

Journal of Advances in Mathematics and Computer Science

32(3): 1-20, 2019; Article no.JAMCS.49186

ISSN: 2456-9968
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)

*Corresponding author: E-mail: arushdi@kau.edu.sa, arushdi@yahoo.com, arushdi@ieee.org, alirushdi@gmail.com;

Logical Design of n-bit Comparators: Pedagogical Insight from
Eight-Variable Karnaugh Maps

Ali Muhammad Ali Rushdi1* and Sultan Sameer Zagzoog1

1Department of Electrical and Computer Engineering, King Abdulaziz University, P.O.Box 80204,

Jeddah 21589, Saudi Arabia.

Authors’ contributions

This work was carried out in collaboration between the two authors. Author AMAR designed the study,
performed the analysis, solved the example and wrote the manuscript. Author SSZ managed the literature

search and drew the figures. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2019/v32i330146
Editor(s):

(1) Dr. Junjie Chen, Professor, Department of Electrical Engineering, University of Texas at Arlington, USA.
Reviewers:

(1) J. Ladvánszky, Ericsson Hungary Research and Development Center, Hungary.
(2) Xingting Wang, Howard University, United States.

(3) Abdullah Sonmezoglu,Yozgat Bozok University, Turkey.
Complete Peer review History: http://www.sdiarticle3.com/review-history/49186

Received: 05 March 2019
Accepted: 17 May 2019

Published: 22 May 2019

Abstract

An �-bit comparator is a celebrated combinational circuit that compares two �-bit inputs � and � and
produces three orthonormal outputs: G (indicating that � is strictly greater than �), E (indicating that �
and � are equal or equivalent), and L (indicating that � is strictly less than �). The symbols ‘G’, ‘E’, and
‘L’ are deliberately chosen to convey the notions of ‘Greater than,’ ‘Equal to,’ and ‘Less than,’
respectively. This paper analyzes an �-bit comparator in the general case of arbitrary � and visualizes the
analysis for � = 4 on a regular and modular version of the 8-variable Karnaugh-map. The cases � = 3, 2,
and 1 appear as special cases on 6-variable, 4-variable, and 2-variable submaps of the original map. The
analysis is a tutorial exposition of many important concepts in switching theory including those of
implicants, prime implicants, essential prime implicants, minimal sum, complete sum and disjoint sum of
products (or probability-ready expressions).

Keywords: Comparator; Karnaugh map; prime implicant; minimal sum; complete sum; probability-ready

expression.

Original Research Article

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

2

1 Introduction

Modern logic digital design handles real-life problems that involve very large numbers of variables, and
hence are not amenable to solution via heuristic manual tools but are solvable only via computerized
algorithms. However, there is one heuristic manual tool, namely, the Karnaugh map [1-23], that plays an
indispensable role in logic design as it provides pictorial insight in demonstrating concepts, proving
theorems, and understanding procedures by showing their details in small examples. The literature abounds
with contributions that offer instructive and pedagogical expositions of the Karnaugh map and related logic
design tools [24-30]. The purpose of this paper is to make yet another such contribution, as it provides a
tutorial exposition of a regular and modular version of the Karnaugh map [31-34] and to utilize this version
in presenting many important concepts of switching theory and logic design. This map version can be
(theoretically) extended to an arbitrary large number of variables, and includes all maps of smaller sizes as
special cases.

The Karnaugh map is an enhanced form of the truth table [9], in which two dimensions (rather than one
dimension) are used, and in which reflected binary ordering or grey ordering (as opposed to direct binary
ordering) is employed. The �-variable map consists of 2� cells, such that every cell has � neighboring cells
or logically adjacent cells. Two cells are (first) neighbors or (immediately) adjacent if their variable values
except one are exactly the same. Such two cells are said to have a Hamming distance [35-43] of one or to
differ in exactly one-bit position. The map is constructed such that any two logically adjacent cells are made
also as visually adjacent as possible. In general, two logically adjacent cells appear as the mirror images with
respect to boundary lines separating the internal and external domains of the variable in whose value the two
cells differ (See Fig. 1).

Typically, the Karnaugh map is conveniently used up to six variables [4]. There are occasions in which
Karnaugh maps of eight variables are used, in which the rectangular shape of cells is abandoned to a
triangular shape [44-48]. In this paper, however, we will use the aforementioned regular and modular form
of the Karnaugh map that appeared earlier in [31-34], and is such that

a) The rectangular shape of the cell is retained.
b) The internal domain of the (� + 1)st variable is introduced to be centered around the boundary lines

of the (� – 1)st variable (See Fig. 2).

We note that the process outlined in (b) above can be, in theory, indefinitely continued. Hence, there is no
theoretical upper bound on the size of the Karnaugh map constructed this way. However, as the number of
variables increases, the size of the map increases exponentially, and its utility diminishes very quickly due to
prohibitively increasing difficulty.

As a demonstration of the usefulness of the aforementioned version of the Karnaugh map, we present its
case of eight variables herein. We use this map to explore the design of a well-known combinational circuit,
namely an �-bit digital magnitude comparator [49-51]. Note that we deal herein only with digital (as
opposed to analogue) comparators. A digital comparator typically uses two �-bit inputs � and �, and could
possibly be

1. An Identity Comparator, which has a single output � such that � = 1 when � = �, i.e., when the
two inputs match bit for bit.

2. A Magnitude Comparator, which has three orthonormal outputs {�,�,�}, namely � = 1 when
� > �, � = 1 when � = � and � = 1 when � < �.

Note that a magnitude comparator includes an identity comparator as a special case. The magnitude
comparator is a redundant circuit in the sense that any of its three outputs might be readily obtained from the
other two. Digital Comparators are used widely in Analogue-to-Digital Converters (ADC) and to perform a
variety of arithmetic operations in the Arithmetic Logic Units (ALU) of a digital computer.

