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ABSTRACT 
 

Silver nanoparticles vary in size from 1 to 100 nm. These have unique properties that assists in 
molecular diagnostics, therapies, and devices used in many medical procedures. The most popular 
methods for making silver nanoparticles are physical and chemical approaches. Chemical and 
physical methods are troublesome because synthesis is expensive. The biological approach is a 
feasible alternative one. The major biological processes involved are bacteria, fungi, and plant 
extracts. Silver nanoparticles are mainly used in diagnostic and therapeutic applications in 
medicine. Their medical uses rely on the antimicrobial property, while the anti-inflammatory 
property has its own range of applications. Silver nanoparticles are used in a number of medical 
therapies and instruments, as well as in a variety of biological sciences. 
This article focuses on chemical and biological techniques for synthesizing AgNPs, which will 
subsequently be utilized to coat socks materials, testing antimicrobial activity and comparing the 
ability of these coated fabrics to minimize infections. 
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1. INTRODUCTION 
 

The medical properties of silver were known for 
over 2,000 years. Since the Nineteenth century, 
silver-based compounds have been used in 
many antimicrobial applications [1]. 
Nanoparticles were known to be used for 
numerous physical, biological, and 
pharmaceutical applications [2]. Currently, 
AgNPs are being used as successful 
professional antimicrobial agents in many public 
places such as railway stations and elevators in 
China, and they are thought to show significant 
antimicrobial activities [3] . 
 
It is a well-known fact that silver ions and silver-
based compounds are highly toxic to 
microorganisms which include 16 major species 
of bacteria [4,5]. This activity of silver makes it 
excellent choice for taking multiple roles in the 
medical field. Silver is generally used in the 
nitrate form to induce antimicrobial effect, but 
when AgNPs are used, there is a huge increase 
in the surface area available for the microbe to 
be exposed to. Though AgNPs applied as 
antibacterials, the action of this metal on 
microbes is not fully known. It has been 
hypothesized that AgNPs can cause cell lysis or 
inhibit cell transduction. There are various 
mechanisms involved in cell lysis and growth 
inhibition [2]. 
 

2. METHODOLOGY 
 

2.1 Synthesis of Silver-Nanoparticles 
(AGNPS) 

 
Physical methods such as evaporation-
condensation and laser ablation are the most 
important physical approaches. The absence of 
solvent contamination in the prepared thin films 
and the uniformity of AgNPs distribution are the 
advantages of physical synthesis methods in 
comparison with chemical processes. Physical 
synthesis of silver AgNPs using a tube furnace at 
atmospheric pressure has some disadvantages, 
for example, tube furnace occupies a large 
space, consumes a great amount of energy while 
raising the environmental temperature around 
the source material, and requires a lot of time to 
achieve thermal stability. Moreover, a typical 
tube furnace requires power consumption of 
more than several kilowatts and a preheating 
time of several tens of minutes to reach a stable 

operating temperature [6,7]. It was demonstrated 
that AgNPs could be synthesized via a small 
ceramic heater with a local heating area [8]. The 
small ceramic heater was used to evaporate 
source materials. The evaporated vapor can cool 
at a suitable rapid rate, because the temperature 
gradient in the vicinity of the heater surface is 
very steep in comparison with that of a tube 
furnace . This makes possible the formation of 
small AgNPs in high concentration. The particles 
generation is very stable, because the 
temperature of the heater surface does not 
fluctuate with time. This physical method can be 
useful as a nanoparticle generator for long-term 
experiments for inhalation toxicity studies, and as 
a calibration device for nanoparticle 
measurement equipment [8]. The results showed 
that the geometric mean diameter, the geometric 
standard deviation and the total number 
concentration of NPs increase with heater 
surface temperature. Spherical NPs without 
agglomeration were observed, even at high 
concentration with high heater surface 
temperature. The geometric mean diameter and 
the geometric standard deviation of AgNPs were 
in the range of 6.2-21.5 nm and 1.23-1.88 nm, 
respectively . 
 
AgNPs could be synthesized by laser ablation of 
metallic bulk materials in solution [9-13]. The 
ablation efficiency and the characteristics of 
produced nano-silver particles depend upon 
many parameters, including the wavelength of 
the laser impinging the metallic target, the 
duration of the laser pulses (in the femto-, pico- 
and nanosecond regime), the laser influence, the 
ablation time duration and the effective liquid 
medium, with or without the presence of 
surfactants [14-17]. 
 
