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Abstract

The paper deals with very weak solutions u to boundary value problems of the nonhomogeneous p-
harmonic equation. We show that, any very weak solution u to the boundary value problem is integrable
provided that r is sufficiently close to p.
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1 Introduction

Let 1< p<n, 0:Q—>R, Ox)eW ™ (Q), g>r, f(x) eL"‘P"fq““(Q) . We shall examine the boundary value
problem of the p-harmonic equation

=div(| Vu(x)|"? Vu(x)) = f(x), xeQ, (1.1
u(x) = 6(x), x €0Q,
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Throughout this paper Q will stand for a bounded regular domain in R"(rn>2). By a regular domain we

understand any domain of finite measure for which the estimates (3.3) and (3.4) below for the Hodge
decomposition are satisfied, see [1,2]. A Lipschitz domain, for example, is regular.

Definition 1.1. A function cO+W,"(Q), max{l,p-l}<r<p, is called a very weak solution to the

boundary value problem (1.1) if for all & e w7V () with compact support sets in Q, there is

J.Q<‘Vu‘ r2 Vu,VCD>dx = Igf(x)CDdx (1.2)

;

where f(x)e ™7 (Q).

Recall that a function y € §+W,* () is called the weak solution of the boundary value problem (1.1) if (1.2)
holds true for all ® e, *(Q) . The words very weak in Definition 1.1 mean that the Sobolev integrable

exponent r of u can be smaller than the natural one p  see [1], Theorem 1, page 602.

In this paper we will need the definition of weak L'-space (see [2]): for #> 0, the weak L' - space, L', . (Q),
consists of all measurable functions f such that

‘{er:‘f(x)bs}‘S%

for some positive constant = k( /) and everys > 0, where |g| is the » -dimensional Lebesgue measure of E.

Integrability property is important in the regularity theories of nonlinear elliptic PDEs and systems. In [3],
Zhu et al. studied the global integrability of nonhomogeneous quasilinear elliptic equations
—divA(x,u, Vi) = f(x)+div(Vu|?? Vu) . In [4], Guo et al. studied the higher order integrability of the

divergence elliptic equation —divA(x, Vi) = —divf . In [5], Zhang et al. studied the global integrability of A-
harmonic equation —divA(x, Vu) = —divf . In this paper, we consider the global integrability of the very weak
solutions of the boundary value problem (1.1) . The main result is the following theorem.

Theoerm 1.1. Let 9 "(Q), g >r, There exists g, = g,(n, p) > 0, such that for each very weak solution
uef+Wy (Q), max{l,p-1} < r < p < n , to the boundary value problem (1.1), we have

O+Lu(Q) forg<r,
ue{0+Lyw(Q) forg=rand r <o,
0+L"(Q) forg>n,

(1.3)

provided that |p — 7| < &, .

Note that we have restricted ourselves to the case r <n since otherwise any function in ' (Q) is in the
spce L' (Q) for any # <o by the Sobolev embedding theorem. At the same time, it is also noted that the
very weak solution 1 to the boundary value problem (1.1) is taken from the Sobolev space ' (Q), and the

embedding theorem ensures that the integrability of # reaches from » to »*. And our result theorem 1.1
improves this integrability. Note that the key to proving the theorem 1.1 is to use Hodge decomposition [1][6]
to construct the appropriate test function.
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Preliminary Lemmas
Lemma 1.1[6] For p>2 andany X,Y € R", one has
27X =Y < (XX Y|P, X =Y ),

T

Here |-| is the Euclidian norm in R” ,and < . > is the euclidian scalar product.

Lemma 1.2[7] Forany X,Y € R", one has

X1 x-17|° Y]
@Y [+ X =YX =Y, &0,
e g -1<¢e<0.

2°(l+¢)

Lemma 1.3[2] For 1< p<2 andany X,Y € R", one has

(X172 X=|Y|"? Y, X-Y)
2l =yI(( X =]+ )=y ).
Lemma 1.4[2] Let g >0, ¢:(s,,0) —[0,00)is a decrement function such that for each r, s (r>s5>s,),
if
P(r) <

¢ Vi
o )

where c,a, # are constants, we have

(1) if 8 > 1 we have that #(s,+d) =0, where d% = cz““”*“(qﬁ(so))”*l ;
(2) If g < 1 we have that g(s) < 2“2 (P 1 (25,)“ d(s,))s ™ » where pu=a /(1- ).