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

3

Karnaugh-map analysis of the digital magnitude comparator is employed herein to provide instructive and
pedagogical exposition of many important concepts in logic design and switching theory including those of
implicants, prime implicants, essential prime implicants, minimal sum, complete sum and disjoint sum of
products (or probability-ready expressions).

The organization of the rest of this paper is as follows. Section 2 presents a mathematical description of an
�-bit magnitude digital comparator. Section 3 derives expressions for the comparator outputs in minimal-
sum or complete-sum form as well as in probability-ready form. Section 4 concludes the paper. To make the
paper self-contained, five appendices are included. Appendix A explains basic concepts of Boolean
minimization, Appendix B is about the complete sum. Appendix C defines probability-ready expressions.
Appendix D briefly introduces the Boole-Shannon expansion. Appendix E deals with unate Boolean
functions.

2 Mathematical Description of an n-bit Comparator

An n-bit comparator is a (combinational) circuit (shown in Fig. 3) that compares two n-bit inputs � =
(Y���Y��� … Y�Y�)� and � = (Z���Z��� … Z�Z�)� such that

� = ∑ Y�
���
��� 2�, (1a)

� = ∑ Z�

���
��� 2�. (1b)

The comparator has three 1-bit outputs, namely

� = {� > �}, (2a)

� = {� = �}, (2b)

� = {� < �}. (2c)

The three variables G, E, and L form an orthonormal set, or in other words, they are mutually exclusive and
exhaustive, i.e.,

� ∨ � ∨ � = 1. (3a)

�� = �� = �� = 0. (3b)

Consequently, these three variables are inter-related by the following equations.

� = ����, � =̅ � ∨ �, (4a)

� = ��̅�, �� = � ∨ �, (4b)

� = ��̅�, �� = � ∨ �. (4c)

Fig. 4 is a display of the results above for two single-bit inputs � = �� and � = ��. For this case, we simply
obtain

� = ������� = {�� > ��}= {�� ≤ ��}������������ = {�� → �������������}, (5a)

� = ��� ����� ∨ ���� = {�� ⊙ ��}= {�� ≡ ��}, (5b)

� = ��� �� = {�� < ��}= {�� ≤ ��}������������ = {�� → ��}�������������. (5c)

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

4

As seen from equations (5), the three variables �,�,and � in the case of single-bit inputs are given by the
functions �������(��,��), ���� (��,��), and �������(��, ��).

3 Derivation of the Comparator Equations

In this section, we derive the explicit output equations for a 4-bit comparator, and then generalize our results
to an �-bit one by obtaining the output equations in terms of recursive relations and boundary conditions.
Figure 5 is a flow chart that compares the bits �� to the bits �� (starting from the most significant bit and
ending with the least significant one, i.e., for � = 3,2,1, and 0. As the flow chart indicates, the three outputs
denoted as ��,��,��� �� are given by

G� = ������� ∨ (�������� ∨ ����)(������� ∨ (�������� ∨ ����)(������� ∨ (�������� ∨ ����)�������)), (6a)

E� = ⋀ (������ ������ ∨ �� ��)
�
� �� , (6b)

L� = ����� ∨ (�������� ∨ ����)(����� ∨ (�������� ∨ ����)(����� ∨ (�������� ∨ ����)�����)). (6c)

Equations (6) are demonstrated by the 8-variable Karnaugh map in Fig. 6, where the cells for which �� = 1
are entered by � and given a light blue color, while the cells for which �� = 1 are entered by � and given a
pale red color, and the cells for which �� = 1 are entered by � and left uncolored. The single map in Fig. 6
is obtained by combining three maps for the orthonormal variables ��, ��, and ��. Both the cells for the
functions �� and �� are covered by disjoint (non-overlapping loops). For each of these two functions, there
is one 64-cell loop, two 16-cell loops, four 4-cell loops, and eight 1-cell loops. These loops come in four
consecutive stages, with the loops in a succeeding stage doubling in number and diminishing to quarter size,
compared to the loops in the preceding stage. Remarkable symmetry could be observed with respect to the
main diagonal of the map.

Fig. 6 is, in a sense, a summary of the results of equations (6) (for the 4-bit comparator) demonstrated on an
8-variable Karnaugh map with inputs � = (Y�Y�Y�Y�)� and � = (Z�Z�Z�Z�)� . Though the analysis is
intended for � = 4 on the 8-variable map, the cases � = 3,2, and 1 appear as special cases on 6-variable, 4-
variable, and 2-variable submaps of the original map. The top left quarter of this map is a 6-variable submap
representing a 3-bit comparator with inputs � = (Y�Y�Y�)� and � = (Z�Z�Z�)�. Again, the top left quarter of
this submap is a 4-variable submap representing a 2-bit comparator with inputs � = (Y�Y�)� and � =
(Z�Z�)� . Finally, the top left quarter of this latter submap is a 2-variable submap representing a 1-bit
comparator with inputs � = (Y�)� and � = (Z�)�.

The analysis above for � = 4 on the 8-variable map of Fig. 6 can also be extended to higher (encompassing)
values of �. Figure 7 demonstrates the construction of the 2�-variable map (for the �-bit comparator) from a
2(� − 1)-variable map (for the (� − 1)-bit comparator). Theoretically, such a construction can be
inductively continued without limit. Therefore, one can easily imagine how the maps for � =
5,6,7… ���. look like. The 2�-variable map might be viewed as a map-entered map [52-54] with two map
variables �� and ��, and four major cells, each of which having the size of a 2(� − 1)-variable map. The
middle point of this new map is taken for a center of symmetry. Initially, the major cell ����� ����� is filled with
the original 2(� − 1)-variable map as it is. Next, the major cell ���� is filled with the original 2(� − 1)-
variable map reflected with respect to the center of symmetry, while the major cell ������� is filled uniformly
with a ′�′ in each of its cells. Finally, the major cell ����� �� is filled uniformly with an ′�′ in each of its cells.
In fact, one can start with a base case of the 2-variable map with inputs � = (Y�)� and � = (Z�)�, and use
the recursive step suggested by Fig. 7 repeatedly, so as to construct any desirable 2�-variable map.

