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Abstract 
 

An �-bit comparator is a celebrated combinational circuit that compares two �-bit inputs �  and �  and 
produces three orthonormal outputs: G (indicating that � is strictly greater than �), E (indicating that � 
and � are equal or equivalent), and L (indicating that � is strictly less than �). The symbols ‘G’, ‘E’, and 
‘L’ are deliberately chosen to convey the notions of ‘Greater than,’ ‘Equal to,’ and ‘Less than,’ 
respectively. This paper analyzes an �-bit comparator in the general case of arbitrary � and visualizes the 
analysis for � = 4 on a regular and modular version of the 8-variable Karnaugh-map. The cases � =  3, 2, 
and 1 appear as special cases on 6-variable, 4-variable, and 2-variable submaps of the original map. The 
analysis is a tutorial exposition of many important concepts in switching theory including those of 
implicants, prime implicants, essential prime implicants, minimal sum, complete sum and disjoint sum of 
products (or probability-ready expressions). 
 

 
Keywords: Comparator; Karnaugh map; prime implicant; minimal sum; complete sum; probability-ready 

expression. 
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1 Introduction 
 
Modern logic digital design handles real-life problems that involve very large numbers of variables, and 
hence are not amenable to solution via heuristic manual tools but are solvable only via computerized 
algorithms. However, there is one heuristic manual tool, namely, the Karnaugh map [1-23], that plays an 
indispensable role in logic design as it provides pictorial insight in demonstrating concepts, proving 
theorems, and understanding procedures by showing their details in small examples. The literature abounds 
with contributions that offer instructive and pedagogical expositions of the Karnaugh map and related logic 
design tools [24-30]. The purpose of this paper is to make yet another such contribution, as it provides a 
tutorial exposition of a regular and modular version of the Karnaugh map [31-34] and to utilize this version 
in presenting many important concepts of switching theory and logic design. This map version can be 
(theoretically) extended to an arbitrary large number of variables, and includes all maps of smaller sizes as 
special cases.  
 
The Karnaugh map is an enhanced form of the truth table [9], in which two dimensions (rather than one 
dimension) are used, and in which reflected binary ordering or grey ordering (as opposed to direct binary 
ordering) is employed. The �-variable map consists of 2� cells, such that every cell has � neighboring cells 
or logically adjacent cells. Two cells are (first) neighbors or (immediately) adjacent if their variable values 
except one are exactly the same. Such two cells are said to have a Hamming distance [35-43] of one or to 
differ in exactly one-bit position. The map is constructed such that any two logically adjacent cells are made 
also as visually adjacent as possible. In general, two logically adjacent cells appear as the mirror images with 
respect to boundary lines separating the internal and external domains of the variable in whose value the two 
cells differ (See Fig. 1). 
 
Typically, the Karnaugh map is conveniently used up to six variables [4]. There are occasions in which 
Karnaugh maps of eight variables are used, in which the rectangular shape of cells is abandoned to a 
triangular shape [44-48]. In this paper, however, we will use the aforementioned regular and modular form 
of the Karnaugh map that appeared earlier in [31-34], and is such that 
 

a) The rectangular shape of the cell is retained.   
b) The internal domain of the (� +  1)st variable is introduced to be centered around the boundary lines 

of the (� – 1)st variable (See Fig. 2). 
 
We note that the process outlined in (b) above can be, in theory, indefinitely continued. Hence, there is no 
theoretical upper bound on the size of the Karnaugh map constructed this way. However, as the number of 
variables increases, the size of the map increases exponentially, and its utility diminishes very quickly due to 
prohibitively increasing difficulty. 
 
As a demonstration of the usefulness of the aforementioned version of the Karnaugh map, we present its 
case of eight variables herein. We use this map to explore the design of a well-known combinational circuit, 
namely an �-bit digital magnitude comparator [49-51]. Note that we deal herein only with digital (as 
opposed to analogue) comparators. A digital comparator typically uses two �-bit inputs � and �, and could 
possibly be  
 

1.  An Identity Comparator, which has a single output �  such that � = 1 when � = �, i.e., when the 
two inputs match bit for bit. 

