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Abstract 
 

The paper deals with very weak solutions u to boundary value problems of the nonhomogeneous p-
harmonic equation. We show that, any very weak solution u to the boundary value problem is integrable 
provided that r is sufficiently close to p.  
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1 Introduction  
 
Let 1 p n  , : R , 1,( ) ( )qx W   , q r , ( 1)( ) ( )

nq
n p rf x L    . We shall examine the boundary value 

problem of the p-harmonic equation 
 

2div(| ( ) | ( )) ( ), ,

( ) ( ),

pu x u x f x x

u x x x

    


  ，
                                                                                      (1.1) 
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Throughout this paper   will stand for a bounded regular domain in ( 2)n nR . By a regular domain we 

understand any domain of finite measure for which the estimates (3.3) and (3.4) below for the Hodge 
decomposition are satisfied, see [1,2]. A Lipschitz domain, for example, is regular.  
 
Definition 1.1.  A function 1,

0 ( )ru W   , max{1, 1}p r p   , is called a very weak solution to the 

boundary value problem (1.1) if for all 1, /( 1)
0 ( )r r pW     with compact support sets in  , there is 

 
2

, ( )
p

u u dx f x dx


 
                                                                                                        (1.2) 

 

where ( 1)( ) ( )
nq

n p rf x L    .  

 
Recall that a function 1,

0 ( )pu W   is called the weak solution of the boundary value problem (1.1) if (1.2) 

holds true for all 1,
0 ( )pW  . The words very weak in Definition 1.1 mean that the Sobolev integrable 

exponent r  of u  can be smaller than the natural one p , see [1], Theorem 1, page 602. 

 
In this paper we will need the definition of weak tL -space (see [2]): for 0t  , the weak tL - space, ( )t

weakL  , 

consists of all measurable functions f  such that 

 

 : ( ) t
kx sf x
s

  
 

 
for some positive constant ( )k k f  and every 0s  , where E  is the n -dimensional Lebesgue measure of E . 

 
Integrability property is important in the regularity theories of nonlinear elliptic PDEs and systems. In [3], 
Zhu et al. studied the global integrability of nonhomogeneous quasilinear elliptic equations 

2div ( , , ) ( ) div(| | )pA x u u f x u u      . In [4], Guo et al. studied the higher order integrability of the 

divergence elliptic equation div ( , ) divA x u f    . In [5], Zhang et al. studied the global integrability of A-

harmonic equation div ( , ) divA x u f    . In this paper, we consider the global integrability of the very weak 

solutions of the boundary value problem (1.1) . The main result is the following theorem. 
 
Theoerm 1.1.  Let 1, ( )qW   , q r , There exists 0 0 ( , ) 0n p   , such that for each very weak solution 

1,
0 ( )ru W   , max{1, 1}p r p n    , to the boundary value problem (1.1), we have 

 
* ( ) ,

( ) ,

( ) ,

q
weak

weak

L for q r

u L for q r and

L for q n





 

 

   


     
   

                                                                                           (1.3) 

 
provided that 0| |p r   .  

 
Note that we have restricted ourselves to the case r n  since otherwise any function in 1, ( )rW   

is in the 

spce ( )tL   
for any t    

by the Sobolev embedding theorem. At the same time, it is also noted that the 

very weak solution u  to the boundary value problem (1.1) is taken from the Sobolev space 1, ( )rW  , and the 

embedding theorem ensures that the integrability of u  reaches from r  to *r . And our result theorem 1.1 
improves this integrability. Note that the key to proving the theorem 1.1 is to use Hodge decomposition [1][6] 

to construct the appropriate test function. 
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Preliminary Lemmas 
 

Lemma 1.1[6] For 2p   and any , nX Y R , one has 

 
2 2 22 | | | | | | , .p p p pX Y X X Y Y X Y     

 
 

Here | |  is the Euclidian norm in 
nR , and ,   is the euclidian scalar product. 

 

Lemma 1.2[7]  For any , nX Y R , one has 

 

11

2 (1 )

| | | |

(1 )(| | | |) | |, 0

| | , 1 0.