Equations (6) constitute probability-ready expressions [55-60] (See Appendix C), and hence, can be
converted, on a one-to one basis, to the corresponding expectation expressions

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

5

�{��}= �{��}�{�����}+ (�{���}�{�����}+ �{��}�{��})(�{��}�{�����}+ (�{���}�{�����}+ �{��}�{��})(�{��}�{�����}+
(�{���}�{�����}+ �{��}�{��})�{��}�{�����})), (7a)

�{��}= ⋀ (�{������}�{ ������}+ �{�� }�{�� })

�
� �� , (7b)

�{��}= �{���}�{��}+ (�{���}�{�����}+ �{��}�{��})(�{���}�{��}+ (�{���}�{�����}+ �{��}�{��})(�{���}�{��}+

(�{���}�{�����}+ �{��}�{��})�{���}�{��})). (7c)

A generalization of equations (6) is possible via the following recursive relations

G� = ������� ∨ (��� ����� ∨ ����) ����, 1 ≤ � ≤ �, (8a)

�� = (��� ����� ∨ ����) ����, 1 ≤ � ≤ �, (8b)

�� = ��� �� ∨ (��� ����� ∨ ����) ����, 1 ≤ � ≤ �. (8c)

These recursive relations are used in conjunction with the boundary conditions

�� = �������, (9a)

�� = ��� ����� ∨ ����, (9b)

�� = �����. (9c)

Equations (8) have a complete-sum version of the form

��(��)= ������� ∨ (�� ∨ �����) ��(����), 1 ≤ � ≤ �, (10a)

��(��)= (��� ����� ∨ ����) ��(����), 1 ≤ � ≤ �, (10b)

��(��)= ��� �� ∨ (��� ∨ ��) ��(����), 1 ≤ � ≤ �. (10c)

Equations (10) are used together with a complete-sum version of (9), namely

��(��)= �������, (11a)

��(��)= ��� ����� ∨ ����, (11b)

��(��)= �����. (11c)

Equations (8) and (9) are also probability-ready expressions [55-60] (See Appendix C) that are useful in
signal-probability calculations [61-69] as they transform on a one-to-one basis to the probability domain,
namely

�{��}= �{��}�{�����}+ (�{��� }�{�����}+ �{��}�{��}) �{����}, (12a)

�{��}= (�{��� }�{ �����}+ �{��}�{��}) �{����}, (12b)

�{��}= �{��� }�{��}+ (�{��� }�{ �����}+ �{��}�{��}) �{����}. (12c)

�{��}= �{��}�{�����}, (13a)

�{��}= (�{���}�{ �����}+ �{��}�{��}), (13b)

�{��}= �{���}�{��}. (13c)

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

6

Fig. 8 displays all the prime implicants of ��, each on a separate map. There are fifteen prime-implicant
loops colored in dark blue to be distinguished from other asserted cells of ��, which remain colored in light
blue. Each of these loops (except the first) in an enlargement of one of the loops in Fig. 6 (entered with �),
so as to allow overlapping with earlier loops. Note that all fifteen loops pass through the cell at row 0 and
column 15, which is the all-0 cell for � and the all-1 cell for �. These prime-implicant loops are all essential.
They come in four consecutive stages, with the loops in a succeeding stage doubling in number and
diminishing to half size, compared to the loops in the preceding stage. The function �� is a unate function
with positive polarity in ��,��,�� and �� and with negative polarity in ��,��,�� and �� (See Appendix E).
The minimal sum (or complete sum) for �� is covered by one 64-cell loop, two 32-cell loops, four 16-cell
loops, and eight 8-cell loops, and is given by

�� = ������� ∨
��������� ∨ ������������ ∨
�������������� ∨ ����������� ∨ �������������� ∨ ����� ������������ ∨
������� ������������ ∨ ���������������� ∨ ������������� ∨ ���������������� ∨ ������������������� ∨ ���������������� ∨
����� �������������� ∨ ����� ����� ������������ (14a)

= ������� ∨
(�� ∨ �����)������� ∨
(�� ∨ �����)(�� ∨ �����)������� ∨
(�� ∨ �����)(�� ∨ �����)(�� ∨ �����)������� (14b)

Note that the factored expression (14b) might be obtained from (10a) and (11a). Similar analysis is possible
for the function ��.

Fig. 1. The general layout of the eight-variable Karnaugh map used herein. The cell colored in green
(column 15 and row 0) represents the minterm ������������

��������
��������

���� or the bit sequence 10101010. Its
eight logically adjacent or neighboring cells are highlighted in yellow. Only four of these cells are

visually adjacent to the original cell when the map is viewed to lie on a torus

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

7

Fig. 2. The eight-variable Karnaugh map of Fig. 1. There are two borders of the variable ��
(separating its internal domain (�� = �) and external domain (�� = �)), which are highlighted in
bold. There are two internal regions for the variable �� (colored) which are centered around these

borders

Fig. 3. A comparator is a combinational circuit that compares two n-bit inputs � and � and produces
three orthonormal outputs � = {� > �}, � = {� = �} and � = {� < �} such that � ∨ � ∨ � = �,

�� = �� = �� = �, and consequently � = ����,� = ����,��� � = ����

Fig. 4. Karnaugh map for two single-bit inputs �� ��� �� . Note that {� = �}≡ {������������ = �}∨
{���� = �}≡ {������������ ∨ ���� = �}

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

8

Fig. 5. A flow chart depicting the comparison of a four-bit input � = (��������)� to another four-bit
input � = (��������)�. The comparator starts by comparing the highest-order or most-significant

bits (MSB) first. If equality exists (�� = ��), then the comparator compares the next lower bits and
so on until it reaches the lowest-order or least-significant bits (LSB). If equality still exists then the two

numbers are defined as being equal (� = �). If inequality is detected at any stage

