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Abstract 
 

This paper handles a prominent problem of project management, namely that of project scheduling under 
uncertainty. The paper models this problem as a vector-weighted voting system and expresses the 
indicator variable for the successful (on-time) completion of project activities as a vector-threshold 
Boolean function. The paper presents a solution of the problem in the Boolean domain using solely 
Boolean tools. The paper also presents another solution of the problem via recursive relations and 
boundary conditions. This solution is given as an insightful visual representation in terms of a signal-flow 
graph that resembles the Reduced-Ordered Binary Decision Diagram (ROBDD). The effect of the order 
of variables used in the recursive method is also explored.   
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1 Introduction 
 
A prominent problem of project management is the problem of project scheduling in which the pertinent 
project activities are not all known with certainty. The expected durations of the activities might be known 
only as best guesses, and the actual times of various activities can vary due to unexpected delays, worker 
illnesses and so on [1]. This problem of project scheduling is studied herein via techniques of system 
reliability [2], as it is modeled via a vector-weighted voting system [3-7], which is a useful generalization of 
a conventional weighted voting system. We note that a weighted voting system can be studied via a 
threshold Boolean function [8], or equivalently, as a weighted k-out-of-n system [9]. Hence, the current 
vector-weighted voting system can be studied via a vector-threshold Boolean function, or equivalently as a 
two-stage weighted k-out-of-n system [10]. 
 
The vector-threshold Boolean model has certain resemblance with (albeit, with subtle differences from) the 
double-threshold Boolean model of Rushdi and Bjaili [11]. Both models are useful and practical extensions 
of the (single-) threshold Boolean model [12,13], which is commonly (and inadvertently) referred to as the 
weighted k-out-of-n model [14]. However, typically, the vector-threshold model produces inequalities in the 
same direction, while the double-threshold model produces sandwiching or interval-type inequalities i.e., 
inequalities in the opposite lower and upper sides. Therefore, a vector-threshold Boolean model is typically a 
coherent model, while a double-threshold Boolean model is always a noncoherent one (except in some of its 
limiting cases). The vector-threshold model involves k ≥ 2 inequalities (that might be reduced if some 
inequalities subsume or dominate others), while the double-threshold one has exactly two inequalities that 
cannot be reduced. 
 
The organization of the rest of this paper is as follows. Section 2 introduces a well-known problem of project 
scheduling that appeared earlier in Winston [1] and Chen and Yang [10]. This section uses Karnaugh-map 
representations for pseudo-Boolean functions to obtain the indicator variable for the successful (on-time) 
completion of the project as a probability ready expression [2,11,13,15-21], which is immediately converted 
on a one-to-one basis into a probability expression. Section 3 interprets the current problem as one dealing 
with a vector-threshold Boolean function and introduces the pertinent recursive relations and boundary 
conditions. Section 4 uses ROBDD-like signal flow graphs to compute the probability of project prompt 
completion. This section also explores the effect of variable ordering on the complexity of computations. 
Section 5 concludes the paper. 
 

2 A Typical Problem in Project Management 
 
This example originally appeared in a classical text on Operations Research by Winston [1], and was later 
discussed in a prominent reliability paper by Chen and Yang [10]. The example deals with the management 
of a project dealing with the assembly of two products, labeled 1 and 2, to make a new composite product. 
The project consists of six activities (described in Table 1), which are sequenced according to the network of 
Fig. 1. 
 

Table 1. Description of the activities comprising the project in Fig. 1 
 

Activity 
i 

Immediate 
predecessors 

Minimum duration 
Di (days) 

Possible delay 
(days) di (days) 

A = train workers None 6  1 
B = purchase raw materials None 9 3 
C = produce product 1 A, B 8 3 
D = produce product 2 A, B 7 2 
E = test product 2 D 10 2 
F = assemble products 1 & 2 C, E 12 4 

 