One important advantage of laser ablation 
technique compared to other methods for 
production of metal colloids is the absence of 
chemical reagents ins solutions. Therefore, pure 
and uncontaminated metal colloids for further 
applications can be prepared by this technique 
[18]. Silver nanospheroids (20-50 nm) were 
prepared by laser ablation in water with 
femtosecond laser pulses at 800 nm [19]. The 
formation efficiency and the size of colloidal 
particles were compared with those of colloidal 
particles prepared by nanosecond laser pulses. 
As a result, the formation efficiency for 
femtosecond pulses was significantly lower than 
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that for nanosecond pulses. The size of colloids 
prepared by femtosecond pulses were less 
dispersed than that of colloids prepared by 
nanosecond pulses. Furthermore, it was found 
that the ablation efficiency for femtosecond 
ablation in water was lower than that in air, while 
in the case of nanosecond pulses, the ablation 
efficiency was similar in both water and air. 
 

Tien and coworkers [20] used the arc discharge 
method to fabricate AgNPs suspension in 
deionized water with no added surfactants. In 
this synthesis, silver wires (Gredmann, 99.99%, 
1 mm in diameter) were submerged in deionized 
water and used as electrodes. With a silver rod 
consumption rate of 100 mg/min, yielding 
metallic AgNPs of 10 nm in size, and ionic silver 
obtained at concentrations of approximately 11 
ppm and 19 ppm, respectively. Siegel and 
colleagues [21] demonstrated the synthesis of 
AgNPs by direct metal sputtering into the liquid 
medium. The method, combining physical 
deposition of metal into propane-1,2,3-triol 
(glycerol), provides an interesting alternative to 
time-consuming, wet-based chemical synthesis 
techniques. AgNPs possess round shape with 
average diameter of about 3.5 nm with standard 
deviation 2.4 nm. It was observed that the NPs 
size distribution and uniform particle dispersion 
remains unchanged for diluted aqueous solutions 
up to glycerol-to-water ratio 1:20 . 
 

2.2 Chemical Methods of Silver-
Nanoparticles Synthesis 

 
The most common approach for synthesis of 
AgNPs is chemical reduction by organic and 
inorganic reducing agents. In general, different 
reducing agents such as sodium citrate, 
ascorbate, sodium borohydride (NaBH4), 
elemental hydrogen, polyol process, Tollens 
reagent, N, N-dimethylformamide (DMF), and 
poly (ethylene glycol)-block copolymers are used 
for reduction of silver ions (Ag+) in aqueous or 
non-aqueous solutions. These reducing agents 
reduce Ag+ and lead to the formation of metallic 
silver (Ag0), which is followed by agglomeration 
into oligomeric clusters. These clusters 
eventually lead to the formation of metallic 
colloidal silver particles [22-24]. It is important to 
use protective agents to stabilize dispersive NPs 
during the course of metal nanoparticle 
preparation, and protect the NPs that can be 
absorbed on or bind onto nanoparticle surfaces, 
avoiding their agglomeration [25]. The presence 
of surfactants comprising functionalities (e.g., 
thiols, amines, acids, and alcohols) for 

interactions with particle surfaces can stabilize 
particle growth, and protect particles from 
sedimentation, agglomeration, or losing their 
surface properties . 
 
Polymeric compounds such as poly (vinyl 
alcohol), poly (vinylpyrrolidone), poly (ethylene 
glycol), poly (methacrylic acid), and 
polymethylmethacrylate have been reported to 
be the effective protective agents to stabilize 
NPs. In one study, Oliveira and coworkers [25] 
prepared dodecanethiol-capped AgNPs, 
according to Brust procedure [26] based on a 
phase transfer of an Au3+ complex from 
aqueous to organic phase in a two-phase liquid-
liquid system, which was followed by a reduction 
with sodium borohydride in the presence of 
dodecanethiol as stabilizing agent, binding onto 
the NPs surfaces, avoiding their aggregation and 
making them soluble in certain solvents. They 
reported that small changes in synthetic factors 
lead to dramatic modifications in nanoparticle 
structure, average size, size distribution width, 
stability and self-assembly patterns. Kim and 
colleagues [27] reported synthesis of spherical 
AgNPs with a controllable size and high mono-
dispersity using the polyol process and a 
modified precursor injection technique. In the 
precursor injection method, the injection rate and 
reaction temperature were important factors for 
producing uniform-sized AgNPs with a reduced 
size. 
 