(either �� > �� �� �� < ��) the relationship between the two numbers � ��� � is determined

(respectively as � > � �� � < �) and no further comparison is needed

Fig. 6. A summary of the results of equations (6) (for the 4-bit comparator) demonstrated on an 8-
variable Karnaugh map with inputs � = (��������)� and � = (��������)�. The top left quarter of
this map is a 6-variable submap representing a 3-bit comparator. Again, the top left quarter of this
submap is a 4-variable submap representing a 2-bit comparator. Finally, the top left quarter of this
latter submap is a 1-variable submap representing a 1-bit comparator. Remarkable symmetry could

be observed with respect to the main diagonal of the map

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

9

Fig. 7. Construction of the ��-variable map (for the �-bit comparator) from the �(� − �)-variable
map (for the (� − �)-bit comparator). Theoretically, such a construction can be inductively continued

without limit

(a) �����

(b1) �������

(b2) ��������

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

10

(c1) ����������

(c2) ���������

(c3) ����������

(c4) �����������

(d1) �������������

(d2) ������������

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

11

(d3) �����������

(d4) ������������

(d5) �������������

(d6) ������������

(d7) �������������

(d8) ��������������

Fig. 8. A complete sum (and also a minimal sum) for �� given by loops on fifteen maps. Note that this
coverage proves that G is a unate function (with a positive polarity in �� (� ≤ � ≤ �) and a negative
polarity in �� (� ≤ � ≤ �). Note that all loops pass through the shaded cell (����������������)=

(��������), which is the all-1 cell for � and the all-0 cell for �. Each of the fifteen loops in this figure
is an essential prime-implicant loop, since it is the only loop covering some of its cells. For example, the

loop �������������� in (d8) is the only PI loop covering the cell ��������� �������������� (labelled with �).
This cell has three asserted neighbors only, and if it could be covered by an 8-cell loop (which is the

case herein), such a loop would be an essential PI loop

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

12

4 Conclusions

This paper is a tutorial on the basic concepts of switching algebra, including Boolean minimization, the
complete sum (Blake canonical form), probability-ready expressions, the Boole-Shannon expansion and
unate Boolean functions. The topic explored in this tutorial is the design of a well-known combinational
circuit, namely the �-bit digital magnitude comparator. The tool employed herein is a regular and modular
version of the 8-variable Karnaugh-map, for which the case � = 4 of the �-bit comparator is explored. The
cases � = 3, 2, and 1 appear as special cases on 6-variable, 4-variable, and 2-variable submaps of the
original map. The analysis for � = 4 on the 8-variable map is shown to be extendible (theoretically without
limit) to higher (encompassing) values of �.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Karnaugh M. The map method for synthesis of combinational logic circuits. Transactions of the

American Institute of Electrical Engineers, Part I: Communication and Electronics. 1953;72(5):593-
599.

[2] Hurley RB. Probability maps, IEEE Transactions on Reliability. 1963;12(3):39-44.

[3] Lee SC. Modern switching theory and digital design, prentice-Hall, Englewood Cliffs, New Jersey,

NJ, USA; 1978.

[4] Muroga S. Logic design and switching theory, John Wiley, New York, NY, USA; 1979.

[5] Rushdi AM. Symbolic reliability analysis with the aid of variable-entered Karnaugh maps, IEEE

Transactions on Reliability. 1983;32(2):134-139.

[6] Rushdi AM. Map differentiation of switching functions. Microelectronics and Reliability. 1986;26(5):

891-907.

[7] Rushdi AM. Improved variable-entered Karnaugh map procedures. Computers & Electrical

Engineering. 1987;13(1):41-52.

[8] Hill FJ, Peterson GR. Computer aided logical design with emphasis on VLSI, 4th Edition, Wiley, New

York, NY, USA; 1993.

[9] Rushdi AMA. Karnaugh map, encyclopedia of mathematics. M. Hazewinkel (Editor), Boston, Kluwer

Academic Publishers. 1997;I(Supplement):327-328.
Available:http://eom.springer.de/K/k110040.html

[10] Rushdi AM, Al-Yahya HA. A Boolean minimization procedure using the variable-Entered Karnaugh

map and the generalized consensus concept. International Journal of Electronics. 2000;87(7):769-794.

[11] Rushdi AM, Al-Yahya HA. Further improved variable-entered Karnaugh map procedures for

obtaining the irredundant forms of an incompletely-specified switching function. Journal of King
Abdulaziz University: Engineering Sciences. 2001;13(1):111-152.

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

13

[12] Rushdi AM, Al-Yahya HA. Derivation of the complete sum of a switching function with the aid of
the variable-entered Karnaugh map. Journal of King Saud University-Engineering Sciences.
2001;13(2):239-268.

[13] Rushdi AM, Al-Yahya HA. Variable-entered Karnaugh map procedures for obtaining the irredundant
disjunctive forms of a switching function from its complete sum. Journal of King Saud University-
Engineering Sciences. 2002;14(1):13-26.

[14] Roth C, Kinney L. Fundamentals of Logic Design,7th Edition, Cengage Learning, Stamford, CT,

USA; 2014.

[15] Rushdi AMA, Ghaleb FAM. The Walsh spectrum and the real transform of a switching function: A

review with a Karnaugh-map perspective. Journal of Engineering and Computer Sciences, Qassim
University. 2014;7(2):73-112.

[16] Fabricius ED. Modern Digital Design and Switching Theory. CRC Press; 2017.

[17] Cavanagh J. Digital Design and Verilog HDL Fundamentals. CRC Press; 2017.

[18] Rushdi AMA, Badawi RMS. Karnaugh-map utilization in Boolean analysis: The case of war

termination. Journal of Qassim University: Engineering and Computer Sciences. 2017;10(1):53-88.

[19] Deschamps JP, Valderrama E, Terés L. Digital systems: From logic gates to processors. Springer;

2017.