2.  A Magnitude Comparator, which has three orthonormal outputs {�,�,�}, namely � = 1  when 
� > �, � = 1 when � = � and � = 1 when � < �.  

 
Note that a magnitude comparator includes an identity comparator as a special case. The magnitude 
comparator is a redundant circuit in the sense that any of its three outputs might be readily obtained from the 
other two. Digital Comparators are used widely in Analogue-to-Digital Converters (ADC) and to perform a 
variety of arithmetic operations in the Arithmetic Logic Units (ALU) of a digital computer.  
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Karnaugh-map analysis of the digital magnitude comparator is employed herein to provide instructive and 
pedagogical exposition of many important concepts in logic design and switching theory including those of 
implicants, prime implicants, essential prime implicants, minimal sum, complete sum and disjoint sum of 
products (or probability-ready expressions). 
 
The organization of the rest of this paper is as follows. Section 2 presents a mathematical description of an 
�-bit magnitude digital comparator. Section 3 derives expressions for the comparator outputs in minimal-
sum or complete-sum form as well as in probability-ready form. Section 4 concludes the paper. To make the 
paper self-contained, five appendices are included. Appendix A explains basic concepts of Boolean 
minimization, Appendix B is about the complete sum.  Appendix C defines probability-ready expressions. 
Appendix D briefly introduces the Boole-Shannon expansion. Appendix E deals with unate Boolean 
functions. 
 

2 Mathematical Description of an n-bit Comparator 
 
An n-bit comparator is a (combinational) circuit (shown in Fig. 3) that compares two n-bit inputs � =
(Y���Y��� … Y�Y�)� and � = (Z���Z��� … Z�Z�)� such that 
 

� = ∑   Y�
���
��� 2�,                                                                                                          (1a) 

 
� = ∑   Z�

���
��� 2�.                                                                                                         (1b) 

 
The comparator has three 1-bit outputs, namely 
 

� = {� > �},                                                                       (2a) 
 

� = {� = �},                                                                        (2b) 
 

� = {� < �}.                                                                        (2c) 
 
The three variables G, E, and L form an orthonormal set, or in other words, they are mutually exclusive and 
exhaustive, i.e.,  
 

� ∨ � ∨ � = 1.                                                               (3a) 
 

�� = �� = �� = 0.                                                                 (3b) 
 

Consequently, these three variables are inter-related by the following equations. 
 

� = ����,   � =̅  � ∨ �,                                                                                        (4a) 
 

� = ��̅�,   �� =  � ∨ �,                                                                                         (4b) 
 

� = ��̅�,   �� =  � ∨ �.                                                                                                 (4c) 
 

Fig. 4 is a display of the results above for two single-bit inputs � = �� and � = ��. For this case, we simply 
obtain 
 

� = ������� = {�� > ��}= {�� ≤ ��}������������ = {�� → �������������},                                                     (5a) 
 

� = ��� ����� ∨ ���� = {�� ⊙ ��}= {�� ≡ ��},                                                            (5b) 
 

� = ���  �� = {�� < ��}= {�� ≤ ��}������������ = {�� → ��}�������������.                                         (5c) 
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As seen from equations (5), the three variables �,�,and � in the case of single-bit inputs are given by the 
functions  �������(��,��), ���� (��,��), and �������(��, ��). 
 