AgNPs with a size of 17 ± 2 nm were obtained at 
an injection rate of 2.5 ml/s and a reaction 
temperature of 100 °C. The injection of the 
precursor solution into a hot solution is an 
effective means to induce rapid nucleation in a 
short period of time, ensuring the fabrication of 
AgNPs with a smaller size and a narrower size 
distribution. Zhang and coworkers [28] used a 
hyper branched poly (methylene bisacrylamide 
aminoethyl piperazine) with terminal 
dimethylamine groups (HPAMAM-N(CH3)2) to 
produce colloids of silver. The amide moieties, 
piperazine rings, tertiary amine groups and the 
hyper-branched structure in HPAMAM-N(CH3)2 
are important to its effective stabilizing and 
reducing abilities. Chen and colleagues [29] have 
shown the formation of monodispersed AgNPs 
using simple oleylamine-liquid paraffin system. It 
was reported that the formation process of these 
AgNPs could be divided into three stages: 
growth, incubation and Oatwald ripening stages. 
The higher boiling point of 300 °C of paraffin 
affords a broader range of reaction temperature 
and makes it possible to effectively control the 
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size of AgNPs by varying the heating 
temperature alone without changing the solvent. 
Moreover, the size of the colloidal AgNPs could 
be regulated not only by changing the heating 
temperature, or the ripening time, but also by 
adjusting the ratio of oleylamine to the silver 
precursor. 
 

AgNPs can be prepared at room temperature, by 
simple mixing of the corresponding metal ions 
with reduced polyoxometalates which serves as 
reducing and stabilizing agents. 
Polyoxometalates are soluble in water and have 
the capability of undergoing stepwise, 
multielectron redox reactions without disturbing 
their structure. It was demonstrated that AgNPs 
were produced by illuminating a deaerated 
solution of polyoxometalate/S/Ag+ [30]. 
Furthermore, green chemistry-type one-step 
synthesis and stabilization of silver 
nanostructures with MoV–MoVI mixed-valence 
polyoxometalates in water at room temperature 
has been reported [31]. 
 

2.3 Biological Synthesis of Silver-
Nanoparticles 
 

A number of reports prevailed in the literatures 
indicate that synthesis of nanoparticles by 
chemical approaches are eco-unfriendly and 
expensive. Thus, there is a growing need to 
develop environmentally and economically 
friendly processes, which do not use toxic 
chemicals in the synthesis protocols. This has 
conducted researchers to look at the organisms. 
The potential of organisms in nanoparticle 
synthesis ranges from simple prokaryotic 
bacterial cells to eukaryotic fungi and plants [32]. 
Some examples of nanoparticle production 
include using bacteria for gold, silver, cadmium, 
zinc, magnetite, and iron NPs; yeasts for silver, 
lead and cadmium NPs; fungi for gold, silver and 
cadmium NPs; algae for silver and gold NPs; 
plants for silver, gold, palladium, zinc oxide, 
platinum, and magnetite NPs [33,34]. 
 
Bio-based protocols could be used for synthesis 
of highly stable and well-characterized NPs when 
critical aspects, such as types of organisms, 
inheritable and genetic properties of organisms, 
optimal conditions for cell growth and enzyme 
activity, optimal reaction conditions, and 
selection of the biocatalyst state have been 
considered. Sizes and morphologies of the NPs 
can be controlled by altering some critical 
conditions, including substrate concentration, pH, 
light, temperature, buffer strength, electron donor 

(e.g., glucose or fructose), biomass and 
substrate concentration, mixing speed, and 
exposure time. In the following section, we 
discussed the synthesis of NPs using 
microorganisms and biological systems. 
 

2.4 Advantage of Biological Methods      
 

Development in the nanotechnology field has 
stayed fast and with the advance of new 
synthesis procedures and account techniques 
[35]. But greatest of the synthesis devices are 
narrow to synthesis of nanoparticles in lesser 
amounts and poor morphology. Physical and 
chemical synthesis devices often consequence in 
synthesis of a mixture of nanoparticles with    
poor morphology, and these devices also      
show to be toxic to the environment due to        
the use of toxic chemicals and too                      
of raised temperatures for synthesis procedure 
[36]. 
 
Thus, the biological way offers a varied range of 
capitals for the synthesis of nanoparticles. The 
ratio of reduction of metal ions by biological 
agents is established to be greatly earlier and 
also at ambient temperature and pressure 
conditions. For order, in case of synthesis of 
nanoparticles using Aspergillus niger synthesis 
was detected within 2 hrs of treatment of fungal 
filtrate with silver salt solution [37]. 
 