[20] Rushdi AMA, Badawi RMS. Karnaugh map utilization in coincidence analysis. Journal of King

Abdulaziz University: Faculty of Computers and Information Technology. 2017;6(1-2):37-44.

[21] Rushdi AMA. Utilization of Karnaugh maps in multi-value qualitative comparative analysis,

International Journal of Mathematical, Engineering and Management Sciences (IJMEMS). 2018;3(1):
28-46.

[22] Rushdi, R. A., & Rushdi, A. M. (2018). Karnaugh-map utility in medical studies: The case of Fetal

Malnutrition. International Journal of Mathematical, Engineering and Management Sciences
(IJMEMS), 3(3), 220-244.

[23] Rushdi AMA, Badawi RMS. Computer engineers look at qualitative comparative analysis.

International Journal of Mathematical, Engineering and Management Sciences (IJMEMS). 2019;4(3).

[24] Roth CH. Computer aids for teaching logic design. In Proceedings of IEEE Frontiers in Education

Conference-FIE'93. IEEE. 1993;188-191.

[25] Hacker C, Sitte R. Interactive teaching of elementary digital logic design with Win Logi Lab. IEEE

Transactions on Education. 2004;47(2):196-203.

[26] Solairaju A, Periyasamy R. Optimal Boolean function simplification through K-map using object-

oriented algorithm. International Journal of Computer Applications. 2011;15(7):28-32.

[27] Baneres D, Clarisó R, Jorba J, Serra M. Experiences in digital circuit design courses: A self-study

platform for learning support. IEEE Transactions on Learning Technologies. 2014;7(4):360-374.

[28] Battistella P, von Wangenheim CG. Games for teaching computing in higher education–A systematic

review. IEEE Technology and Engineering Education. 2016;9(1):8-30.

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

14

[29] Rushdi AM, Zagzoog SS. Derivation of all particular solutions of a ‘big’ Boolean equation with
applications in digital design. . Current Journal of Applied Science and Technology. 2018;27(3):1-16.

[30] Salhi Y. Approaches for enumerating all the essential prime implicants. In International Conference

on Artificial Intelligence: Methodology, Systems, and Applications. Springer, Cham. 2018;228-239.

[31] Halder AK. Karnaugh map extended to six or more variables. Electronics Letters. 1982;18(20):868-

870.

[32] Motil JM. Views of digital logic & probability via sets, numberings; 2017.

Available:http://www.csun.edu/~jmotil/ccSetNums2.pdf

[33] Rushdi AM, Zagzoog SS, Balamesh AS. Derivation of a scalable solution for the problem of factoring

an n-bit integer. Journal of Advances in Mathematics and Computer Science. 2019;30(1):1-22.

[34] Rushdi AMA, Alsayegh AB. Reliability analysis of a commodity-supply multi-state system using the

map method. Journal of Advances in Mathematics and Computer Science. 2019;31(2):1-17.

[35] Fantauzzi G. Application of Karnaugh maps to Maitra cascades. In Proceedings of the April 30--May

2, 1968, spring joint computer conference. ACM. 1968;291-296.

[36] Edwards CR, Hurst SL. A digital synthesis procedure under function symmetries and mapping

methods. IEEE Transactions on Computers. 1978;27(11):985-997.

[37] Heiss M. Error-detecting unit-distance code. IEEE Transactions on Instrumentation and

Measurement. 1990;39(5):730-734.

[38] Pomeranz I, Reddy SM. Pattern sensitivity: A property to guide test generation for combinational

circuits. In Proceedings Eighth Asian Test Symposium (ATS'99). IEEE. 1999;75-80.

[39] Tabandeh M. Application of Karnaugh map for easy generation of error correcting codes. Scientia

Iranica. 2012;19(3):690-695.

[40] El-Maleh AH, Oughali FC. A generalized modular redundancy scheme for enhancing fault tolerance

of combinational circuits. Microelectronics Reliability. 2014;54(1):316-326.

[41] Pezeshkpour P, Tabandeh M. Data bits in Karnaugh map and increasing map capability in error
correcting. arXiv preprint arXiv:1502.02253. 2015;1-8.

[42] Rushdi AMA, Ba-Rukab OM. Map calculation of the Shapley-Shubik voting powers: An example of
the European Economic Community. International Journal of Mathematical, Engineering and
Management Sciences (IJMEMS). 2017;2(1):17-29.

[43] Rushdi AMA, Ba-Rukab OM. Calculation of Banzhaf voting indices utilizing variable-entered
Karnaugh maps. British Journal Mathematics and Computer Science. 2017;20(4):1-17.

[44] Rushdi AM, Al-Khateeb DL. A review of methods for system reliability analysis: A Karnaugh-map

perspective, Proceedings of the First Saudi Engineering Conference, Jeddah, Saudi Arabia. 1983;
1:57-95.

[45] Rushdi AM. Overall reliability analysis for computer-communication networks, Proceedings of the

Seventh National Computer Conference, Riyadh, Saudi Arabia. 1984;23-38.

[46] Rushdi AM. On reliability evaluation by network decomposition, IEEE Transactions on Reliability,
1984;33(5):379-384. Corrections: ibid. 1985;34(4):319.

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

15

[47] Rushdi AMA, Zagzoog SS. Design of a digital circuit for integer factorization via solving the inverse

problem of logic. Journal of Advances in Mathematics and Computer Science. 2018;26(3):1-14.

[48] Rushdi AM, Zagzoog SS, Balamesh AS. Design of a hardware circuit for integer factorization using a

big Boolean algebra. Journal of Advances in Mathematics and Computer Science. 2018;27(1):1-25.

[49] Taylor FJ, Gill R, Joseph J, Radke J. A 20 bit logarithmic number system processor. IEEE

Transactions on Computers. 1988;37(2):190-200.

[50] Thapliyal H, Ranganathan N, Ferreira R. Design of a comparator tree based on reversible logic.

In 10th IEEE International Conference on Nanotechnology. IEEE. 2010;1113-1116.