3 Derivation of the Comparator Equations 
 
In this section, we derive the explicit output equations for a 4-bit comparator, and then generalize our results 
to an �-bit one by obtaining the output equations in terms of recursive relations and boundary conditions. 
Figure 5 is a flow chart that compares the bits ��  to the bits �� (starting from the most significant bit and 
ending with the least significant one, i.e., for � = 3,2,1, and 0. As the flow chart indicates, the three outputs 
denoted as ��,��,��� �� are given by 
 

G� = ������� ∨ (�������� ∨ ����)(������� ∨ (�������� ∨ ����)(������� ∨ (�������� ∨ ����)�������)),            (6a) 
 

E� = ⋀   (������ ������ ∨ �� �� )
�
� �� ,                (6b) 

 

L� = ����� ∨ (�������� ∨ ����)(����� ∨ (�������� ∨ ����)(����� ∨ (�������� ∨ ����)�����)).            (6c) 
 

Equations (6) are demonstrated by the 8-variable Karnaugh map in Fig. 6, where the cells for which �� = 1 
are entered by �  and given a light blue color, while the cells for which �� = 1 are entered by � and given a 
pale red color, and the cells for which �� = 1 are entered by �  and left uncolored. The single map in Fig. 6 
is obtained by combining three maps for the orthonormal variables ��, ��, and ��.  Both the cells for the 
functions �� and �� are covered by disjoint (non-overlapping loops). For each of these two functions, there 
is one 64-cell loop, two 16-cell loops, four 4-cell loops, and eight 1-cell loops. These loops come in four 
consecutive stages, with the loops in a succeeding stage doubling in number and diminishing to quarter size, 
compared to the loops in the preceding stage. Remarkable symmetry could be observed with respect to the 
main diagonal of the map. 
 

Fig. 6 is, in a sense, a summary of the results of equations (6) (for the 4-bit comparator) demonstrated on an 
8-variable Karnaugh map with inputs � = (Y�Y�Y�Y�)�  and � = (Z�Z�Z�Z�)� . Though the analysis is 
intended for � = 4 on the 8-variable map, the cases � = 3,2, and 1 appear as special cases on 6-variable, 4-
variable, and 2-variable submaps of the original map. The top left quarter of this map is a 6-variable submap 
representing a 3-bit comparator with inputs � = (Y�Y�Y�)� and � = (Z�Z�Z�)�. Again, the top left quarter of 
this submap is a 4-variable submap representing a 2-bit comparator with inputs � = (Y�Y�)�  and � =
(Z�Z�)� . Finally, the top left quarter of this latter submap is a 2-variable submap representing a 1-bit 
comparator with inputs � = (Y�)� and � = (Z�)�. 
 

The analysis above for � = 4 on the 8-variable map of Fig. 6 can also be extended to higher (encompassing) 
values of �. Figure 7 demonstrates the construction of the 2�-variable map (for the �-bit comparator) from a 
2(� − 1)-variable map (for the (� − 1)-bit comparator). Theoretically, such a construction can be 
inductively continued without limit. Therefore, one can easily imagine how the maps for � =
5,6,7… ���. look like. The 2�-variable map might be viewed as a map-entered map [52-54] with two map 
variables �� and ��, and four major cells, each of which having the size of a 2(� − 1)-variable map. The 
middle point of this new map is taken for a center of symmetry. Initially, the major cell ����� ����� is filled with 
the original 2(� − 1)-variable map as it is. Next, the major cell ���� is filled with the original 2(� − 1)-
variable map reflected with respect to the center of symmetry, while the major cell �������  is filled uniformly 
with a ′�′ in each of its cells. Finally, the major cell ����� �� is filled uniformly with an ′�′ in each of its cells. 
In fact, one can start with a base case of the 2-variable map with inputs � = (Y�)� and � = (Z�)�, and use 
the recursive step suggested by Fig. 7 repeatedly, so as to construct any desirable 2�-variable map. 
 