PROOF OF THEOREM 1.1
Forany L >0, let

u—-60+L foru-6<-L,
v=40 for—L<u—-6<1L, G.1)
u—-60-L foru—-6>1L.
Then according to the hypothesis, we have y¢ WOL’(Q) and Vy=(Vu-V#)- Ly gt - where 1 B is the

characteristic function of the set £ . We introduce the Hodge decomposition of vector field
| Vv P2 Vye L7 (Q). So that

|Vv|"™ Vy=VD+h. (3.2)

Here ® e W,"""7"(Q), he L’ 7*"(Q,R") is a vector field with zero divergence, and satisfied
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[ VO -pen < Cr, p) || VY[ (3.3)
and
20l rir-pin < C, p) | p=r (I VY[ (3.4)

From the counter-proof method, it is inevitable to exist ¢ such that ® =¢p—¢@q, . Taken @ as a test function of
the integral identity (1.2), that is

p-2 _ r=p _ _ p-2
j{wm Vu|"? Vi, [Vu-V o[ (Vu-V0))dx = L‘HMQ Vu|"? Vu, h)dx + L‘H‘m £ (x)®dkx.
This implies
j{‘ y L}(| Vu | Vu=|VO|"? VO,[Vu-V 0| (Vu-V0))dx
= (1Vul?? Vu=|VO|"? VO, h)dx
{lu-0]>L}
p-2 (3.5)
+L‘H‘>u<| V|’ V,h)dx
_ p-2 _ r=p _
IWMQ VO|" VO, |Vu-VO|"" (Vu-V0))d
+L‘u7‘g‘>”f(x)q)dx
=[1+[2+13+[4.
Now we shall distinguish between two cases.
Case 1: p>2. Using Lemma 2.1, (3.5) can be estimated as
p-2 _ p-2 _ r=p —
jﬂu_mq Vu|"? Vu—|V0|"? VO, |Vu-VO|™" (Vu—V0))dx 36)
zz”f |Vu-Veo| dx.
{lu-0>L}
Using the Lemma 2.2, H6lder inequality and Young inequality, |7, ‘ can be estimated as
_ p-2 _ p-2
|7,]=] L\,ﬁo\x,(' Vu " Vu—|V 0|7 VO, h)dx|
< (p—l)L‘ o IVOI+] Vu-VO\)" | Vu-Vo|h|dx
< p2 _ p-2 _ _ p-1
<272(p 1)([{‘u79‘>“| VO|" | Vu-Vo| h| dx+jw>“| Vu-Vo|"|h|dx) 37

IVOI a0 ([  [Vu-VO| dv)’

{ju-06>L}

<272 (p-D(,

[u—0]>L}

r-p+ r=p+l

.(-[{‘14—09‘>L}| h |Hv dx) o (J-é‘u—ﬁ‘>L}| V- Vt9| dx) ' .(-[{‘14—9‘>L)| h | o dx) ’ ]
<2 (p-0Cenp) p-rll(f, ,,  |VOI" )"

: VO dv) Vu-vo| dxl.

(J{\u—0\>L; | Vu 0 | dx) * J.{\u—o\>L}| u=-vo | dx]

Using the Holder inequality, (3.4) and Young inequality,

12‘ and ‘ 13‘ can be estimated as



Zhu et al.; JAMCS, 32(3): 1-9, 2019;

Article no.JAMCS. 48932

’ :U\ufﬂbu(' Vo V9Jl>a'x

j VO h|dx
{lu-0>L}

S(J‘{\ufg\ L)|V€| dx) (I\ -6)> L)
< - VO dx)
<Coup)lp=rl(f, , ,IVOI a7 ([ |Vu=VOI v

<C(n,p)| p-rIC(a)]

Vo dx+gj | VumVOl

{lu-0>L}

|:H<\u M(| VO|"? VO,|Vu-VO|"" (Vu-V0))dx

~
[

sj VO | Vu—-V 0| " dx
{lu-0]>L}

< (j{‘u—9‘>L}| Ve |f dx)T(J‘{\ufehL;
SC(g)j Vo dx+gj |Vu—-vao| dx.

{lu-6]>L}

{lu-6]>L}

Using the Holder inequality, Sobolev-Poincare inequality[8],
([ Ju=ual™ " Pd0 " <C([ |Vu|"d0)'", (1< p<n),

and using (3.3) and Young inequality, |7, ‘ can be estimated as

| 1,|= ‘ j{‘mw £ (x)®dx

nr p+l)

(J.{‘u €‘>L‘,|f( )| = pvei dx ”M 0‘>L}|¢ o |1( vy d )
SC(n’p)(L\ufﬂbL}'f( 0 o dx) N d(\ 9\>L> a dx)i
<Clnp )(L\H\ﬂ ST dx)” (‘M‘)LJ Vv|" dx)%

) [ ) S
{u-6>L}

+e L‘H‘)LJ Vu-Veo| dx].

