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Abstract

In this work, a solution for the fuzzy system of linear equations has been assessed. Here,
the coefficients matrix is nonsquare with elements of crisp numbers such that the known and
unknown vectors are fuzzy vectors. First, the singular value decomposition and the generalized
inverse of the nonsquare matrices have been illustrated. Then, these concepts have been extended
to find the solutions of the nonsquare fuzzy system of linear equations.
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1 Introduction

A system of linear equations is a set of linear equations in several variables which is a basic part
of linear algebra. The importance of this theory is that we often deal with a large proportion
of problems in many branches of science such as physics, engineering, economic and etc. In such
cases, linear algebra or computational methods in numerical linear algebra occurs as a strong tool.
The system of linear equations can be represented in a matrix form [1]. In many problems, this
matrix appears in a nonsquare form, where in this situations, Moore-Penrose pseudoinverse will
be effective. This matrix and its inverse was first commended by Moore in 1920 and Penrose in
1955, independently and known as the generalized inverse, Moore-Penrose inverse or Moore-Penrose
pseudoinverse. Moreover, in some applications, can be seen that the parameters are performed by
fuzzy number rather than crisp. Accordingly, fuzzy system of linear equations is an interesting
and practical topic in linear algebra which has developed rapidly [2, 3]. Recent years have seen
a development in use of fuzzy mathematics in science and technology requiring the increasing
importance of study and development on mathematical models and numerical methods for fuzzy
system of linear equations [4, 5]. Over the last few years, many authors have been interested in
working on this topic. It is worth mentioning that Zadeh [6], Dubois and Prade [7] were the pioneers
of fuzzy numbers and fuzzy arithmetic operations. Many other authors have made much effort to
extend the concept of fuzzy numbers to other branches of science, in particular the fuzzy system
of linear equations. For instance, Friedman, Ming and Kandel have considered an n × n fuzzy
system of linear equations and turned this system into a 2n × 2n crisp system of linear equations
[8]. Allahviranloo has applied multifarious approaches to solve the fuzzy system of linear equations
[9, 10]. Vroman and his colleagues have used parametric functions to solve the fuzzy system of
linear equations with a symmetric matrix [11]. The fully fuzzy system of linear equations has been
survived by Allahviranloo and his colleagues [12]. Ezzati has developed an approach to solve an
arbitrary m × n daul fuzzy system of linear equations as Ax̃ = Bx̃ + ỹ which m ≤ n and ỹ is a
symmetric fuzzy number vector [13].

In this article, a general method is devised for solving an m × n fuzzy system of linear equations
whose coefficients matrix is crisp and the right-hand side column is an arbitrary fuzzy number vector.
In section 2, singular value decomposition and generalized inverse are introduced. In section 3, first
the basic concepts of fuzzy mathematics is presented and then the solution of the m × n fuzzy
system of linear equations is explicated. Finally, in section 4, some numerical examples is served to
illustrate our method.

2 Singular Value Decomposition and Moore-Penrose
Pse-udoinverse

Let Mm×n denote the set of all m × n matrices over the field of complex numbers. The symbols
AT and A∗ stand for transpose and conjugate transpose (or Hermitian transpose), respectively. In
this section, the system of linear equations Ax = y is studied, where A is a given m× n matrix, x
and y are column vectors with n and m components, respectively. In some problems, there exists
no solution or no unique solution for this system. In this situation, we find a vector x such that
∥Ax−y∥ is the smallest possible in terms of least squares. To study this topic, we deal with concept
of generalized inverse. Let us first recall some useful notations of linear algebra and then introduce
the concept of generalized inverse or Moore-Penrose pseudoinverse.

Definition 2.1. [14] A symmetric matrix A is positive definite if for each nonzero vector x, xTAx >
0.

Definition 2.2. [14] Let A ∈ Mm×n and B = A∗A. The singular values of A are σi =
√
λi , i =

1, 2, . . . , n, where λi are eigenvalues of B.
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Note thatB is an n×n symmetric positive definite matrix. Therefore, its eigenvalues are nonnegative.