Equations (6) constitute probability-ready expressions [55-60] (See Appendix C), and hence, can be 
converted, on a one-to one basis, to the corresponding expectation expressions  
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�{��}= �{��}�{�����}+ (�{���}�{�����}+ �{��}�{��})(�{��}�{�����}+ (�{���}�{�����}+ �{��}�{��})(�{��}�{�����}+
(�{���}�{�����}+ �{��}�{��})�{��}�{�����})),                                                                             (7a) 

 
�{��}= ⋀   (�{������}�{ ������}+ �{�� }�{�� })

�
� �� ,                                                               (7b) 

 
�{��}= �{���}�{��}+ (�{���}�{�����}+ �{��}�{��})(�{���}�{��}+ (�{���}�{�����}+ �{��}�{��})(�{���}�{��}+

(�{���}�{�����}+ �{��}�{��})�{���}�{��})).                                                                                  (7c) 
 

A generalization of equations (6) is possible via the following recursive relations 
 

G� = ������� ∨ (���  ����� ∨ ����) ����,                1 ≤ � ≤ �,                                              (8a) 
 

�� = (��� ����� ∨ ����) ����,                     1 ≤ � ≤ �,                                         (8b) 
 

�� = ��� �� ∨ (��� ����� ∨ ����) ����,                 1 ≤ � ≤ �.                                              (8c) 
 

These recursive relations are used in conjunction with the boundary conditions 
 

�� = �������,                                                                                               (9a) 
 

�� = ��� ����� ∨ ����,                                                                                           (9b) 
 

�� = �����.                                                                               (9c) 
 

Equations (8) have a complete-sum version of the form 
 

��(��)= ������� ∨ (�� ∨ �����) ��(����),            1 ≤ � ≤ �,                                                      (10a) 
 

��(��)= (��� ����� ∨ ����) ��(����),                1 ≤ � ≤ �,                                                       (10b) 
 

��(��)= ��� �� ∨ (��� ∨ ��) ��(����),             1 ≤ � ≤ �.                                                       (10c) 
 

Equations (10) are used together with a complete-sum version of (9), namely 
 

��(��)= �������,                                           (11a) 
 

��(��)= ��� ����� ∨ ����,                                                          (11b) 
 

��(��)= �����.                                           (11c) 
 

Equations (8) and (9) are also probability-ready expressions [55-60] (See Appendix C) that are useful in 
signal-probability calculations [61-69] as they transform on a one-to-one basis to the probability domain, 
namely 
 

�{��}= �{��}�{�����}+ (�{��� }�{�����}+ �{��}�{��}) �{����},                                       (12a) 
 

�{��}= (�{��� }�{ �����}+ �{��}�{��}) �{����},                                 (12b) 
 

�{��}= �{��� }�{��}+ (�{��� }�{ �����}+ �{��}�{��}) �{����}.                                                 (12c) 
 

�{��}= �{��}�{�����},                                                 (13a) 
 

�{��}= (�{���}�{ �����}+ �{��}�{��}),                           (13b) 
 

�{��}= �{���}�{��}.                                                                                             (13c) 
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Fig. 8 displays all the prime implicants of ��, each on a separate map. There are fifteen prime-implicant 
loops colored in dark blue to be distinguished from other asserted cells of ��, which remain colored in light 
blue. Each of these loops (except the first) in an enlargement of one of the loops in Fig. 6 (entered with �), 
so as to allow overlapping with earlier loops. Note that all fifteen loops pass through the cell at row 0 and 
column 15, which is the all-0 cell for � and the all-1 cell for �. These prime-implicant loops are all essential. 
They come in four consecutive stages, with the loops in a succeeding stage doubling in number and 
diminishing to half size, compared to the loops in the preceding stage. The function �� is a unate function 
with positive polarity in ��,��,�� and �� and with negative polarity in ��,��,�� and �� (See Appendix E). 
The minimal sum (or complete sum) for �� is covered by one 64-cell loop, two 32-cell loops, four 16-cell 
loops, and eight 8-cell loops, and is given by 
 

�� = ������� ∨  
��������� ∨ ������������ ∨ 
�������������� ∨ ����������� ∨ �������������� ∨ ����� ������������ ∨ 
������� ������������ ∨ ���������������� ∨ ������������� ∨ ���������������� ∨ ������������������� ∨ ���������������� ∨
����� �������������� ∨ ����� ����� ������������                (14a) 
 
= ������� ∨  
(�� ∨ �����)������� ∨  
(�� ∨ �����)(�� ∨ �����)������� ∨  
(�� ∨ �����)(�� ∨ �����)(�� ∨ �����)�������                 (14b) 

 
Note that the factored expression (14b) might be obtained from (10a) and (11a). Similar analysis is possible 
for the function ��. 