Thus, the biological process needs least time for 
the creation of nanoparticles pH or the 
temperature of the reaction fusion. Gericke and 
Pinches in 2006 found diverse shape 
morphologies (triangle, hexagons, spheres, and 
rods) by modifying the pH of reaction mixture to 
3, 5, 7 and 9. Also, it was demonstrated that at 
65 ˚C less amount of nanoparticles were 
synthesized, whereas at 35 ˚C much quantity of 
nanoparticles was synthesized [38]. The 
biological agents release a great amount of 
enzymes, which are accomplished of hydrolyzing 
metals and thus transfer about enzymatic 
reduction of metals ions [39]. In case of fungi, the 
enzyme nitrate reductase is found to be 
responsible for the synthesis of nanoparticles 
[40]. 
 
The biogenic beings are found to discharge big 
amount of proteins which are found to be 
responsible for metal–ion reduction and 
morphology control [41]. The microbial cultures 
are easy to holder and also the downstream 
treating of biomass is greener as associated to 
the synthetic devices [42]. 
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Biogenic nanoparticles are closely a greener 
method and environment friendly, as no toxic 
chemical is complex in synthesis, and moreover 
the synthesis method proceeds place at pressure 
conditions and ambient temperature [43]. Hence, 
a number of researchers are concentrating 
toward the synthesis of biogenic nanoparticles 
related with the physically or chemically 
synthesized nanoparticles [44]. 
 

2.5 Silver-Nanoparticles (AGNPS) as 
Antibacterial 

 
Recent research indicates that the shape of 
nano-silver may not be a factor in its germ-killing 
ability [45]. However, nano-silver differs from 
macro-silver in a few main respects. First, since 
the smaller type has a higher surface area to 
volume ratio, the capacity for silver ions to be 
emitted, which is the primary mode of silver and 
nano-silver toxicity, is significantly increased [46]. 
Nano-silver can also get to areas in the body 
where larger silver particles can't, and it's small 
enough to get into cells [47], or pass through the 
blood-brain barrier The real-world consequences 
of this are still being investigated [48]  . 
 
However, with antibiotic-resistant infections being 
a global concern, there is a strong incentive to 
develop new antimicrobial methods, and nano-
silver holds a lot of promise in this regard. 
According to ABL Medical managing director 
Keith Moeller, a new nano silver-based gel 
known as Silver STATTM—introduced in fall 
2012 as a wound-care antimicrobial by Utah-
based ABL Medical—was shown in laboratory 
tests to destroy methicillin-resistant 
Staphylococcus aureus (MRSA) and 
vancomycin-resistant Enterococci (VRE) strains 
within minutes. According to Moeller, the FDA 
has approved SilvrSTAT for use in octogenarian 
facilities to help treat diabetic and septic ulcers, 
surgical wounds, and grafted places, and the 
EPA approved it for use as a disinfectant for hard 
nonporous surfaces [40]. 
 
“We've never encountered a pathogen that we 
couldn't kill,” says Moeller. “That is why silver is 
used in so many places. It's a very broad-
spectrum antimicrobial agent that's extremely 
effective. It's a naturally occurring substance 
that's extremely effective.” Nano-silver (n-Ag) is 
used in socks, paints, bandages, and food 
containers because of its antimicrobial 
properties. n-Ag can inhibit the growth of odor-
causing bacteria in clothing such as socks [49-

56]. Nano-silver is also used to avoid trench foot, 
athlete's foot, and other fungal infections in 
diabetic socks, shoes, and bandages; in socks 
for combat soldiers operating in less-than-
sanitary environments to prevent trench foot, 
athlete's foot, and other fungal infections; and in 
socks for diabetics to prevent foot, ankle, and leg 
ulcers from spreading and other bacterial 
infections linked to sports involving close contact 
[57]. 
 
Nano-silver also deserves a position in everyday 
objects, according to Rosalind Volpe, executive 
director of the Silver Nanotechnology Working 
Group. “Nano-silver antimicrobial treatments will 
add a range of functionalities to consumer 
articles, including longer shelf life (e.g., 
cosmetics) giving more safety,” according to a 
working group report, less waste and, as a result, 
lower costs for consumers; plastics that are 
resistant to bacteria's damaging action (e.g., 
discoloration); and textiles that are resistant to 
bacteria colonization that can cause odors (e.g., 
sportswear), resulting in greater comfort and 
longer usage. Additional advantages, such as 
decreased washing frequency at lower 
temperatures, will save a lot of water and energy 
[58]. 
 
