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Abstract 

Considered is the model of the transversal utricle membrane deflections evoked by the linear accelerations. The 
basic idea underlying this consideration is that the linear accelerations can cause both longitudinal and transversal 
deformations when acting along the membrane in the buckling way. The real 3D utricle membrane structure was 
simplified by considering its middle section and evaluating its elastic properties in 2D space. The steady state 
transversal deflections along the membrane are analytically evaluated and numerically simulated using the 2D 
elasticity theory. The transversal deflections are found to be more expressive and stronger as compared to the 
conventional longitudinal deformations. The maxima of longitudinal deformations and transversal deflections are 
observable in different regions of the utricle membrane. The revealed properties could be used for explanation of 
the transduction processes in the otolith organ. Based on the implemented modeling approach the new otolithic 
membrane mechanical properties are discussed and new explanations for the available experimental data are 
given. 
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1. Introduction
The otolith organ in the vestibular system plays an essential role being the sensor of linear accelerations. Many 
researchers (Igarashi, 1966; Twizell & Curran, 1977; Kondrachuk, 2001; Li, Xue, & Peterson, 2008) in the past 
and nowadays studied the information conversion properties of the otolith organ both in the physiology and 
biophysics. The otolith organ consists of two independent sensors: utricle and sacculus, containing both otolithic 
membranes with different layers and the hair cells, which are sensitive to the membrane deflections and, hence, to 
the linear accelerations. The membranes look like the enclosed, almost flat capsules, which are rigidly attached to 
the bones at all their boundaries, except the utricle, which is attached to the bones only at its longest end 
(Uzun-Coruhlu, Curthoys, & Jones, 2007). However, its attachment to the supporting flexible membrane in other 
boundary regions can be also considered as rigid, as the supporting membrane is more solid than the utricle capsule 
since it contains the hair cell bodies and afferent and efferent fibers. The surface of otolithic membranes is not 
perfectly flat and has a complicated shape in 3D space. However, some researchers considered them as fully flat 
(Hudetz, 1973; McGrath, 2003) or slightly spherical (Jaeger, 2003). The otolithic membranes of utricle and 
sacculus are approximately orthogonal in space, what helps them decomposing the arbitrary linear accelerations 
into projections of the body reference systems. Both utricle and sacculus sensors are similar in their transduction 
properties, so we shell concentrate further on the transduction properties of the utricle. 
2. Transition from 3D to 2D Space
From the point of view of the elasticity theory the real utricle membrane can be considered as the plate with the 
varying curvature in 3D space. Because of the apparent complexity, the most reliable and convinced way to study 
its transduction properties is the numerical 3D simulation, realized usually with the finite element method (Sato, 
Sando, & Takahashi, 1992; Kondrachuk, 2001; Jaeger, 2003; Silber et al., 2004). However, to be able to get some 
preliminary analytic results, we would like to simplify the problem considering only the fraction of the utricle 
membrane, extracting the strip in the middle of the membrane along its longest axis. The extracted strip of the 
arbitrary width can be considered as a thin beam simply supported at its ends and slightly spherically curved. The 
extraction of the thin beam from the homogeny region of the utricle membrane doesn’t change its elastic property 
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as compared with the whole membrane, but helps implementing 2D elastic theory (Timoshenko & Gere, 1961) to 
its deflection analysis. 
3. Deflection of the Utricle Membrane 
The beam cut out from the middle region of the utricle preserves its complex structure represented in the Figure 1. 
The structure consists of three layers: otoconia, mesh, and gel like fluid. Geometrical parameters for all membrane 
layers differ in published works. In most cases we shall follow the geometrical data presented in Jaeger’s work 
(Jaeger, 2003). Our specific attention is paid for the clearly demonstrated cavities in the mesh layer (Kachar, 
Parakkal, & Flex, 1990), which are filled out with a gel like fluid and cover the hair cell bundles, giving an 
impression that the mesh layer is perforated. 