 
 

Fig. 1. The general layout of the eight-variable Karnaugh map used herein. The cell colored in green 
(column 15 and row 0) represents the minterm ������������

��������
��������

���� or the bit sequence 10101010. Its 
eight logically adjacent or neighboring cells are highlighted in yellow. Only four of these cells are 

visually adjacent to the original cell when the map is viewed to lie on a torus 
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Fig. 2. The eight-variable Karnaugh map of Fig. 1. There are two borders of the variable �� 
(separating its internal domain (�� = �) and external domain (�� = �)), which are highlighted in 
bold. There are two internal regions for the variable �� (colored) which are centered around these 

borders 
 

 
 

Fig. 3. A comparator is a combinational circuit that compares two n-bit inputs � and � and produces 
three orthonormal outputs � = {� > �}, � = {� = �} and � = {� < �} such that � ∨ � ∨ � = �, 

�� = �� = �� = �, and consequently � = ����,� = ����,��� � = ���� 
 

 
 

Fig. 4. Karnaugh map for two single-bit inputs �� ��� �� . Note that {� = �}≡ {������������ = �}∨
{���� = �}≡ {������������ ∨ ���� = �} 
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Fig. 5. A flow chart depicting the comparison of a four-bit input � = (��������)� to another four-bit 
input � = (��������)�. The comparator starts by comparing the highest-order or most-significant 

bits (MSB) first. If equality exists (��  =  ��), then the comparator compares the next lower bits and 
so on until it reaches the lowest-order or least-significant bits (LSB). If equality still exists then the two 

numbers are defined as being equal (� = �). If inequality is detected at any stage 

(either �� >  ��  ��  �� <  ��) the relationship between the two numbers  � ��� � is determined 

(respectively as � >  �  ��  � < �) and no further comparison is needed 
 

 
 

Fig. 6. A summary of the results of equations (6) (for the 4-bit comparator) demonstrated on an 8-
variable Karnaugh map with inputs � = (��������)� and � = (��������)�. The top left quarter of 
this map is a 6-variable submap representing a 3-bit comparator. Again, the top left quarter of this 
submap is a 4-variable submap representing a 2-bit comparator. Finally, the top left quarter of this 
latter submap is a 1-variable submap representing a 1-bit comparator. Remarkable symmetry could 

be observed with respect to the main diagonal of the map 
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Fig. 7. Construction of the ��-variable map (for the �-bit comparator) from the �(� − �)-variable 
map (for the (� − �)-bit comparator). Theoretically, such a construction can be inductively continued 

without limit 
 

 
 

(a) ����� 
 

  
 

(b1) ������� 
 

(b2) �������� 
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(c1) ���������� 
 

(c2) ��������� 

 

  
 

(c3) ���������� 

 

 
(c4) ����������� 

 
 

  
 

(d1) ������������� 

 
 

 
(d2) ������������ 
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(d3) ����������� 
 

(d4) ������������ 
 

  
 

(d5) ������������� 
 

(d6) ������������ 
 

  
 

(d7) ������������� 
 

(d8) �������������� 
 

Fig. 8. A complete sum (and also a minimal sum) for �� given by loops on fifteen maps. Note that this 
coverage proves that G is a unate function (with a positive polarity in �� (� ≤ � ≤ �) and a negative 
polarity in �� (� ≤ � ≤ �). Note that all loops pass through the shaded cell (����������������)=

