Fig. 3. 3D plots of the exact solution and 3-approximate solutions of the ADM and MADM for
Example(3.4)
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Example 3.5. Consider the system of nonlinear PDEs

∂u

∂t
+

(
v
∂u

∂x

)2

+ u = 1,

∂v

∂t
+

(
u
∂v

∂x

)2

− v = 1.

(3.27)

With initial conditions
u(x, 0) = ex,

v(x, 0) = e−x.

The exact solution is given in as (Biazar et al., 2007; Alderremy et al., 2022)

u(x, t) = ex−t,

v(x, t) = e−x+t.

For the modified method, the system is expressed as follows

L1u = 1 − (vux)2,

L2v = 1 − (uvx)2,
(3.28)

where L1 = e−
∫
dt d

dt
e
∫
dt, L2 = e

∫
dt d

dt
e−

∫
dt,

L−1
1 () = e−

∫
dt
∫ t
0
e
∫
dt() dt, L−1

2 () = e
∫
dt
∫ t
0
e−

∫
dt() dt.

Using L−1
1 , L−1

2 for ut + u, vt − v, of the system (3,27) respectively, it produces the following

L−1
1 (ut + u) = e−t

∫ t

0

et(ut + u) dt = u− ex−t,

L−1
2 (vt − v) = et

∫ t

0

e−t(vt − v) dt = u− e−x+t.

(3.29)

Employing L−1
1 , L−1

2 for equations of the system (3.28) respectively, we may obtain

u(x, t) = ex−t + L−1
1 (1) − L−1

1 (vux)2

v(x, t) = e−x+t + L−1
2 (1) − L−1

2 (uvx)2
(3.30)

The general solution of system as follows

u0(x, t) = ex−t + L−1
1 (1),

uk+1(x, t) = −L−1
1 A2

k, k ≥ 0,

v0 = e−x+t + L−1
2 (1),

vk+1(x, t) = −L−1
2 B2

k, k ≥ 0.

(3.31)

The first two terms of solutions iterations are as follows

u0(x, t) = ex−t + 1− e−t

v0(x, t) = e−x+t − 1 + et

u1(x, t) = −L−1
1 A2

0 = −e−t
∫ t

0
et(v0u0x )

2 dt

= 2te2x−t + 2tex−t + e2x−2t + 2ex−t + e−t − e2x − 2ex − 1

v1(x, t) = −L−1
2 B2

0 = −et
∫ t

0
e−t(u0v0x )

2 dt

= 2te−2x+t − 2te−x+t − e−2x+2t + 2e−x+t − et + e−2x − 2e−x + 1

...

37



Alomari and Hasan; Asian Res. J. Math., vol. 20, no. 11, pp. 26-41, 2024; Article no.ARJOM.124434

Summing the above iterations yields

u(x, t) = u0 + u1 + · · · = 2te2x−t + 2tex−t + e2x−2t + 3ex−t − e2x − 2ex + · · ·
v(x, t) = v0 + v1 + · · · = 2te−2x+t − 2te−x+t − e−2x+2t + 2e−x+t + e−2x − 2e−x + · · ·

Which the approximate solutions for u(x,t), v(x,t) of the system that we obtained by MADM are given.

And the approximate solutions for u(x,t), v(x,t) of the system that we obtained by ADM are given.

u(x, t) = u0 + u1 + u2 + · · · = ex + t− e2xt3

3
− ext2 − t2

2
− t− tex

− 4

81
t9e4x − 1

18
(ex + e3x)t8

− 1

7

[
4

3
(2e2x +

1

2
e3x) − 1

9
(e−x + 5ex)2

]
t7

− 1

6

[
4

3
e3x +

2

3
(2 +

1

2
ex)(e−x + e5x)

]
t6

− 1

5

[
2

3
(1 + 5e2x) − (2 +

1

2
ex)2

]
t5

− 1

4

[
2ex(2 +

1

2
ex) − 1

3
e2x
]
t4

− 1

3

[
e2x − ex − 1

2

]
t3 +

1

2
[1 + ex] t2 + · · ·

v(x, t) = v0 + v1 + v2 + · · · = e−x + t− e−2xt3

3
− e−xt2 +

t2

2
− t+ te−x

− 4

81
t9e−4x − 1

18
(e−x + e−3x)t8

− 1

7

[
4

3
(2e−2x − 1

2
e−3x) +

1

9
(ex + 5e−x)2

]
t7

− 1

6

[
4

3
e−3x +

2

3
(2 − 1

2
e−x)(ex + e−5x)

]
t6

− 1

5

[
2

3
(1 + 5e−2x) + (2 − 1

2
e−x)2

]
t5

− 1

4

[
2e−x(2 − 1

2
e−x) +

1

3
e−2x

]
t4

− 1

3

[
e−2x + e−x − 1

2

]
t3 − 1

2
[1 − ex] t2 + · · ·

Remark: By using the noise terms phenomenon in the above example

u0(x, t) = u0Φ(0)Φ−1(t) = ex−t, Φ−1(t) = e−
∫
dt,

v0(x, t) = v0Φ(0)Φ−1(t) = e−x+t, Φ−1(t) = e
∫
dt,

u1(x, t) = L−1
1 (1) − L−1

1 A2
0 = 0,

v1(x, t) = L−1
2 (1) − L−1

2 B2
0 = 0,

...
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uk+1(x, t ) = −L−1
1 A2

k = 0, k ≥ 1,

vk+1(x, t) = −L−1
2 B2

k = 0, k ≥ 1.

We have
(u, v) = (u0(x, t), v0(x, t)) = (ex−t, e−x+t),
which represents a closed solution. This also applies to Ex(3.3)and Ex(3.4)

Fig. 4. 3D plots of the exact solution and 3-approximate solutions of the ADM and MADM for
Example(3.5)

4 Conclusion

This research demonstrates that the Modified Adomian Decomposition Method (MADM) is a valuable tool
for tackling complex nonlinear partial differential equations. While both MADM and the standard Adomian
Decomposition Method (ADM) are effective for linear systems, MADM offers improved convergence and accuracy
due to the incorporation of a new integral operator. The successful application of MADM in the presented
numerical examples expands the capabilities of Adomian methods for solving a wider range of nonlinear PDEs.
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