[51] Morrison M, Lewandowski M, Ranganathan N. Design of a tree-based comparator and memory unit

based on a novel reversible logic structure. In 2012 IEEE Computer Society Annual Symposium on
VLSI. IEEE. 2012;231-236.

[52] Rushdi AM. Logic design of NAND (NOR) circuits by the entered-map-factoring

method. Microelectronics Reliability. 1987;27(4):693-701.

[53] Rushdi AM, Ba-Rukab OM. A purely map procedure for two-level multiple-output logic

minimization. International Journal of Computer Mathematics. 2007;84(1):1-10.

[54] Rushdi AM, Ba-Rukab OM. A map procedure for two-level multiple-output logic minimization.

In Proceedings of the Seventeenth National Computer Conference. 2004;521-532.

[55] Rushdi AM, Goda AS. Symbolic reliability analysis via Shannon's expansion and statistical

independence. Microelectronics and Reliability. 1985;25(6):1041-1053.

[56] Rushdi AM, Abdul Ghani AA. A comparison between reliability analyses based primarily on

disjointness or statistical independence. Microelectronics and Reliability. 1993;33:965-978.

[57] Rushdi AMA, Hassan AK. Reliability of migration between habitat patches with heterogeneous

ecological corridors. Ecological Modeling. 2015;304:1-10.

[58] Rushdi, A. M. A., & Hassan A. K. (2016). An exposition of system reliability analysis with an

ecological perspective, Ecological Indicators, 63, 282-295.

[59] Rushdi AM, Rushdi MA. Switching-algebraic analysis of system reliability, Chapter 6 in M. Ram and

P. Davim (Editors), Advances in Reliability and System Engineering, Management and Industrial
Engineering Series, Springer International Publishing, Cham, Switzerland. 2017;139-161.

[60] Rushdi AM, Alturki AM. Novel representations for a coherent threshold reliability system: A tale of

eight signal flow graphs. Turkish Journal of Electrical Engineering & Computer Sciences. 2018;26(1):
257-269.

[61] Parker KP, McCluskey EJ. Probabilistic treatment of general combinational networks, IEEE

Transactions on Computers. 1975;24(6):668-670.

[62] Ogus RC. The probability of a correct output from a combinational circuit. IEEE Transactions on

Computers. 1975;24(5):534-544.

[63] McCluskey EJ, Parker KP, Shedletsky JJ. Boolean network probabilities and network design. IEEE

Transactions on Computers. 1978;27(2):187-189.

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

16

[64] Krishnamurthy B, Tollis IG. Improved techniques for estimating signal probabilities. IEEE

Transactions on Computers. 1989;38(7):1041-1045.

[65] Ercolani S, Favalli M, Damiani M, Olivo P, Ricco B. Estimate of signal probability in combinational

logic networks. Proceedings of the 1st IEEE European Test Conference. 1989;132-138.

[66] Jiang Y, Tang Y, Wang Y, Savaria Y. Evaluating the output probability of Boolean functions without

floating point operations, IEEE Canadian Conference on Electrical and Computer Engineering. 1999;
1:433-437.

[67] Franco DT, Vasconcelos MC, Naviner L, Naviner JF. Signal probability for reliability evaluation of

logic circuits. Microelectronics Reliability. 2008;48(8):1586-1591.

[68] Han J, Chen H, Boykin E, Fortes J. Reliability evaluation of logic circuits using probabilistic gate

models. Microelectronics Reliability. 2011;51(2):468-476.

[69] Qian W, Riedel MD, Zhou H, Bruck J. Transforming probabilities with combinational logic. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2011;30(9):1279-1292.

[70] Brown FM. Boolean reasoning: The logic of Boolean equations. Kluwer Academic Publishers,

Boston, USA; 1990.

[71] Rushdi AM, Ba-Rukab OM. Map derivation of the closures for dependency and attribute sets and all

candidate keys for a relational database, Journal of King Abdulaziz University: Engineering Sciences.
2014;25(2):3-34.

[72] Rushdi AMA, Albarakati HM. Construction of general subsumptive solutions of Boolean equations

via complete-sum derivation. Journal of Mathematics and Statistics. 2014;10(2):155-168.

[73] Rushdi AM, Alshehri TM, Zarouan M, Rushdi MA. Utilization of the modern syllogistic method in

the exploration of hidden aspects in engineering ethical dilemmas. Journal of King Abdulaziz
University: Computers and Information Technology. 2014;3(1):73-127.

[74] Rushdi AM, Zarouan M, Alshehri TM, Rushdi MA. The incremental version of the Modern

Syllogistic Method. Journal of King Abdulaziz University: Engineering Sciences. 2015;26(1):25-51.

[75] Rushdi AM, Rushdi MA. Utilization of the modern syllogistic method in the service of academic

advising. In Proceedings of KAU Conference on Academic Advising in Higher Education. 2015;228-
241.

[76] Rushdi AM, Rushdi MA. Switching-algebraic algorithmic derivation of candidate keys in relational

databases. Proceedings of the IEEE International Conference on Emerging Trends in Communication
Technologies (ICETCT-2016); 2016.

[77] Rushdi AM, Rushdi MA. Mathematics and examples of the modern syllogistic method of

propositional logic. In Ram, M. (Editor), Mathematics Applied in Information Systems, Bentham
Science Publishers, Emirate of Sharjah, United Arab Emirates. 2018;Chapter 6:123-167.

[78] Rushdi AMA, Ghaleb FAM. Novel characterizations of the JK Bistables (Flip Flops). Journal of

Engineering Research and Reports. 2019;4(3):1-20.

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

17

[79] Rushdi AMA, Ghaleb FAM. A tutorial exposition of semi-tensor products of matrices with a stress on
their representation of Boolean functions. Journal of King Abdulaziz University: Faculty of
Computers and Information Technology. 2016;5(1-2):3-41.