X X Y Y

Y X Y X Y

X Y

 







 







     
 

   

，

 
 

Lemma 1.3[2]  For 1 2p   and any , nX Y R , one has 

 

 

2 2

1 1

| | | | ,

.(| | | |) | |

p p

p p

X X Y Y X Y

X Y Y YX Y

 

 

 

     
 
Lemma 1.4[2]  Let 

0 0  , 
0: ( , ) [0, )s    is a decrement function such that for each r , s

0( )r s s  , 

if  

( ) ( ( ))
( )

c
r s

r s



 

  
 
where , ,c    are constants, we have 

 
(1) if 1  we have that 

0( ) 0s d   , where /( 1) 1
02 ( ( ))d c s     ; 

(2) If 1  we have that /(1 ) 1/(1 )
0 0( ) 2 ( (2 ) ( ))s c s s s         , where /(1 )    . 

 
PROOF OF THEOREM 1.1 
 
For any 0L  , let 
 

0

.

u L for u L

v for L u L

u L for u L

 



 

    


    
    

，

，                                                                                                  (3.1) 

 
Then according to the hypothesis, we have 1,

0 ( )rv W   
and 

{| | }( ) 1 u Lv u        , where 1E
 is the 

characteristic function of the set E . We introduce the Hodge decomposition of vector field 
2 /( 1)| | ( )p r r pv v L      . So that   

 

| | r pv v h   .                                                                                                                         (3.2) 

 

Here 
1, /( 1)

0 ( )r r pW    ，
/( 1) ( , )r r p nh L    R  is a vector field with zero divergence, and satisfied 
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1

/( 1)|| || ( , ) || || r p
r r p rC n p v  

                                                                                                    (3.3) 

 
and 
 

1
/( 1)|| || ( , ) | ||| || .r p

r r p rh C n p p r v  
                                                                                             (3.4) 

 
From the counter-proof method, it is inevitable to exist   such that     . Taken   as a test function of 

the integral identity (1.2), that is 
 

2 2

{ } { } { }
| | ,| | ( ) | | , ( ) .p r p p

u L u L u L
u u u u dx u u h dx f x dx

  
   

     
            

 
 
This implies 
 

2 2

{ }

2 2

{ }

2

{ }

2

{ }

{ }

1 2 3 4

| | | | , | | ( )

| | | | ,

| | ,

| | ,| | ( )

( )

.

p p r p

u L

p p

u L

p

u L

p r p

u L

u L

u u u u dx

u u h dx

h dx

u u dx

f x dx

I I I I











   

 

 

   

  

 

 

 



 

 

 

 

        

     

  

      

 

   











                                                    (3.5) 

 
Now we shall distinguish between two cases. 
 

Case 1: 2p  . Using Lemma 2.1, (3.5) can be estimated as 

 
2 2

{ }

2

{ }

| | ( )| | | | ,

2 | | .

r pp p

u L

p r

u L

dxu uu u

u dx





  



 

 



 

       

  




                                                     (3.6) 

 
Using the Lemma 2.2, Hölder inequality and Young inequality, 

1I can be estimated as 

 

2 1

2 2
1

{ }

2

{ }

2 2 1

{ } { }

2

{ } { }

| | | | | , |

( 1) (| | | |) | || |

2 ( 1)( | | | || | | | | | )

2 ( 1)[( | | ) ( | | )

( |

p
r r

p p

u L

p

u L

p p p

u L u L

p r r

u L u L

u u h dxI

p u u h dx

p u h dx u h dx

p dx u dx

h





 

 

 

  

  

 


 

 



 

  

   



   

     

       

       

    







 

 
1 1 1

1 1

2

2

{ } { } { }

2

{ }

{ } { }

| ) ( | | ) ( | | ) ]

2 ( 1) ( , ) | | [( | | )

( | | ) | | ].

r r p p r r p
r p r pr r r

p
r

r p
r

r

u L u L u L

p r

u L

r r

u L u L

dx u dx h dx

p C n p p r dx

u dx u dx

  



 





 

    
   



 

     



 

   

   

   

     

  



 

                            (3.7) 

 
Using the Hölder inequality, (3.4) and Young inequality, 

2I  and 
3I can be estimated as 
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p-1 1
1

1 1

2
2

{ }

1

{ }

{ } { }

{ } { }

{ } {

| | ,

| | | |

( | | ) ( | | )

( , ) | | ( | | ) ( | | )

( , ) | | [ ( ) | | | |

r r p
r pr r

p r p
r r

p

u L

p

u L

r

u L u L

r r

u L u L

r r

u L u

h dxI

h dx

dx h dx

C n p p r dx u dx

C n p p r C dx u dx





 

 



 





 

   

 
 

  



 



 

   

   

 

  

 

 

     

     





 

 