 
Figure 1. Schematic fragment of the utricle membrane and hair cells 

1- endolymph, 2- otoconia layer, 3- mesh layer, 4- gel layer. The mean geometrical values: a=15mkm, c=10mkm, 
h=10mkm. 
 
The basic idea underlying our consideration is that the longitudinal load may cause the utricle membrane 
deflections, bending it in the buckling way. We consider the replacement of the membrane fragment (Figure 1) by 
the conventional simply supported beam of the constant rectangular cross section, which loading scheme is 
represented in Figure 2. The beam is loaded by the homogeneous longitudinal force, which is evoked by the linear 
acceleration. It is supposed that the beam is associated mainly with the otoconia layer, as it has the most rigid 
structure as compared with other layers. The height of the beam is 15mkm and its length is assumed to be about 
1000mkm. The width of the beam cross section is not defined in the 2D elasticity problem and can be assumed to 
be 1. The beam is also assumed to be slightly spherically curved with the curvature radius of 10 mm. The most 
uncertain parameter is the elasticity modulus E (Young modulus), which is varying essentially from sources from 
2000Pa (Jaeger, 2003) to 6.6MPa (Davis, Xue, Peterson, & Grant, 2007). We also evaluate it later based on our 
physical assumption that the elastic properties of the beam are defined entirely by the available range of the 
membrane deflections. 

 

Figure 2. The utricle otoconia layer under the acceleration buckling load 
 

The beam is assumed to be initially deflected 
0
w x  by the fictitious transverse load q , allowing to imitate the 

initial beam shape. Additional longitudinal load p deflects the beam to its steady state shape w x . The forces 
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/ 2P and / 2Q are the support forces required for the static stability. All three membrane layers follow the 

initial beam shape 
0
w x , so the gel layer height h is approximately constant along the beam. During the 

additional longitudinal loading only the mesh layer follows the deflection of the otoconia layer, while the gel like 

fluid is forced to flow along the layer space changing its local height. Hence, the difference 
0

w w x w x  

is the deflection of the beam relative its initial position and in the same time is the change in the gel layer height. As 
the total volume of the gel like liquid should be constant in the utricle capsule, the liquid should spill over from the 
region with the high pressure to the lower pressure regions along the membrane, and the following restriction 
should take place: 

 
0

0
l

w x dx  (1) 

The beam deflection w x  can be derived from the balance of works made by internal and external forces 
(Timoshenko & Gere, 1961): 

 
2 2

0
0 0 0 0

0
2 2 2

l l l lEJ p l
w dx x w dx q w dx w w dx  (2) 

where E - the elasticity module, J - the moment of inertia of the beam cross section, - the Lagrange 
multiplier, l - the length of the beam. 
The balance of the works (2) is reached when the first variation of Equation (2) relative to the arbitrary variation 
w of deflection w x is getting zero. The resulting equation for evaluation of deflection w x reads: 

 (4) 0
2

d l
EJ w p x w q

dx
 (3) 

Taking into account that the initial deflection 
0
w x can be considered as the solution of the equation: 

 (4)
0

0EJ w q  (4) 

we obtain the part of deflection w , which is evoked by the longitudinal load, from the difference between 
Equations (3) and (4): 

 4

02 2

d l d l
EJ w p x w p x w

dx dx
 (5) 

Integrating Equation (5) results: 

 
02 2

l l
EJ w p x w p x w C x  (6) 

where C and are arbitrary constants. 
Denoting u w we get the simplified version of the Equation (6): 

 
02 2

l l
EJ u p x u p x w C x  (7) 
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with boundary conditions: 
0

2
0 0

C
u w

pl
, 0 0u . Constants C and can be evaluated from the 

boundary conditions at the end of the beam: 0w l and the restriction (1). 