(�������� ), which is the all-1 cell for � and the all-0 cell for �. Each of the fifteen loops in this figure 
is an essential prime-implicant loop, since it is the only loop covering some of its cells. For example, the 

loop �������������� in (d8) is the only PI loop covering the cell ��������� �������������� (labelled with �). 
This cell has three asserted neighbors only, and if it could be covered by an 8-cell loop (which is the 

case herein), such a loop would be an essential PI loop 
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4 Conclusions 
 
This paper is a tutorial on the basic concepts of switching algebra, including Boolean minimization, the 
complete sum (Blake canonical form), probability-ready expressions, the Boole-Shannon expansion and 
unate Boolean functions. The topic explored in this tutorial is the design of a well-known combinational 
circuit, namely the �-bit digital magnitude comparator. The tool employed herein is a regular and modular 
version of the 8-variable Karnaugh-map, for which the case � =  4 of the �-bit comparator is explored. The 
cases � =  3, 2, and 1 appear as special cases on 6-variable, 4-variable, and 2-variable submaps of the 
original map. The analysis for � = 4 on the 8-variable map is shown to be extendible (theoretically without 
limit) to higher (encompassing) values of �. 
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APPENDICES 
 

Appendix A: Basic Concepts of Boolean Minimization 
 
This Appendix summarizes notions and concepts employed in the minimization of Boolean functions. 
Additional information is available in Lee [3], Muroga [4], Rushdi [5-7], Hill and Peterson [8], and Roth and 
Kinney [14]. 
 
The two literals of a Boolean variable ��  are its complemented form ���  and its uncomplemented one �� . 
A product (conjunction) of literals is called a term �(�) if a literal for each variable appears in it at most 
once, i.e., a term is an irredundant product (conjunction). A redundant product can be reduced to a term by 
eliminating repeated appearances of a literal through employment of idempotency of ‘AND.’ The constant 1 
is the multiplication (ANDing) identity and is the product or term of no literals. The dual of a term is the 
irredundant sum (disjunction), called an alterm. The constant 0 is the addition (ORing) identity and is the 
sum or alterm of no literals. The constant 1 is not an alterm and the constant 0 is not a term. A term �(�) is 
an implicant of a function �(�) (denoted by �(�)→ �(�) or �(�)≤ �(�)) if every �(�) satisfying 
{�(�)= 1} also satisfies {�(�)= 1}, while the converse is not necessarily true. A term/alterm ��(�) is said 
to subsume another term/alterm ��(�) if the set of literals of ��(�) is a subset of that of ��(�) (i.e., the 

literals of ��(�) include those of ��(�)).  

 
A prime implicant �(�) of a Boolean function �(�) is an implicant of �(�) such that no other term 
subsumed by it is an implicant of �(�). An irredundant disjunctive form ���(�(�)) of a Boolean 
function �(�) is a disjunction of some of its prime implicants that expresses �(�) but ceases to do so upon 
the removal of one of these prime implicants. A minimal sum �� (�(�)) (minimal irredundant form 
���(�(�))) of a Boolean function �(�) is an irredundant disjunctive form for the function with the 
minimum number of prime implicants such that the total number of their literals is minimum.  
 
An essential (core) prime implicant of �(�) is a prime implicant that appears in every irredundant 
disjunctive form for �(�). For every essential prime implicant, there exists an asserted minterm of �(�) that 
subsumes it and does not subsume any other prime implicant. This means that the Karnaugh-map loop 
covering an essential prime implicant is the only loop that covers the cell of this asserted minterm. An 
absolutely eliminable prime implicant of �(�) is a prime implicant that does not appear in any irredundant 
disjunctive form for �(�). A conditionally eliminable prime implicant of �(�) is a prime implicant that 
appears in some irredundant disjunctive form(s) for �(�), but that does not appear in other irredundant 
disjunctive form(s)  for �(�). 
 