Fig. 1. Sequencing of activities for the project in Sec. 2

Let Xi (i = A, B, C, D, E, F) denote the indicator variable of completing activity i on (minimum) time, 
= 1 when activity i is not delayed and X

probability of completing activity i without delay. Hence, (1 

a delay in implementing activity i. The indicators X
for promptness of activity i. Now, suppose that the deadline of the whole project is 40 days, and use S to 
denote project success (its completion within the allowed period). Hence, R = E{S} is the probabil
project success. This probability is analogous to system reliability, while the probabilities p
look quite similar to component reliabilities. The problem of identifying R as a function of the p
 

R = R(pA, pB, pC, pD, pE, pF).                                                                      

 
is exactly the problem of expressing system reliability in terms of compone
that there are four paths through the project network, namely paths ACF, ADEF, BCF, and BDEF. We now 
study the duration of each path as a pseudo
Boolean function has a Boolean-valued input or domain and a real
Fig. 2(a) displays a Karnaugh-map for the pseudo
time required by the path ACF as a function of X
Fig. 2(c) represents the success SACF which is the indicator for the event T
 

  SACF = 1,                                                                

i.e., the path ACF is always successful. In typical reliability jargon, such a prefect success is usually a 
fictitious matter, and the function SACF

(numerically) and for Si, where i denotes the three remaining paths ADEF, BCF, and BDEF. The successes 
of the three paths (written as disjoint sum
 

SADEF = XF ˅ XDXEXF,                                                    

SBCF = 1,                                                                     

SBDEF = XBXF (XE ˅ XDXE).                                          
 
The system success S is the conjunction (ANDing) of the four functions in (2a) 
  

S = SACF SADEFSBCF  SBDEF 

   = (1) (XF ˅ XDXEXF) (1) X

   = XBXF (XE ˅ XDXE) 
   = SBDEF.                                                                               

 
The result in (3) that S = SBDEF should have been anticipated since S
SBCF. The success expression (3) is called a probability
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(i = A, B, C, D, E, F) denote the indicator variable of completing activity i on (minimum) time, 

= 1 when activity i is not delayed and Xi = 0 when activity i is delayed. Also let pi = E{X

probability of completing activity i without delay. Hence, (1 –pi) = E {Xi} is the probability of experiencing 

a delay in implementing activity i. The indicators Xi and Xi are called, respectively, the success and failure 
for promptness of activity i. Now, suppose that the deadline of the whole project is 40 days, and use S to 
denote project success (its completion within the allowed period). Hence, R = E{S} is the probabil
project success. This probability is analogous to system reliability, while the probabilities pi(i = A, B, …, F) 
look quite similar to component reliabilities. The problem of identifying R as a function of the p

.                                                                                                                                                                               

is exactly the problem of expressing system reliability in terms of component reliabilities. Fig
that there are four paths through the project network, namely paths ACF, ADEF, BCF, and BDEF. We now 
study the duration of each path as a pseudo-Boolean function of activity successes, wherein a pseudo

valued input or domain and a real-valued output or range [12,13,22
map for the pseudo-Boolean function TACF which depicts symbolically the 

time required by the path ACF as a function of XA, XC and XF. Fig. 2(b) represents TACF numerically, while 
which is the indicator for the event TACF≤ 40. This figure shows that 

= 1,                                                                                                                                        
 

., the path ACF is always successful. In typical reliability jargon, such a prefect success is usually a 

ACF is a noncoherent function. Figs. 3-5 display Karnaugh maps for
, where i denotes the three remaining paths ADEF, BCF, and BDEF. The successes 

of the three paths (written as disjoint sum-of-products expressions or probability-ready expressions) are 

,                                                                                                                     

= 1,                                                                                                                           

).                                                                                                             

The system success S is the conjunction (ANDing) of the four functions in (2a) - (2d), namely 

XBXF (XE ˅ XDXE)) 

.                                                                                                                                           

should have been anticipated since SBDEF≤ SACF, SBDEF≤ SADEF, 

. The success expression (3) is called a probability-ready expression (PRE), since it is one in which [2]
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(i = A, B, C, D, E, F) denote the indicator variable of completing activity i on (minimum) time, i.e., Xi 
= E{Xi} denote the 