4. Numerical Simulation 

Equation (7) is the non-homogeneous linear differential equation with the space varying coefficient. One of the 
most convenient methods to get to the solution of Equation (7) is its replacement by the matrix equation. Denoting 

1

2

v
v

v
, 

1
v u and 

2
v u we can rewrite Equation (7) in the matrix form: 

 
1 2 3

v M v r r r  (8) 

where 
0 1

0
2

M l
d x

, p
d
EJ

, p ab , is the linear acceleration, a is the height of the 

otoconia layer, b is the beam width (assumed to be 1 in the 2D elasticity problems), is the otoconia layer 

density. The external inputs 
1 2 3
, ,r r r are vectors: 

1
0

0

2

r l
d x w

, 
2

1

0
r

C
, 

3
1

0
r

x
, where 

1

C
C

EJ
, 

1 EJ
. The numerical procedure to 

get to the solution of the Equation (8) was implemented in Matlab on the grid (2,1001) for the beam length 

1l mm with the spacing 0.001x mm . The Equation (7) was solved separately for every inputs 

1 2 3
, ,r r r  .Starting with the initial values: 

10
1C , 

10
1 and the elasticity module 410E Pa  the 

solutions 
1 2 3
, ,z z z  with the initial conditions: 0

1

0
0

0

w
z , 

10

2

2

0

0

C

z d l , 
3

0
0

0
z were 

integrated in 0,x l and used then to form the resulting beam deflection w as a weighted sum fitting the 

boundary condition 0w l and the restriction (1). 

5. Results 

First, we illustrate the influence of the membrane curvature on the otoconia layer deflection changing the radius of 

curvature R  in the range (3.6-10) mm via equation: 10 / 1 ( 1 /5)
i
R i , 1,...,10i . For the linear 
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acceleration /2g , 32300 /kg m and 410E Pa the set of deflections of the otoconia layer is 

represented in the Figure 3. 

 
Figure 3. The utricle membrane deflections for the set of its initial curvature radius. The radius is equally 

distributed between values from 3.6mm to 10mm 

 
Figure 4. The scaled utricle membrane deflections for the linear acceleration set 

 
It is of the main interest to see the basic transduction property of the utricle membrane deflection as the response to 
the input linear accelerations. Starting with the threshold value of 0.01g (Kingma, 2005) we limit us with 1g as the 
highest value typical for the conventional life conditions. For the set of the linear accelerations given by equation: 

2/
i
g i , 1,...,10i and 410E Pa the set of the otoconia layer deflections is represented in the Figure 4. 

It could be seen from the Figure 4 that the whole range of the input acceleration values fits the range of the possible 
height changes in the gel layer. This evidence was used to evaluate the elasticity modulus as 410E Pa . Using 
lower values leads to the sticking of the mesh layer to the floor region of the gel layer, whereas higher values result 
in small deflections. The values of deflections as the response to the linear accelerations are essentially non linear. 
To be able to see all details of deflections we need an additional scaling for the deflections resulting from the low 
values of accelerations. This was achieved by the scale factor c , which dependence on the acceleration values is 
represented in the Figure 5. 
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Figure 5. The scaling factors for displaying Figure 4 

 

Instead of the separate scaling for the every otoconia layer deflection given on the y axis in Figure 4, we can plot 

the same set of deflections with the unified scale on the logarithm axis 
1
y . This scale of the deflection axis is 

made by the function: 6
1

log 1 8 10y sign y abs y . The new scaled set of the otoconia layer deflections 

is shown in the Figure 6. 

 
Figure 6. The logarithm scaled membrane deflections for the same set of the linear accelerations 

 

Independent of separate or unified scaling of the deflection curves from Figure 4 or Figure 6 we can evaluate the 

norms 
1/2

2

0

l

i i
d w x dx for the raw deflections 

i
w x , 1,...,10i . The dependence of the norms 

i
d
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on the acceleration values 
i

gives the estimation of the sensitivity of the utricle membrane as a sensor. This 

dependence is illustrated by the Figure 7. 