< C(n, pICE)|

Combining (3.5)-(3.10), we arrive at

j |Vu—-vao| dx
{lu-6]>L}
<C(n, p,é:)J“ VOl

+(C(n,p)| p-r|+¢ )j‘ . L}|Vu—V6’|’dx

n(p-l)+r
+Cpe)|, ST dx)

{lu—6|>L}

Case 2: 1< p<2. Lemma 2.3 yields

(3.8)

(3.9)

(3.10)

(3.11)
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(IVu |2 Vu=|VO "> VO, |Vu-VO|™" (Vu-V8))dx
{lu-0]>L}
> _ r—p+l
> L‘HW Vu-vao|
((Vu=VO|+|VON"'=|VE|"")dx.
This implies
j |Vu-vo| dx
{ju—0>L}
< j{‘ |V VO (|Vu—=VO|+|VO|)" dx
< (Vu | Vu=|VO|"> VO, Vu-V 0| (Vu-Vo))dx (.12)
{u-6]>L}
[ IVu=ve Vet dx
{lu-6]>L}
< j{‘H}MQ Vu|"? Vu—|VO|" V0O, Vu-Vo| " (Vu-Vo))dx

+ SL‘HM' Vu-Vo| dx+ C(g)jww> VO dx.

Using Lemma 2.2 and (3.4),

11‘ can be estimated as

In|= ‘L‘WMQ Vu |2 Vu—| V|2 VH,h)dx‘

<3‘7Pj |Vu—Vo|" | h|dx
{lu-6]>L}

T272(p-1) (3.13)
3—17 r L =r e

< — — . P "

Top2 (p-1 (.L\u—y\>u| Vu=vo| dx) (J{\u—y\>u| h )
3-p ,

< mc(}’l, p) | p—r | J{‘u—H‘>L}| Vu-Vo | dx.

For the case1< p<2,

arrive at (3.11).

L and |1, can also be estimated by (3.8)-(3.9). Combining (3.5), (3.12) and (3.13), we

Let g =1/C(n,p) - Then for | p—r|< g, we have C(n,p)| p-r|<1. Taking ¢ small enough, such that
C(n,p)| p—r|+¢ <1, then the second term on the right-hand side of (3.11) can be absorbed by the left-hand
side; thus we obtain

j |Vu-ve| dx
{‘u70‘>[‘}

(3.14)

wr n(p-yer

r w(p-Tyr Tu(ph)

<Cop)f, VO dvrCop)[ /@I a0

Since § e W"(Q), g >r , using the Holder inequality, we have
j |VO| dx
{lu-6]>L}

(3.15)

<( L\u—sw' VO  do" |{|u—6> Ly

= Vol {lu-0> Ly .
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By the proof idea of reference [9](Page 442), and the Holder inequality, we get

r n(p-l)+r
n(p-1)+r n(p-1)
([, | SO )

;ﬁ,“ wr(p-l 1+r‘z . (3 1 6)
<y | SO a0 S a0l 1y

<M | {{u=0]>Ly|“""

ng ar(p-)r . .
where T w5, M is bounded and is a constant dependent only on 7, . Then
M=( [ /)" dx) P

(‘u 9‘ >L}
(3.14) can be collated into the following results

j‘ | Vu=VOI

<Co, p)(f‘ oy YOI ) u =01 13| 3.17)
+COn )M | {u=01> Ly

=Cl{u=0>L}*"" (+]|VOl;) ,

where C = C(n, p,M).

We now turn our attention back to the functiony e 7, (Q3) . By the Sobolev embedding theorem, we have

(vl a0 < con] | vyl dn'”

(3.18)
TN
=C(n,r )(j‘ | Vu=VO D)
since| viE(u—0|-L)-1y g51;, We have
_ N N e 4
(-[uu—w»}('vu VOI-L) a0 = ([ v 0", (3.19)

and for L'> L,

W-L)" {lu-60>L}|
J\ -0>L} (L'~L)"dx (3.20)
j‘“ oy (u=01-1)" " dx

IML(\M 0|-L) " dx.

By collecting (3.17)-(3.20), we deduce that

e (3.21)
<Cm,r)(|VOl, +D| {u—-60>L}|" .
Thus
—O0>L
e " . (3.22)
<W(C(n VO, +) [{Ju—01> L} Wr-1lg)
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Let g(s)=|{|u—-0|>s}|, a=r*, c=(Cn,r(|VO|, +1))", B=r*1/r-1/g), s, >0, Then (3.22) become

P(L") < ﬁm)” (3.23)

for L'>L>0.

(1) For the case g <n, one has B <1. In this case, if s >1, we get from Lemma 2.3 that
{lu=01>sti<c(a,B.so)s ™,

where t=q/(1-)=q*.For 0<s <1, one has
H{lu-0> s} KQHQ|s"s ™ < Qs ™.

Thus
ued+L7  (Q).

(2) For the case g =n, one has g =1.Forany 7 <o, (3.23) implies

BL) S S g(L) = (L) (L)

(L'-L)" (L'-L)”
c | Q |a/r l-alt
TR

As about, we derive
u €0+ L (Q).

(3) For the case 4> 7, one has f>1. Lemma 2.3 implies ¢(d) =0 for some d =d(a, S5,50,7,(| VO], +1)).
Thus |{|u—@>d}|=0, which means u—6@<da.e. inQ. Therefore

ueld+L7(Q),
completing the proof of Theorem 1.1.
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