} is the probability of experiencing 

are called, respectively, the success and failure 
for promptness of activity i. Now, suppose that the deadline of the whole project is 40 days, and use S to 
denote project success (its completion within the allowed period). Hence, R = E{S} is the probability of 

(i = A, B, …, F) 
look quite similar to component reliabilities. The problem of identifying R as a function of the pi’s 

                                                                                                         (1) 

nt reliabilities. Fig. 1 indicates 
that there are four paths through the project network, namely paths ACF, ADEF, BCF, and BDEF. We now 

Boolean function of activity successes, wherein a pseudo-
valued output or range [12,13,22-27]. 

which depicts symbolically the 
numerically, while 

≤ 40. This figure shows that  

                                       (2a) 

., the path ACF is always successful. In typical reliability jargon, such a prefect success is usually a 
5 display Karnaugh maps for Ti 

, where i denotes the three remaining paths ADEF, BCF, and BDEF. The successes 
ready expressions) are  

                                                                 (2b) 
 

                                                                      (2c) 
 

                                                                   (2d) 

 

                                                            (3) 

ADEF, and SBDEF ≤ 
ready expression (PRE), since it is one in which [2]. 



(a) All ORed terms (products) are disjoint, 
(b) All ANDed terms (sums) are statistically independent.

 
Therefore, this expression is converted into a reliability expression (in a one
Boolean variables by their expectations and Boolean operators by their arithmetic counterp
 

R = pB pF (pE + pDqE).                                                          

The answer in (3a) explicitly states a result of Chen and Yang [10], but it is obtained using 
concepts and tools.  
 

Fig. 2. Karnaugh maps for the pseudo
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All ORed terms (products) are disjoint, and 
All ANDed terms (sums) are statistically independent. 

Therefore, this expression is converted into a reliability expression (in a one-to-one basis) by replacing 
Boolean variables by their expectations and Boolean operators by their arithmetic counterparts, namely

).                                                                                                                        
 

The answer in (3a) explicitly states a result of Chen and Yang [10], but it is obtained using more streamlined 

 

(a) TACF (symbolically) 
 

 
 

(b) TACF (symbolically) 
 

 
 

(c) SACF = Indicator {TACF ≤ 40} 
 

Karnaugh maps for the pseudo-Boolean function TACF, and the Boolean function S
DACF = DA + DC + DF = 26 
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one basis) by replacing 
arts, namely 

                                                              (3a) 

more streamlined 

 

, and the Boolean function SACF. Here 



 

(b) 

Fig. 3. Karnaugh maps for the pseudo
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(a) TADEF 

 
(b) SADEF = Indicator {TADEF  ≤ 40} 

 
Fig. 3. Karnaugh maps for the pseudo-Boolean function TADEF, and the Boolean function S

DADEF = 35 

 
 

(a) TBCF 
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, and the Boolean function SADEF. Here 



Fig. 4. Karnaugh maps for the pseudo

 

(b) 

Fig. 5. Karnaugh maps for the pseudo
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(b) SBCF = Indicator {TBCF ≤ 40} 
 

Karnaugh maps for the pseudo-Boolean function TBCF, and the Boolean function S
DBCF = 29 

 
 

(a) TBDEF 

 
(b) SBDEF = Indicator {TBDEF ≤ 40} 

 

Karnaugh maps for the pseudo-Boolean function TBDEF, and the Boolean function S
DBDEF = 38 
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, and the Boolean function SBCF. Here 

, and the Boolean function SBDEF. Here 
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Before closing this section, we note a remarkable advantage of the current solution via the pseudo-Boolean 
functions represented by the Karnaugh maps of Figs. 2(a)-5(a). It allows us to study the variation of the 
probability of project success R with the maximum allowable duration Dm of the project. Table 2 partially 
reports the result of such a study and shows that R is monotonically non-decreasing with Dm, and it goes 
down to its minimum value of 0 for Dm ≤ 37, and attains its maximum value of 1 when Dm ≥ 50. 
 