Appendix B: The Complete Sum (Blake Canonical Form) 
 
The Complete Sum ��(�(�)) of a Boolean function �(�) (also called its Blake Canonical Form 
���(�(�))) is the disjunction (ORing) of all its prime implicants, and nothing else [70-78]. The complete 
sum is a closure, unique and canonical formula for �(�). It is the minimal or absorptive special case of a 
syllogistic formula of �(�), where a syllogistic formula is defined as a sum-of-products formula, whose 
terms include, but are not necessarily confined to, all the prime implicants of �(�). Complete-sum 
construction usually requires the two operations of: (a) absorbing a term by another, and (b) generating the 
consensus of two ORed terms. A brief explanation of these operations follows. 
 
B.1. Absorbing a Term by Another 
 
If a term ��(�) subsumes (implies) another ��(�),  then the disjunction (��(�)∨ ��(�)) could simply be 
rewritten as ��(�), viz.  
 

��(�)∨ ��(�)=  ��(�).                                                                                                            (B.1) 
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The deletion of ��(�) in (B.1) is called absorption of the subsuming term ��(�) in the subsumed term 
��(�). For example, the term ����̅  subsumes each of the sixteen terms ����̅ ,���̅ , ���̅ ,��� , 
���,̅��̅ , �� ,�� ,��,̅ ��,̅��, � ,�,̅ �, �, and 1. Hence, it could be deleted if it is ORed with any of them. 
The complete sum is an absorptive syllogistic formula, i.e., it is a syllogistic formula in which no term 
subsumes another. 
 
B.2. Generating the Consensus of Two ORed Terms 
 
Two terms ��(�) and ��(�) have a consensus if and only if they have exactly one opposition, i.e., exactly 
one variable that appears complemented ( ��� ) in one term (say ��(�)) and appears uncomplemented ( �� ) 
in the other term. In such a case, the consensus is the ANDing of the remaining literals of the two terms, i.e. 
  

��������(��(�) ,��(�))= (��(�) / ��� ) ˄  (��(�) / �� ),                                                       (B.2) 
 
where (�/�) denotes the Boolean quotient of the function � by the term �, i.e., the restriction of � when � is 
asserted [59, 70, 78], viz. 
 

� �⁄ = [�]���.                                                                                                                                  (B.3) 
 
When two terms have a consensus, their disjunction can be augmented by this consensus, i.e.  
 

��(�) ∨  ��(�)=  ��(�)∨  ��(�) ∨ ��������(��(�) ,��(�)).                                                 (B.4) 
 
For example, the terms ���  and �� have a single opposition and are represented on the Karnaugh map by 
two disjoint loops sharing a border, and hence their disjunction can be augmented by their consensus 
(���/��) ˄  (��/�)= ��, which is a loop extending across the common border between the original loops 
and covering the part ���� of ��� and the part ��� of ��. By contrast, the two terms � and �� have zero 
opposition, and consequently non-disjoint or overlapping loops, and possess zero or no consensus. The two 
terms ���  and ��̅  have more than one opposition, and consequently disjoint far-away loops, and again 
possess zero or no consensus [74]. 
 
The complete-sum formula ��(�) may be generated by a two-step iterative-consensus procedure, in which 
(a) a syllogistic formula F for f(�) is found by continually comparing terms and adding their consensuses (if 
any) to the current formula of f(�), and (b) the resulting formula is converted to an absorptive one ���(�), 
again by continually comparing terms and deleting subsuming terms by absorbing them in their subsumed 
terms. A streamlined algorithmic version of iterative consensus is the Blake-Tison Method, which produces 
the complete sum by performing explicit consensus generation with respect to each bi-form variable, and 
following this by absorption. Alternatively, a syllogistic formula for the function might be produced 
(without explicit consensus generation) through multiplying out any suitable product-of-sums (pos) 
expression for the function to produce a sum-of-products (sop) expression [77].  
 