 }
] ,

L                                              

 (3.8) 

 

1 1

2
3

{ }

1 1

{ }

{ } { }

{ } { }

| | , | | ( )

| | | |

( | | ) ( | | )

( ) | | | | .

p r p
r r

p r p

u L

p r p

u L

r r

u L u L

r r

u L u L

u u dxI

u dx

dx u dx

C dx u dx





 

 

   

 

 

   

  

 

 

  

 

   

   

       

   

   

    





 

 

                                                                (3.9) 

 
 Using the Hölder inequality, Sobolev-Poincáre inequality[8], 
 

/( ) ( )/ 1/( | | ) ( | | ) , (1 ),
p

pn n p n p pn pu u dx C u dx p n 


 
       

 
and using (3.3) and Young inequality, 

4I can be estimated as 

 

( 1) ( 1)
( 1) ( 1)

( 1) 1
( 1) 1

( 1)

4
{ }

{ } { }

{ } { }

( )

( | ( ) | ) ( | | )

( , )( | ( ) | ) ( | | )

( , )( | ( ) |

nr n p r nr n r p r
n p r n r p rnr nr

nr n p r r r p
n p r r pnr r

nr
n p r

u L

u L u L

u L u L

f x dxI

f x dx dx

C n p f x dx dx

C n p f x dx



 

 

 
    

    

   
   

 

 


   

   

 

  

  





 

 
( 1) 1

( 1)
( 1) ( 1)

{ } { }

{ }

{ }

) ( | | )

( , )[ ( )( | ( ) | )

| | ].

n p r r p
nr r

n p rnr
n p r n p

r

u L u L

u L

r

u L

v dx

C n p C f x dx

u dx

 







 

   

 
  

   

 

 

 



  

 





          
                                   (3.10) 

 
Combining (3.5)-(3.10), we arrive at 
 

( 1)
( 1) ( 1)

{ }

{ }

{ }

{ }

| |

( , , ) | |

( ( , ) | | ) | |

( , , )( | ( ) | ) ,
n p rnr

n p r n p

r

u L

r

u L

r

u L

u L

u dx

C n p dx

C n p p r u dx

C n p f x dx











 

 


 

  

 

 

 

 

 

 

    











     
                                                                           (3.11) 

 
Case 2: 1 2p  . Lemma 2.3 yields 
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2 2

{ }

1

{ }

1 1

| | ( )| | | | ,

| |

((| | | |) | | ) .

r pp p

u L

r p

u L

p p

dxu uu u

u

u dx





  



  

 

 

 

 

 

       

  

      





 
 

This implies 
 

{ }

1 1

{ }

2 2

{ }

1 1

{ }

2 2

{ }

{

| |

| | (| | | |)

| | ( )| | | | ,

| | | |

| | ( )| | | | ,

| |

r

u L

r p p

u L

r pp p

u L

r p p

u L

r pp p

u L

r

u

u dx

u u dx

dxu uu u

u dx

dxu uu u

u dx















  

  

 

  

 

 

  

 

 

 

  

 

 

 



 

      

        

   

        

  











} { }
( ) | | .r

L u L
C dx


 

  
  

  
                                                 (3.12) 

 
Using Lemma 2.2 and (3.4), 

1I  can be estimated as 

 

1 1
1

2 2

1 { }

1

2 { }

2 { } { }

2 { }

| | | | ,

3
| | | |

2 ( 1)

3
( | | ) ( | | )

2 ( 1)

3
( , ) | | | | .

2 ( 1)

p r r p
r pr r

p p

u L

p

p u L

r

p u L u L

r

p u L

u u h dxI

p
u h dx

p

p
u dx h dx

p

p
C n p p r u dx

p





 



 







  
 

 

 



  

    

  

    


  




   




   







 



                                                 

(3.13) 

 
For the case1 2p  , 

2I
 
and 

3I
 
can also be estimated by (3.8)-(3.9). Combining (3.5), (3.12) and (3.13), we 

arrive at (3.11). 
 