[80] McNaughton R. Unate truth functions. IRE Transactions on Electronic Computers. 1961;1:1-6.

[81] Choudhury A, Sarma D, Das SR. Minimal third-order expressions of Boolean Unate

functions. International Journal of Control. 1967;6(5):447-459.

[82] Fisher LT. Unateness properties of AND-EXCLUSIVE-OR logic circuits. IEEE Transactions on

Computers. 1974;C-24(2):166-172.

[83] Thayse A, Deschamps JP. Logic properties of unate discrete and switching functions. IEEE

Transactions on Computers. 1977;C-26(12):1202-1212.

[84] Srivatsa SK, Biswas NN. Karnaugh map analysis and synthesis of threshold functions. International

Journal of Systems Science. 1977;8(12):1385-1399.

[85] Hansen P, Simeone B. Unimodular functions. Discrete Applied Mathematics. 1986;14(3):269-281.

[86] Feigelson A, Hellerstein L. The forbidden projections of unate functions. Discrete Applied

Mathematics. 1997;77(3):221-236.

[87] Muroga S, Tsuboi T, Baugh CR. Enumeration of threshold functions of eight variables. IEEE

Transactions on Computers. 1970;C-19(9):818-825.

[88] Rushdi AM. Threshold systems and their reliability. Microelectronics and Reliability. 1990;30(2):

299-312.

[89] Zhang R, Gupta P, Zhong L, Jha NK. Threshold network synthesis and optimization and its

application to nanotechnologies. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems. 2005;24(1):107-118.

[90] Subirats JL, Jerez JM, Franco L. A new decomposition algorithm for threshold synthesis and

generalization of Boolean functions. IEEE Transactions on Circuits and Systems I: Regular
Papers. 2008;55(10):3188-3196.

[91] Rushdi AMA, Alturki AM. Reliability of coherent threshold systems. Journal of Applied Sciences.

2015;15(3):431-443.

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

18

APPENDICES

Appendix A: Basic Concepts of Boolean Minimization

This Appendix summarizes notions and concepts employed in the minimization of Boolean functions.
Additional information is available in Lee [3], Muroga [4], Rushdi [5-7], Hill and Peterson [8], and Roth and
Kinney [14].

The two literals of a Boolean variable �� are its complemented form ��� and its uncomplemented one �� .
A product (conjunction) of literals is called a term �(�) if a literal for each variable appears in it at most
once, i.e., a term is an irredundant product (conjunction). A redundant product can be reduced to a term by
eliminating repeated appearances of a literal through employment of idempotency of ‘AND.’ The constant 1
is the multiplication (ANDing) identity and is the product or term of no literals. The dual of a term is the
irredundant sum (disjunction), called an alterm. The constant 0 is the addition (ORing) identity and is the
sum or alterm of no literals. The constant 1 is not an alterm and the constant 0 is not a term. A term �(�) is
an implicant of a function �(�) (denoted by �(�)→ �(�) or �(�)≤ �(�)) if every �(�) satisfying
{�(�)= 1} also satisfies {�(�)= 1}, while the converse is not necessarily true. A term/alterm ��(�) is said
to subsume another term/alterm ��(�) if the set of literals of ��(�) is a subset of that of ��(�) (i.e., the

literals of ��(�) include those of ��(�)).

A prime implicant �(�) of a Boolean function �(�) is an implicant of �(�) such that no other term
subsumed by it is an implicant of �(�). An irredundant disjunctive form ���(�(�)) of a Boolean
function �(�) is a disjunction of some of its prime implicants that expresses �(�) but ceases to do so upon
the removal of one of these prime implicants. A minimal sum �� (�(�)) (minimal irredundant form
���(�(�))) of a Boolean function �(�) is an irredundant disjunctive form for the function with the
minimum number of prime implicants such that the total number of their literals is minimum.

An essential (core) prime implicant of �(�) is a prime implicant that appears in every irredundant
disjunctive form for �(�). For every essential prime implicant, there exists an asserted minterm of �(�) that
subsumes it and does not subsume any other prime implicant. This means that the Karnaugh-map loop
covering an essential prime implicant is the only loop that covers the cell of this asserted minterm. An
absolutely eliminable prime implicant of �(�) is a prime implicant that does not appear in any irredundant
disjunctive form for �(�). A conditionally eliminable prime implicant of �(�) is a prime implicant that
appears in some irredundant disjunctive form(s) for �(�), but that does not appear in other irredundant
disjunctive form(s) for �(�).

Appendix B: The Complete Sum (Blake Canonical Form)

The Complete Sum ��(�(�)) of a Boolean function �(�) (also called its Blake Canonical Form
���(�(�))) is the disjunction (ORing) of all its prime implicants, and nothing else [70-78]. The complete
sum is a closure, unique and canonical formula for �(�). It is the minimal or absorptive special case of a
syllogistic formula of �(�), where a syllogistic formula is defined as a sum-of-products formula, whose
terms include, but are not necessarily confined to, all the prime implicants of �(�). Complete-sum
construction usually requires the two operations of: (a) absorbing a term by another, and (b) generating the
consensus of two ORed terms. A brief explanation of these operations follows.

B.1. Absorbing a Term by Another

If a term ��(�) subsumes (implies) another ��(�), then the disjunction (��(�)∨ ��(�)) could simply be
rewritten as ��(�), viz.

��(�)∨ ��(�)= ��(�). (B.1)

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

19

The deletion of ��(�) in (B.1) is called absorption of the subsuming term ��(�) in the subsumed term
��(�). For example, the term ����̅ subsumes each of the sixteen terms ����̅ ,���̅ , ���̅ ,��� ,
���,̅��̅ , �� ,�� ,��,̅ ��,̅��, � ,�,̅ �, �, and 1. Hence, it could be deleted if it is ORed with any of them.
The complete sum is an absorptive syllogistic formula, i.e., it is a syllogistic formula in which no term
subsumes another.