 
Figure 7. The norms of the membrane deflections for the set of linear accelerations 

 
6. Discussion. Why Are the Transversal Deflections? 

The most basic question immediately arises. Why we need to consider the transversal deflections in spite of the 
fact that there are already well developed research results supported the longitudinal displacements of otolithic 
membranes (Hudspeth & Corey, 1977; Hudspeth, Choe, Mehta, & Martin, 2000; Colclasure & Holt, 2003)? It is 
also directly demonstrated that the afferent responses of the hair cells can be evoked by longitudinally deflected 
kinocilia (Eatock, Corey, & Hudspeth, 1987). We are trying to answer this question using numerical results of the 
proposed model of the utricle membrane deformation under the linear accelerations. The main assumption made in 
the model is the supposition that the gel like fluid is different from the Kelvin-Voigt fluid (Kluitenberg, 1964) and 
is simply the conventional viscous fluid with the dynamic viscosity of 1 Poise (Jaeger, 2004). Only under this 
supposition the gel layer fluid is able to flow along the membrane from the regions of relatively high elastic 
pressure to the regions of the lower elastic pressure. The flowing fluid changes the height of the gel layer covering 
or opening the hair cell bundles, which move in their perforated cavities. From the pictures we can see that only 
one region divides the utricle membrane in two separate regions: one with increased and another with decreased 
heights of the gel layer. This region could be associated with the striola. As the deflections are severely dependant 
on the membrane curvature (Figure 3), the position of the striola is affected by the real membrane curvature, which 
is not constant in the real 3D membrane shape. The utricle membrane is also submitted to the longitudinal 
compression and tension. Because of the experimental evidence that the otolith membranes are firmly attached to 
the bones or more solid tissues (Uzun-Coruhlu, Curthoys, & Jones, 2007), they can move longitudinally only by 
compression or by tension. To estimate the utricle membrane longitudinal displacement we consider again the 
beam loading scheme in Figure 2. One half of the beam is in the compression whereas another one is in the tension. 

The maximal beam displacement is observed in the middle section at 
2

l
x . From the regular elasticity problem 

we can evaluate the maximal displacement  as: 
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2

8

l

E
 (9) 

Substituting all available parameters we can find for the linear acceleration 1g the maximal displacement 

0.2817mkm , what is more than 10 times less as compared with the transversal deflection using the same 

parameter set. It is also important to emphasize that this maximal displacement is observed in the middle of the 
utricle membrane i.e. in the striola region, where the density of the hair cells is reduced. The main question still 
remains: how can the increased transversal deflections be used to ensure the transduction from mechanical 
deflections to the electrical activity of the hair cells? The possible answer can be formulated as a hypothesis. It is 
already found that the gel like liquid is close by its chemical composition to the endolymph and even more is called 
“mucopolysaccharide gel” (Pandey, 2015). The presence of the polarized mucopolysaccharide molecules lets us 
hypothesize that the transduction process could be realized on the molecular level similar to transduction in the 
cochlea inner hair cells (Goussev, 2018) or the semicircular canal hair cells (Gusev, 1994). The principal condition 
for the molecular transduction is the movement of the polarized molecules in the vicinity of the hair cell bundles. It 
is exactly this condition that occurs in the utricle membrane with transversal deflections when the hair cell bundles 
move inside the mesh layer cavities. With the evaluated maximal longitudinal displacements of order of the 
stereocilia width the hair bundles move mainly up and down in their cavities rather than being bent in the 
longitudinal direction by the linear acceleration. 

7. Conclusion 
The steady state transversal deflections of the otolithic membranes can be observed along with their longitudinal 
displacements caused both by the linear acceleration load in the buckling way. As compared with the longitudinal 
displacements, the transversal deflections are stronger and are concentrated in the regions of maximal density of 
the hair cells. It is hypothesized that the transduction of transversal deflections to the electrical activity of the hair 
cells is realized by the molecular mechanisms based on the polarized mucopolysaccharide molecules. 
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