Definition 2.3. [15] An orthogonal matrix is a real square matrix whose columns and rows are
orthogonal vectors.

Definition 2.4. [15] Let A be a real square matrix. Then, A is said to be an orthonormal matrix
if ATA = I, where I is the identity matrix.

Definition 2.5. [15] Let A be a complex square matrix. Then, A is said to be an unitary matrix
if A∗A = I, where I is the identity matrix.

Theorem 2.1. [14] Let A ∈ Mm×n be any matrix, and σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0
are nonzero singular values of A with r = min(m,n). Then, there exist unitary matrices U =
[u1, . . . , um] ∈ Mm×m and V = [v1, . . . , vn] ∈ Mn×n such that U∗AV = Σ, where Σ is given by

Σ = diag(σ1, . . . , σr, . . . , 0)m×n. (2.1)

Remark 2.1. Note that the factorization of the form

A = UΣV ∗ (2.2)

is called the singular value decomposition of A abbreviated by SVD. The m columns of U and n
columns of V are respectively the eigenvectors of AA∗ and A∗A and called the left and right singular
vectors of A. The singular values of A, that is, σi are uniquely determined and the vectors ui and
vi, the columns of the matrices U and V in (2.2), are associated with σi. This fact leads us to the
existence and uniqueness of SVD stated in the following theorem.

Theorem 2.2. [14] Each matrix A has a SVD of the form (2.2). The singular values σi are
uniquely determined, and if A is square and σi are distinct, then ui and vi, the columns of the
matrices U and V in (2.2), are uniquely determined up to complex signs.

Definition 2.6. [16] Let A ∈ Mm×n, then there exists the unique matrix A+ ∈ Mn×m satisfying
the following conditions:

1. AA+A = A,

2. A+AA+ = A+,

3. A+A = (A+A)∗,

4. AA+ = (AA+)∗.

The matrix A+ is called the Moore-Penrose pseudoinverse, and the above four conditions are well
known as Penrose conditions.

Remark 2.2. Note that the Moore-Penrose pseudoinverse exists and is unique for any matrix A ∈
Mm×n. A simple way to compute the Moore-Penrose pseudoinverse is by using SVD. Let A ∈
Mm×n be any arbitrary matrix with rank r and SVD of the form (2.2), then the Moore-Penrose
pseudoinverse of A is assessed by A+ = V Σ+U∗ = V diag(σ−1

1 , . . . , σ−1
r , . . . , 0)m×nU

∗. If A ∈ Mn×n

is invertible, then r = rank(A) = n and hence Σ = diag(σ1, . . . , σn) and Σ+ = diag(σ−1
1 , . . . , σ−1

n )
implying that Σ+ = Σ−1. Therefore, A+ = V Σ+U∗ = V Σ−1U∗ = (UΣV ∗)−1 = A−1.

Definition 2.7. [17] For any linear system Ax = y, the least-squares solution (l.s.s) of Ax = y is
finding a vector x̂ such that

∥Ax̂− y∥ = min
x

∥Ax− y∥, (2.3)

where ∥ · ∥ is a norm in Euclidean space.

Theorem 2.3. [14] Let A ∈ Mm×n. The least-squares solution of the smallest norm of the linear
system Ax = b is given by

x̂ = A+b = V Σ+U∗b. (2.4)
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3 Solving the Nonsquare Fuzzy System of Linear
Equations

In this section, we first review some main definitions and introduce the nonsquare fuzzy system of
linear equations, and then we extend the Moore-Penrose pseudoinverse to solve our problem.

Definition 3.1. [18] Any arbitrary fuzzy number in the parametric form is represented by (u(r), u(r)),
0 ≤ r ≤ 1 satisfying the following conditions.