B.2. Generating the Consensus of Two ORed Terms

Two terms ��(�) and ��(�) have a consensus if and only if they have exactly one opposition, i.e., exactly
one variable that appears complemented (���) in one term (say ��(�)) and appears uncomplemented (��)
in the other term. In such a case, the consensus is the ANDing of the remaining literals of the two terms, i.e.

��������(��(�) ,��(�))= (��(�) / ���) ˄ (��(�) / ��), (B.2)

where (�/�) denotes the Boolean quotient of the function � by the term �, i.e., the restriction of � when � is
asserted [59, 70, 78], viz.

� �⁄ = [�]���. (B.3)

When two terms have a consensus, their disjunction can be augmented by this consensus, i.e.

��(�) ∨ ��(�)= ��(�)∨ ��(�) ∨ ��������(��(�) ,��(�)). (B.4)

For example, the terms ��� and �� have a single opposition and are represented on the Karnaugh map by
two disjoint loops sharing a border, and hence their disjunction can be augmented by their consensus
(���/��) ˄ (��/�)= ��, which is a loop extending across the common border between the original loops
and covering the part ���� of ��� and the part ��� of ��. By contrast, the two terms � and �� have zero
opposition, and consequently non-disjoint or overlapping loops, and possess zero or no consensus. The two
terms ��� and ��̅ have more than one opposition, and consequently disjoint far-away loops, and again
possess zero or no consensus [74].

The complete-sum formula ��(�) may be generated by a two-step iterative-consensus procedure, in which
(a) a syllogistic formula F for f(�) is found by continually comparing terms and adding their consensuses (if
any) to the current formula of f(�), and (b) the resulting formula is converted to an absorptive one ���(�),
again by continually comparing terms and deleting subsuming terms by absorbing them in their subsumed
terms. A streamlined algorithmic version of iterative consensus is the Blake-Tison Method, which produces
the complete sum by performing explicit consensus generation with respect to each bi-form variable, and
following this by absorption. Alternatively, a syllogistic formula for the function might be produced
(without explicit consensus generation) through multiplying out any suitable product-of-sums (pos)
expression for the function to produce a sum-of-products (sop) expression [77].

Appendix C: Probability-Ready Expressions

A Probability-Ready Expression [55-60] is a random expression that can be directly transformed, on a one-
to-one basis, to its statistical expectation (its probability of being equal to 1) by replacing all logic variables
by their statistical expectations, and also replacing logical multiplication and addition (ANDing and ORing)
by their arithmetic counterparts. A logic expression is a PRE if

a) all ORed terms are disjoint (mutually exclusive), and
b) all ANDed sums (alterms) are statistically independent.

Appendix D: The Boole-Shannon Expansion

Rushdi and Zagzoog; JAMCS, 32(3): 1-20, 2019; Article no.JAMCS.49186

20

An effective way for converting a Boolean formula into a PRE form is to (repeatedly) employ the Boole-
Shannon Expansion [59, 70], which takes the following form when implemented w.r.t. a single variable ��

�(�) = (��� ∧ �(�|0�)) ∨ (�� ∧ �(�|1�)). (D.1)

This Boole-Shannon Expansion expresses the Boolean function �(�) in terms of its two subfunctions
�(�|0�) and �(�|1�). These subfunctions are equal to the Boolean quotients �(�)/��� and �(�)/��, and
hence are obtained by restricting X� in the expression �(�) to 0 and 1, respectively. If �(�) is a sop
expression of � variables, the two subfunctions �(�|0�) and �(�|1�) are functions of at most (� − 1)
variables. If the Boole-Shannon expansion is applied in sequence to the � variables of �(�), the expansion
tree is a complete binary tree (usually called a Binary Decision Diagram) of 2n leaves. These leaves are
functions of no variables, or constants, and equal the entries of a corresponding conventional Karnaugh map
of �(�) [79]. Sibling nodes (nodes at the same level) of this expansion tree constitute the entries of a
variable-entered (or a map-entered) Karnaugh map of �(�) [79].

Appendix E: Unate Boolean Functions

A Boolean function �(�)= �(��,��,… ,����,��,����,… ,��) is called unate if and only if it can be
represented as a normal (sum-of-products or product-of-sums) formula in which no variable appears both
complemented and un-complemented, i.e., every variable is mono-form and no variable is bi-form. This
Boolean function is called positive in its argument �� , if there exists a normal representation of the function
in which �� does not appear complemented. This happens if and only if every occurrence of the literal ��� is
redundant and can be eliminated, i.e., if and only if there exist functions �� and �� (independent of ��) such
that [80-86]

�(�)= �� ��(��,��,… ,����,����,… ,��) ∨ ��(��,��,… ,����,����,… ,��). (E.1)

A Boolean function �(�) is called negative in its argument �� , if there exists a normal representation of the
function in which �� does not appear un-complemented. This happens if and only if every occurrence of the
literal �� is redundant and can be eliminated, i.e., if and only if there exist functions �� and �� (independent
of ��) such that [80-86]

�(�)= ��(��,��,… ,����,����,… ,��) ∨ ��� ��(��,��,… ,����,����,… ,��). (E.2)

If the function �(�) is positive in its argument ��, then its subfunctions are �(�|1�)= �(�)/�� = �� ∨ ��
and �(�|0�)= �(�)/��� = ��, which means that �(�|0�)≤ �(�|1�). Similarly, if the function �(�) is
negative in its argument ��, then its subfunctions are �(�|1�)= �(�)/�� = �� and �(�|0�)= �(�)/��� =
�� ∨ ��, which means that �(�|1�)≤ �(�|0�).

All threshold (linearly-separable) functions are unate, but the converse is not true [87-91]. The function
���� ∨ ���� is an example of a unate function that is not threshold. All the prime implicants of a unate
function are essential, so that it has a single irredundant disjunctive form, which serves as both its (unique)
minimal sum and its complete sum.

© 2019 Rushdi and Zagzoog; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)
http://www.sdiarticle3.com/review-history/49186