Table 2.  Variation of probability of project success with the maximum allowed project duration Dm 
 

Dm SACF SADEF SBCF SBDEF S R R(iid) 
37 1 ----- ----- 0 0 0 0 
38 1 XE XF ˅ XD XE XF 1 XB XD XE XF XB XD XE XF pB pD pE pF p4 

39 1 XE XF ˅ XDXE XF˅ 

XAXDXE XF˅ 

 XAXD XEXF 

1 XB XD XE XF XB XD XE XF pB pD pE pF p4 

40 1 XF ˅ XD XE XF 1 XB XE XF ˅ 

XB XDXE XF 

XBXF (XE ˅XD 

XE) 

pB pF (pE+pDqE) 2 p3 – p4 

---- ---- ---- ---- ---- ---- ---- ---- 
50 1 1 1 1 1 1 1 

 

3 Problem Interpretation in terms of Vector-threshold Boolean 
Functions 

 
A Threshold Boolean function S(X) of weights W = [W1 W2 … Wn]

T and a threshold T is specified by         
[11-13] 
 

{S(X) = 1} ⇔{WTX  ≡ ∑ W� 
�
��� X� T}.                                                                                           (4) 

 
Every certain instance A of  X  {0, 1}n represents a truth-table line or a Karnaugh-map cell and is 
described by the minterm 
 

XA = X�
��X�

��…X�
��,                                                                                                                       (5) 

 
Where 
 

  X�
��  = �

 X�        if   �� =  0
  X�         if �� =  1.

�                                                                                                                 (6) 

 
The general functional condition (4) is equivalent to 2ninequalities written for every instance of X  {0, 1}n. 
 

∑ W�
(��)�

���  T,                A  {0, 1}n.                                                                                               (7) 
 

Where 
 

W�
(��) = �

0         if    �� =  0
W�        if    �� =  1.

�                                                                                                              (8) 

 
For comparison, path success for any of the paths in Sec. 2 can be written in the cellwise form  
 

Dp+ ∑ f(d�
�
��� , ��)  ≤ Dm,               A  {0, 1}n                                                                                  (9) 

 
Where Dp = expected duration of the path and Dm = maximum duration of the project, and f (di) is given by 
 



 
 
 

Rushdi and Alturki; BJMCS, 21(6): 1-15, 2017; Article no.BJMCS.33161 
 
 
 

8 
 
 

  ∑ f(d�
�
��� , ��)  = di – d�

(��) = �
��         if     �� =  0
0           if     �� =  1.

�                                                                         (10) 

 
We rearrange terms in (9), and then multiply both its sides by (–1) {taking care to reverse the direction of the 
inequality} to obtain 
 

Dp + ∑  (d�– d�
(��)�

��� ) ≤   Dm,   A  {0, 1}n 

 ∑�
��� d�

(��)≥  (Dp+  ∑�
��� d�–Dm),             A  {0, 1}n.                                                            (11) 

 
Comparing (11) to (7), we conclude that any path success function in our example is a threshold function of 
a component weight di and a threshold equal to (Dp+ ∑ d� 

�
��� – Dm). Applying this result to the four paths in 

our running example, we obtain  
 

{SACF = 1} ⇔ {XA+ 3 XC + 4 XF   ≥   – 6},                                                                                    (12a) 
 
{SADEF = 1} ⇔{ XA+ 2 XD + 2 XE + 4 XF   ≥  4},                                                                           (12b) 
 
 {SBCF = 1} ⇔ {3 XB + 3 XC + 4 XF   ≥ – 1},                                                                                  (12c) 
 
{SBDEF = 1} ⇔ {3 XB + 2 XD + 2 XE + 4 XF   ≥  9}.                                                                       (12d) 

 
Equations (12) can be considered as a single equation representing a vector-threshold voting system [3-7], or 
a vector-threshold Boolean function 
 

                        [XA    XB   XC    XD   XE   XF] 
 

{S = 1} ⇔  � � �

1    0    3     0     0    4
1    0    0     2     2    4
0    3    3     0     0    4