1. u(r) is a bounded left-continuos non-decreasing function over [0,1],

2. u(r) is a bounded left-continuos non-increasing function over [0,1],

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

In particular, if u, u are linear functions, we have a triangular fuzzy number. A crisp number u is
represented by u(r) = u(r) = u, 0 ≤ r ≤ 1. The set of all fuzzy numbers is denoted by E and any
fuzzy number by the symbol of ′ ∼′.

Definition 3.2. [18] For any fuzzy numbers ũ = (u(r), u(r)), ṽ = (v(r), v(r)), 0 ≤ r ≤ 1 and real
number k, the algebraic operations are defined as:

1. kũ =

{
(ku, ku), k ≥ 0,
(ku, ku), k < 0,

2. ũ+ ṽ = (u(r) + v(r), u(r) + v(r)),

3. ũ− ṽ = (u(r)− v(r), u(r)− v(r)).

In the reminder of this section, The non squares fuzzy system of linear equations are considered as
follow: 

a11(x1(r), x1(r)) + · · ·+ a1n(xn(r), xn(r)) = (y
1
(r), y1(r))

...
am1(x1(r), x1(r)) + · · ·+ amn(xn(r), xn(r)) = (y

m
(r), ym(r))

(3.1)

Where the crisp matrix A = (aij) ∈ Mm×n is called coefficients matrix and the fuzzy number vector

X̃ = (x̃1, x̃2, · · · , x̃n)
T with components x̃i = (xi(r), xi(r)), 1 ≤ i ≤ n, 0 ≤ r ≤ 1 is a solution of

fuzzy linear system (3.1) if for i = 1, . . . ,m

n∑
j=1

aijxj =

n∑
j=1

aijxj = y
i
,

n∑
j=1

aijxj =

n∑
j=1

aijxj = yi.

The authors Friedman et al. [8] converted the fuzzy linear system (3.1) to a 2m × 2n system of

linear equations as SX̃ = Ỹ , where

S = (sij), 1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n,

X̃ = (x1, · · · , xn, x1, · · · , xn)
T ,

Ỹ = (y
1
, · · · , y

n
, y1, · · · , yn)

T .
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and sij meet the following statements:{
aij ≥ 0 ⇒ sij = si+m,j+n = aij ,
aij < 0 ⇒ si+m,j = si,j+n = aij ,

(3.2)

where any sij which is not determined by (3.2) will equal to zero. We can write(
S1 S2

S2 S1

)(
x
x

)
=

(
y

y

)
, (3.3)

where

x = (x1, · · · , xn)
T , x = (x1, · · · , xn)

T ,

y = (y
1
, · · · , y

n
)T , y = (y1, · · · , yn)

T ,

and

S1 =

(
s11 · · · s1n
sm1 · · · smn

)
, S2 =

(
s1,n+1 · · · s1,2n
sm,n+1 · · · sm,2n

)
.

Theorem 3.1. [8] The matrix S is nonsingular if and only if the matrix A = S1+S2 and B = S1−S2

are both nonsingular.

Theorem 3.2. [8] The pseudo-inverse of non-negative matrix S is

S+ =

(
A B
B A

)
.

where

A =
1

2
[(S1 + S2)

+ + (S1 − S2)
+] , B =

1

2
[(S1 + S2)

+ − (S1 − S2)
+].

Definition 3.3. [8] Let X̃ = (xi(r), xi(r)), i = 1, · · · , n denotes the unique solution of SX̃ = Ỹ .

The fuzzy number vector Ũ = (ui(r), ui(r)), i = 1, · · · , n defined by

ui(r) = min{xi(r), xi(r), xi(1)}
ui(r) = max{xi(r), xi(r), xi(1)}

is called the fuzzy solution of SX̃ = Ỹ . Furthermore, If xi(r), xi(r), 1 ≤ i ≤ n are all fuzzy
numbers, then

ui(r) = xi(r) and ui(r)) = xi(r), 1 ≤ i ≤ n,

and Ũ is called the strong fuzzy solution. Otherwise, Ũ is the weak fuzzy solution.