Appendix C: Probability-Ready Expressions 
 
A Probability-Ready Expression [55-60] is a random expression that can be directly transformed, on a one-
to-one basis, to its statistical expectation (its probability of being equal to 1) by replacing all logic variables 
by their statistical expectations, and also replacing logical multiplication and addition (ANDing and ORing) 
by their arithmetic counterparts. A logic expression is a PRE if  

 
a) all ORed terms are disjoint (mutually exclusive), and  
b) all ANDed sums (alterms) are statistically independent. 

 
 
 
Appendix D: The Boole-Shannon Expansion     
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An effective way for converting a Boolean formula into a PRE form is to (repeatedly) employ the Boole-
Shannon Expansion [59, 70], which takes the following form when implemented w.r.t. a single variable ��  
 

�(�) =  (���  ∧  �(�|0�)) ∨ (��  ∧  �(�|1�)).                                                                           (D.1) 
 
This Boole-Shannon Expansion expresses the Boolean function �(�) in terms of its two subfunctions 
�(�|0�) and �(�|1�). These subfunctions are equal to the Boolean quotients �(�)/���  and �(�)/��, and 
hence are obtained by restricting X�  in the expression �(�) to 0 and 1, respectively. If �(�) is a sop 
expression of �  variables, the two subfunctions �(�|0�) and �(�|1�) are functions of at most (� − 1) 
variables. If the Boole-Shannon expansion is applied in sequence to the � variables of �(�), the expansion 
tree is a complete binary tree (usually called a Binary Decision Diagram) of 2n leaves. These leaves are 
functions of no variables, or constants, and equal the entries of a corresponding conventional Karnaugh map 
of �(�) [79]. Sibling nodes (nodes at the same level) of this expansion tree constitute the entries of a 
variable-entered (or a map-entered) Karnaugh map of �(�) [79]. 
 
Appendix E:  Unate Boolean Functions 
 
A Boolean function �(�)=  �(��,��,… ,����,��,����,… ,��) is called unate if and only if it can be 
represented as a normal (sum-of-products or product-of-sums) formula in which no variable appears both 
complemented and un-complemented, i.e., every variable is mono-form and no variable is bi-form. This 
Boolean function is called positive in its argument �� , if there exists a normal representation of the function 
in which ��  does not appear complemented. This happens if and only if every occurrence of the literal ��� is 
redundant and can be eliminated, i.e., if and only if there exist functions �� and �� (independent of ��) such 
that [80-86] 
 

�(�)= ��  ��(��,��,… ,����,����,… ,��) ∨   ��(��,��,… ,����,����,… ,��).                     (E.1)  
 
A Boolean function �(�) is called negative in its argument �� , if there exists a normal representation of the 
function in which �� does not appear un-complemented. This happens if and only if every occurrence of the 
literal ��  is redundant and can be eliminated, i.e., if and only if there exist functions �� and �� (independent 
of ��) such that [80-86] 
 

�(�)=   ��(��,��,… ,����,����,… ,��) ∨   ���  ��(��,��,… ,����,����,… ,��).                     (E.2)  
 

If the function �(�) is positive in its argument ��, then its subfunctions are �(�|1�)=  �(�)/�� =   �� ∨  �� 
and �(�|0�)=  �(�)/��� =   ��, which means that �(�|0�)≤  �(�|1�). Similarly, if the function �(�) is 
negative in its argument ��, then its subfunctions are �(�|1�)=  �(�)/�� =   �� and �(�|0�)=  �(�)/��� =   
�� ∨ ��, which means that �(�|1�)≤  �(�|0�). 
 
All threshold (linearly-separable) functions are unate, but the converse is not true [87-91]. The function  
���� ∨ ����  is an example of a unate function that is not threshold. All the prime implicants of a unate 
function are essential, so that it has a single irredundant disjunctive form, which serves as both its (unique) 
minimal sum and its complete sum. 
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