  0    3    0     2     2    4  

�   ≥  �

– 6
4

– 1
9

� � �.                                                                (13) 

 
In (13), we wrote the component-success vector as a row above the weight matrix rather than as a column 
after it. This practice facilitates reading matrix equations considerably [28,29]. Note that the weight matrix 
has the same nonzero entries in every column (representing the delay for the corresponding component). The 
inequalities in rows 1 and 3 are identically satisfied and could be omitted to reduce (13) to  
 

                      [XA  XB   XC   XD     XE    XF] 
 

{S = 1} ⇔  � � �
1     0     0     2      2     4
0     3     0     2      2     4

�   ≥  �
4
9

� � �.                                                                     (14) 

 
The vector equation (14) consists of two equations, the second of which implies the first, viz. 
 

    {3 XB + 2 XD + 2 XE + 4 XF  ≥9} 
 

=>{ 2 XD + 2 XE + 4 XF   ≥  9 – 3 = 6} 
 
=>{XA + 2 XD + 2 XE + 4 XF   ≥  6} 
 
=>{XA + 2 XD + 2 XE + 4 XF  ≥ 4},                                                                                                  (15) 

 
which means that Equation (14) can be reduced to the form 
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                         [XA   XB    XC   XD     XE    XF] 
 

{S = 1} ⇔   { �[0     3     0     2      2    4]   ≥  [9]� }                                                                        (16) 
 
In the sequel, we will retain the vector threshold form (14). Since component C is irrelevant (the column 
under XC  is all 0), we omit the variable XC  and rewrite (14) as 
 
                                   [XA   XB     XD     XE     XF]   
 

{S = 1} ⇔  � � �
1     0      2      2     4
0     3      2      2     4

�   ≥  �
4
9

� � �.                                                                         (14a) 

 

4 Probability of Project Prompt Completion 
 
In this section, we use techniques of system reliability [2,11-21,30,31] to evaluate the probability R of 
successful or prompt completion of the project. As shown in Eq. (3), the system success is given by the 
probability- ready expression  
 

SPRE = XBXF (XE ˅ XE XD),                                                                                                              (17) 
 

which corresponds to a value of R given by (3a) conveniently rewritten here as 
 

R = pB pF (pE + qEpD),                                                                                                                      (18) 
 

where pi = 1 – qi = E{Xi} is the probability of completing activity i on time. 
 
Now, we describe a more general technique to compute SPRE (and hence R) for any vector-threshold system. 
The success of such a system is denoted by S(n; X; W; T) where X and T are vectors of component 
successes and thresholds of lengths m and n, respectively, while W is an m x n matrix of weights. The 
success satisfies the following recursive relation, which is valid for    n > 0 
 

S(n; X; W; T) =  Xi  S(n–1; X/Xi; W/Wi; T)  ˅  Xi  S(n–1; X/Xi; W/Wi; T– Wi ).                          (19) 
 
This recursive relation is simply an expression of the Boole-Shannon expansion [16] and is a straightforward 
extension of the recursion used for (scalar-) threshold systems [12,13]. Here Wi denotes the ith column of the 
matrix W which consists solely of (scalar) Wi and 0 elements, X/Xi is a vector of length (n–1) obtained by 
deleting the ith element of X, while W/Wi is an m x (n–1) matrix obtained by deleting  the ith column Wi of 
the matrix W. The recursive relation (19) must be augmented by the non-recursive boundary conditions  
 

S = (0; ; ; T) = I {0 ≥ T} = �
1    if       0 ≥ T�    for all j                                                                        (20a)

0       if      0 < T�     for any j                                                                (20b)
� 

 
Here, the bold symbol 0 is a vector of m components, each of which is 0, and the notation 0 ≥ T means that 0 
is greater than or equal to T componentwise. Its indicator variable, I(0 ≥ T) is 1 unless some component of T 
is strictly greater than 0. For the current problem of project management the vector-threshold system is 
coherent and possesses nonnegative weights, and hence it is more convenient to let it have the boundary 
conditions.  
 