By using Equation (2.4), the solution of system SX̃ = Ỹ can be expressed by X̃ = S+Ỹ . Where,
S+ is the Moore-Penrose pseudoinverse of S. Definition 3.3 is exerted to find weak and strong fuzzy
solution.

4 Numerical Examples

In this section, we present some numerical examples to illustrate our method.

Example 4.1. [19] Solve the following 3× 2 fuzzy system of linear equations.
x̃1 + x̃2 = (r, 2− r)
x̃1 − x̃2 = (1 + r, 3− r)
2x̃1 + x̃2 = (2r, 3− r)
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Solution. The matrix S and the vector Ỹ are as bellow:

S =


1 1 0 0
1 0 0 −1
2 1 0 0
0 0 1 1
0 −1 1 0
0 0 2 1

 , Ỹ =


r

1 + r
2r

2− r
3− r
3− r


The singular value decomposition of S is given by S = UΣV T , where

U =


−0.3322 0.3586 0.2236 −0.3737 0.4520 −0.6059
−0.3322 0.1195 −0.6708 −0.3737 −0.5138 −0.1475
−0.5285 0.5976 −0.0000 0.4698 0.0309 0.3767
0.3322 0.3586 0.2236 0.3737 −0.5446 −0.5242
0.3322 0.1195 −0.6708 0.3737 0.4829 −0.2292
0.5285 0.5976 −0.0000 −0.4698 0.0309 0.3767

 ,

Σ =


2.9618 0 0 0

0 2.6458 0 0
0 0 1.4142 0
0 0 0 0.4775
0 0 0 0
0 0 0 0


and

V =


−0.5812 0.6325 −0.3162 0.4028
−0.4028 0.3162 0.6325 −0.5812
0.5812 0.6325 −0.3162 −0.4028
0.4028 0.3162 0.6325 0.5812

 .

The Moore-Penrose pseudoinverse of S will be

S+ = V Σ+UT

=


−0.2143 −0.0714 0.6429 0.2857 0.4286 −0.3571
0.6429 0.2143 −0.4286 −0.3571 −0.7857 0.5714
0.2857 0.4286 −0.3571 −0.2143 −0.0714 0.6429
−0.3571 −0.7857 0.5714 0.6429 0.2143 −0.4286

 .

So, we obtain the solution of our system as X̃ = (x̃1, x̃2) = S+Ỹ , where

x̃1 = (0.7143 + 0.6429r, 1.7143− 0.3571r),

x̃2 = (−1.1429 + 0.5714r,−0.1429− 0.4286r).

In this example x1 ≤ x1 and x2 ≤ x2. Moreover, x1 and x2 are non-decreasing functions, and x1, x2

are non-increasing functions over [0,1]. So, according to Definitions 3.1 and 3.3, the fuzzy solution

X̃ = (x̃1, x̃2) = S+Ỹ is the strong fuzzy solution. See Fig. 1. �

Example 4.2. Solve the following 2× 3 fuzzy system of linear equations.{
3x̃1 − x̃2 + 2x̃3 = (r, 2− r),
x̃1 + 3x̃2 + x̃3 = (1 + r, 3− r).
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Fig. 1. The strong fuzzy solution
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Fig. 2. The strong fuzzy solution

Solution. We have

S =


3 0 2 0 −1 0
1 3 1 0 0 0
0 −1 0 3 0 2
0 0 0 1 3 1

 , Ỹ =


r

1 + r
2− r
3− r

 .
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So, the solution of our problem will be X̃ = (x̃1, x̃2, x̃3) = S+Ỹ where

x̃1 = (0.2190 + 0.1143r, 0.4476− 0.1143r)

x̃2 = (0.2952 + 0.3714r, 1.0381− 0.3714r)

x̃3 = (0.1905 + 0.1429r, 0.4762− 0.1429r)

According to Definitions 3.1 and 3.3, we conclude that the fuzzy solution X̃ = (x̃1, x̃2, x̃3) is the
strong fuzzy solution of problem. See Fig. 2. �

Example 4.3. Solve the following 2× 2 fuzzy system of linear equations.{
x̃1 − x̃2 = (r, 2− r)
x̃1 + 3x̃2 = (4 + r, 7− 2r)

Solution. We have

S =


1 0 0 −1
1 3 0 0
0 −1 1 0
0 0 1 3

 , Ỹ =


r

4 + r
2− r
7− 2r

 .