While silver has been used in consumer goods 
since ancient Rome, its nanoparticle form has 
only recently become available. Nano-silver can 
also be used in bandages, athletic apparel, and 
cleaning materials. Most users, according to 
Benn, are unaware of these nano-additions. I've 
talked with a lot of people who aren't sure what 
nanotechnology is, but they are purchasing items 
that contain nanoparticles. "If the public is 
unaware of the potential environmental 
consequences of using these nanomaterials, 
they will be unable to make an informed decision 
on whether or not to purchase a product 
containing nanomaterials," Benn said “To that 
end, the researchers propose that better product 
labeling could be beneficial. Clothing labels, 
according to Westerhoff, may imitate the labels 
on underwear, athletic clothing, and the back of 
food packages, along with a list of "ingredients" 
such as nano-silver” . 
 

2.6 Magical Socks Nano-Technology 
with Silver-Nanoparticles (AGNPS) 
 

One method of creating highly active surfaces 
with UV blocking, antimicrobial, and self-cleaning 
properties is to nano-coat the surface of textiles 
or footwear. Silver is a natural antibacterial agent 
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that works to destroy the majority of bacteria that 
cause foot odour and other sweaty foot problems 
like athlete's foot, keeping the feet dry and safe. 
Silver ions, which are an effective antimicrobial 
agent, pass through the silver fibers and bind 
with the DNA chains of odour-producing bacteria. 
Their ability to replicate is harmed as a result of 
this process. As a result, coating sock fabrics 
with AgNPs can be used to fight foot-borne 
bacteria, reducing foot-borne infections, foot 
odour, and perspiration, and acting as an 
important prophylactic agent. This project will use 
chemical and biological methods to synthesize 
AgNPs, which will then be used to coat socks 
fabrics, assessing antimicrobial activity and 
comparing the ability of these coated fabrics in 
reducing pathogens transmitted via the feet        
[59] . 
 
Exposing feet to air promotes evaporation and 
reduces moisture's growth-stimulating effect, 
which suppresses microbial growth. Prescription 
medications, salves, or foot soaks are used to 
treat a serious infection. Both aerobic bacteria 
and yeast-mold-fungi have been shown to be 
inhibited by baking soda, basil oil, tea tree oil, 
sage oil, and clove oil [60,61]. So many research 
on the bactericidal function of nanoparticles and 
their applications in the rubber, hygiene, textile, 
and paint industries have been performed 
[62,63]. Silver is a natural antibacterial agent that 
has been medically confirmed to destroy most 
bacteria that trigger foot odor and other sweaty 
foot issues [61]. Silver ions are released from the 
silver fibers and bond with the DNA chains of 
odor-producing bacteria [64]. By targeting the 
bacterial membrane, AgNPs destabilize plasma 
membrane potential and deplete levels of 
intercellular adenosine triphosphate, resulting in 
bacterial cell death. In a moist, enclosed 
atmosphere, common skin microbes multiply 
quickly, resulting in minimal to no athletic 
participation [65,66]. The heat atmosphere 
created by hot weather, sweating, exercise, and 
shoes encourages the overgrowth of both 
aerobic bacteria and fungi. The aim of this 
research is to determine the antibacterial activity 
of Ag-coated sock fabrics and evaluate their 
effectiveness in reducing foot-borne bacteria 
[67,68]. 
 

3. CONCLUSIONS 
 

Inhibiting bacterial growth with nano-silver was 
found to be efficient. Bacterial growth was 
effectively inhibited by Ag-coated sock fabrics. 
Antimicrobial fabric with silver coating destroys 

bacteria that cause foot odor. Nano-silver 
particles coated on the fabric of socks                       
may be used as an anti-odor and anti-bacterial 
agent. 
 
After achieving all of the project's goals and 
objectives, the concept can be further developed 
to improve fabric dirt, crease, and shrink 
resistance, as well as develop temperature 
adaptable textiles. Nano-silver coated fabrics 
may also be used to produce antimicrobial, self-
cleaning nappies and underwear, wound 
dressings, and innerwear for soldiers serving in 
hostile areas, as well as astronauts. As a result, 
future research into antimicrobial nano-silver 
coated fabrics holds a lot of promise. 
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