Let 

0 1/ ( , )C n p  . Then for
0| |p r    we have ( , ) | | 1C n p p r  . Taking   small enough, such that 

( , ) | | 1C n p p r    , then the second term on the right-hand side of (3.11) can be absorbed by the left-hand 

side; thus we obtain 
 

( 1)
( 1) ( 1)

{ }

{ } { }

| |

( , ) | | ( , )( | ( ) | ) .
n p rnr

n p r n p

r

u L

r

u L u L

u dx

C n p dx C n p f x dx



 




 

  

 

   

 

  



 
                                                    

(3.14) 

 
Since 1, ( )qW   , q r , using the Hölder inequality, we have 

 

{ }

/ ( ) /

{ }

( ) /

| |

| | |{| | } |

|| || |{| | } | .

r

u L

q r q q r q

u L

r q r q
q

dx

dx u L

u L







 

 

 



 





   

   



（ ）                                                                                       
(3.15) 
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By the proof idea of reference [9](Page 442), and the Hölder inequality, we get 
 

( 1)
( 1) ( 1)

2( 1)
( 1) ( 1)

{ }

( ) /

{ }

( ) /

( | ( ) | )

( | ( ) | ) |{| | } |

|{| | } | ,

n p rnr
n p r n p

nq nr p r
n p r qn p

u L

q r q

u L

q r q

f x dx

f x dx u L

M u L








 
  

 
  

 



 



  

  



                                                                       
(3.16) 

 

where 
2( 1)

( 1) ( 1)

{ }
( | ( ) | )

nq nr p r
n p r qn p

u L
M f x dx



 
  

 
  , M is bounded and is a constant dependent only on n , p . Then 

(3.14) can be collated into the following results 
 

{ }

/ ( ) /

{ }

( ) /

( ) /

| |

( , )( | | ) |{| | } |

( , ) |{| | } |

|{| | } | (1 || || ) ,

r

u L

q r q q r q

u L

q r q

q r q r
q

u dx

C n p dx u L

C n p M u L

C u L







 



 

 



 





 

   

  

    



                                                                            
(3.17) 

 

where ( , , )C C n p M . 

 
We now turn our attention back to the function 1,

0 ( )rv W  . By the Sobolev embedding theorem, we have 

 
*

1/ * 1/

1/

{| | }

( | | ) ( , )( | | )

( , )( | | ) ,

r r
r r

r
r

u L

v dx C n r v dx

C n r u dx




 

 

 

  

 


                                                                          

 (3.18) 

 
since {| | }| | (| | ) 1 u Lv u L       , we have 

 
* *

1/ * 1/ *

{| | }
( (| | ) ) ( | | ) ,

r r
r r

u L
u L dx v dx




  
                                                                                 

(3.19) 

 
and for L L  , 
 

*

*

{| | }

*

{| | }

*

{| | }

( ) |{| | } |

( )

(| | )

(| | ) .

r

r

u L

r

u L

r

u L

L L u L

L L dx

u L dx

u L dx













 

 

 

   

 

  

  







                                                                                                               
(3.20) 

 
By collecting (3.17)-(3.20), we deduce that 
 

* 1/ *

1/ 1/

(( ) |{| | } |)

( , )(|| || 1) |{| | }| .

r r

r q
q

L L u L

C n r u L



  

   

                                                                                             
(3.21) 

 
Thus 
 

* *(1/ 1/ )

*

|{| | } |

1 ( ( , )(|| || 1)) |{| | } | .
( )

r r r q
qr

u L

C n r u L
L L



  

 

    


                                                      
(3.22) 
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Let ( ) |{| | } |s u s    , *r  , *( ( , )(|| || 1)) r
qc C n r    , *(1/ 1/ )r r q   , 0 0s  , Then (3.22) become 

 

( ) ( )
( )

cL L
L L




  
                                                                                                               

(3.23) 

 
for 0L L   . 
 
(1) For the case q n , one has 1  . In this case, if 1s  , we get from Lemma 2.3 that 

 

0|{| | } | ( , , ) ,tu s c s s       
 
where  /(1 ) *t q    . For 0 1s  , one has 

 
* * *|{| | } | | | | | | | .q q qu s s s s           

 
Thus 
 

* ( ).q
weaku L    

 
(2) For the case q n , one has 1  . For any    , (3.23) implies 

 
1 / /

/
1 /

( ) ( ) ( ) ( )
( ) ( )

| |
( ) .

( )

c cL L L L
L L L L

c
L

L L

   
 

 
 



   







  
  




   
 
As about, we derive 
 

( ).weaku L    
 

(3) For the case q n , one has 1  . Lemma 2.3 implies ( ) 0d   for some 0( , , , ,(|| || 1))qd d s r     . 

Thus |{| | } | 0u d   , which means  u d  a.e. in . Therefore 
 

( ),u L     
 

completing the proof of Theorem 1.1. 
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