So, the solution of our problem will be X̃ = (x̃1, x̃2) = S+Ỹ , where

x̃1 = (1.375 + 0.625r, 2.875− 0.875r)

x̃2 = (0.875 + 0.125r, 1.375− 0.375r)

According to Definitions 3.1 and 3.3, X̃ = (x̃1, x̃2) is the strong fuzzy solution. See Fig. 3. �
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Fig. 3. The strong fuzzy solution
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Example 4.4. Solve the following 3× 2 fuzzy system of linear equations.


x̃1 + 3x̃2 = (1 + r, 3− r)
4x̃1 − x̃2 = (r, 2− r)
−x̃1 + 3x̃2 = (2− 2r, 1 + 2r)

Solution. The matrix S and the vector Ỹ are as bellow:

S =


1 3 0 0
4 0 0 −1
0 3 −1 0
0 0 1 3
0 −1 4 0
−1 0 0 3

 , Ỹ =


1 + r
r

2− 2r
3− r
2− r
1 + 2r

 .

The singular value decomposition of S is given by S = UΣV T , where

U =


−0.3791 −0.2364 −0.5084 0.3260 −0.6466 0.1320
−0.4610 0.5060 −0.4344 −0.5361 0.1859 0.1437
−0.3791 −0.4336 −0.2297 0.3260 0.7086 −0.0841
0.3791 −0.2364 −0.5084 −0.3260 −0.0350 −0.6591
0.4610 0.5060 −0.4344 0.5361 0.1859 0.1437
0.3791 −0.4336 −0.2297 −0.3260 0.0969 0.7070

 ,

Σ =


5.3397 0 0 0

0 4.7467 0 0
0 0 3.8038 0
0 0 0 2.9133
0 0 0 0
0 0 0 0

 ,

and

V =


−0.4874 0.4680 −0.5301 −0.5123
−0.5123 −0.5301 −0.4680 −0.4874
0.4874 0.4680 −0.5301 0.5123
0.5123 −0.5301 −0.4680 −0.4874

 .

The generalized inverse of S will be

S+ = V Σ+UT

=


0.0248 0.2467 −0.0335 0.0703 −0.0259 0.0120
0.1798 −0.0485 0.1675 −0.0020 0.0424 −0.0142
0.0703 −0.0259 0.0120 0.0248 0.2467 −0.0335
−0.0020 0.0424 −0.0142 0.1798 −0.0485 0.1675

 .

So, the solution of our problem will be X̃ = (x̃1, x̃2) = S+Ỹ , where

x̃1 = (0.1288 + 0.0318r, 0.6286− 0.3181r),

x̃2 = (0.5796− 0.2727r, 0.5795 + 0.2727r).

9
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Here, x2 is not a non-decreasing function, and x2 is not a non-increasing function over [0,1]. So, x2

is not a fuzzy number. Therefor, the solution of our system is a weak solution as bellow:

ũ1 = (0.1288 + 0.0318r, 0.6286− 0.3181r)

ũ2 = (0.3069, 0.7595 + 0.2727r)

�

5 Conclusions

In this work, the presented method gives a simple way to solve the fuzzy system ofm linear equations
with n variables. In this method, the original fuzzy system is replaced by a 2m × 2n crisp linear
system with coefficient matrix S. The matrix S may be singular even if the original coefficients
matrix is nonsingular. In order to find the solution of our problem, we obtain the singular value
decomposition of S. By using this decomposition, we calculate the Moore-Penrose pseudoinverse of
S and get the solution of our problem.
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