S(n; X; W; T) = 1     if  0 ≥ T                                                                                                        (21a) 
 
S(n; X; W; T) = 0     if  ( ∑ �� 

�
��� ) <  T                                                                                        (21b) 

 

Equations (21) might allow an early termination of the recursion while n is still strictly greater than 0. If 
none of the conditions (21) is true, recursion is performed via (19). 
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Repeated application of the recursion relations (19) together with the boundary conditions (20) or (21) yields 
a probability-ready expression for S. This fact is demonstrated by Fig. 6 which displays a signal-flow-graph 
representation of (19)–(21) for our current problem. Here, a shaded circle is a node characterized by a matrix 
W (indexing its vertical coordinate) and a vector T(indexing its horizontal coordinate) at which (19) is 
applicable. By contrast, a square black node is a source node of value 1 as dictated by (20a) or (21a), while a 
square white node is a source node of value 0 as required by (20b) or (21b). These white nodes of 0 values 
might be omitted, but they are retained to clearly bound the region of validity of the recursion (19). Fig. 6 
uses the order (F, B, E, D, A) for the pertinent components which is called the best order [13] since it 
handles a component of a larger weight earlier than ones of smaller weights. If we apply Mason gain formula 
[32] to the signal flow graph of Fig. 6, we immediately recover the expression in (17) for SPRE. For 
comparison, we use Fig. 7 to replicate the work of Fig. 6 using the reverse alphabetical order (F, E, D, B, A). 
The resulting graph is more involved and yields the expression  
 

 SPRE = (XBXD ˅ XBXD)XEXF ˅ XB XDXE XF.                                                                                   (22) 
 

 
Fig. 6. A signal flow graph representing a recursive expression of the vector-threshold function S (Best 

ordering (F, B, E, D, A) used) 
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Fig. 7. A signal flow graph representing a recursive expression of the vector-threshold function S 
(following a reverse alphabetical ordering (F, E, D, B, A)) 

 
Equation (22) is a correct PRE expression, albeit not as compact as (17). It produces the reliability 
expression 
 

R = (pBpD + pBqD) pE pF + pBpDqEpF.                                                                                               (23) 
 

Fig. 8 shows the case of the worst ordering, and yields the result 
 

SPRE = XF XB XD XE XA ˅XF XB XD XE XA ˅XF XB (XD XE ˅XD XE) XA  

 

˅XF XB (XD XE ˅XD XE) XA                                                                                                                                                                            (24) 
 

XF 
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which is computationally intensive, indeed (though obviously reducible to (17)). It produces the reliability 
expression 
 

R = pFpBpDpEpA + pFpBpDpEqA + pFpB (qDpE+pDqE)pA 

 

+ pFpB (qDpE+ pDqE)qA.                                                                                                                    (25) 
 

 
 

Fig. 8. A signal flow graph representing a recursive expression of the vector-threshold function S 
(worst ordering (A, E, D, B, F) used) 

 
In passing, we emphasize that the signal flow graphs in Figs. 6-8 have nice interpretations as Reduced 
Ordered Binary Decision Diagrams [2,11,31,33-37].     
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5 Conclusions 
 
This paper formulates the problem of project scheduling under uncertainty as a problem of a vector-weighted 
voting system. It offers two distinct methods (borrowed from the field of system reliability) for handling the 
problem. The first method uses Karnaugh maps to represent pseudo-Boolean functions and to derive a 
probability-ready expression for the indicator of prompt completion of the project. The second method uses 
an ROBDD-like signal flow graph to represent the underlying recursive relations and boundary conditions. 
Efficiency of computation is very sensitive to the order of traversing the variables in this method. The two 
methods obtain the same answer, both in a more intuitive and straightforward way than obtained earlier in 
the literature. The first method might be conveniently be used for evaluating not just a single value of the 
probability R of prompt project completion, but for computing R repeatedly for varying values of the 
maximum allowed project duration Dm. Knowledge of R as a function of Dm constitutes invaluable 
information for both contractor and contractee when negotiating budget and associated penalties for delays 
or incentives for promptness or early accomplishment. 
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