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ABSTRACT 
 

Aims: To purpose a didactic mechanism for the teaching of the physical and mathematical 
concepts with respect to the mechanical oscillations, which is commonly addressed in 
undergraduate courses in Physics, in the chair of Classical Mechanics or correlated ones. 
Place and Duration of Study:  The study was performed in the Physics Department of Federal 
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University of Amapá, Macapá-AP, Brazil during the year of 2015. 
Study Design:  In order to give an application of the content “mechanical oscillations” we first 
introduce the theory of Atomic Force Microscope. Then we get the equation of motion for the AFM 
cantilever, which models a non-linear driven harmonic oscillator with damping, and solve it 
considering different physical situations. 
Methodology:  We emphasize the methods of resolution of differential equations, attempting to 
relate its applications in condensed matter physics, in particular to atomic force microscopy (AFM). 
Results:  Throughout the motion equation for the AFM cantilever, we studied the solution of the 
equations for the cases of mechanical equilibrium, simple oscillations, damped oscillations, forced 
oscillations and damped and forced oscillations. 
Conclusions: By applying the differential equations to a recent and instigating research area, the 
subject becomes better understood by students, gaining great results of learning. This purpose, 
however, need further work to confirm its educational potential by applying to an undergraduation 
class. 
 

 
Keywords: Mechanical oscillations; atomic force microscopy; solution methods of ODE’s; physics 

teaching. 
 
1. INTRODUCTION  
 
One of the first contact of undergraduate physics 
students with the application of differential 
equations take place in the I-IV Basic Physics 
disciplines, more specifically in Basic Physics II, 
when is studied the oscillatory motion. In Brazil, 
as well as in most world universities, the set of 
these four courses is known as “basic cycle”, but 
they are taught globally in all Physics Courses. 
However, in a more profound way, this contact 
takes place in the discipline of Classical 
Mechanics, as part of the study of mechanical 
oscillations, usually addressed as the second 
topic of the course, following to the introduction 
of Newton’s laws [1]. 
 
This chapter of undergraduation plays a crucial 
role in the curricular performance of the student, 
once that Classical Mechanics discipline is often 
the first, in Physics courses, which follows from 
the “basic cycle”, beginning the “professional 
cycle”, which is, in turn, constituted by the 
advanced courses in physics. Saying in another 
way, it’s in this discipline that students have, 
usually, a more profound contact with Physics, 
inasmuch as this “professional cycle” is 
constituted by disciplines that are often offered 
only in Physics undergraduate, being many times 
absent in engineering and other scientific 
courses. 
 
Therefore, the didactical approach to be applied 
in this discipline must be well designed, so as to 
allow the student to completely explore the 
richness of the subject to be worked, since      
that Classical Mechanics, together with 
Electromagnetic Theory, Statistical Mechanics 

and Quantum Mechanics, constitute the main 
axis of knowledge in Physics, essential for 
whatever be the area that student decide to 
follow in Graduation. 
 
Considering this outlook, it was elaborated a 
strategy of class with the purpose of improving 
the teaching of mechanical oscillations, using for 
that an application in Condensed Matter Physics, 
more specifically to atomic force microscopy 
technique. 
 
In this article we will cover the fundamental 
concepts regarding to the motion equation of the 
atomic force microscope (AFM) cantilever in 
chapter II and, following, we will discuss the 
solutions of the equation for each of different 
oscillation cases. 
 
2. THE ATOMIC FORCE MICROSCOPE  
 
The scanning probe microscopy (SPM) is a 
family of microscopy techniques widely used 
nowadays in investigations in nanoscience and 
nanotechnology. These techniques consist in 
measuring the interaction intensity between a 
probe (Fig. 1) and a sample, in order to 
determine the variation in the tip-sample distance 
in each point of the sample surface. This means 
that the microscope works by setting up a matrix 
of points z(x,y), where z represents de tip-sample 
distance, and the coordinates x and y are made 
to be along the sample surface [2]. 
 
The collected data are used to construct a 
topography image (as mountains and valleys) of 
the surface, what is done through the conversion 
of the z values in pixels by an electronic module 
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coupled to microscope, as shown in Fig. 2. The 
obtained images are a representation of the 
surface relief of the analyzed material, and give 
many important information about its structure. 
This allows the study of properties such as: 
roughness, adhesion, wettability, stiffness and 
mechanical resistance, to name few [4]. 
 

 
 

Fig. 1. Atomic force microscope cantilever, 
with the tip (probe) mounted in its end. Image 

obtained by scanning electron microscopy 
(SEM) [3] 

 
In such precision measurements, whatever the 
data collection device, such as AFM cantilever or 
a quartz crystal as a sense element for some 
applications, the collected data are also used to 
construct a different type of shape working as a 
weighting function which very well compensates 
all disturbances. Besides the AFM, it is also used 
in porosity [5] or humidity [6] measurements. The 
collected data can be also used to construct 
different types of parallel curves, which 
compensates temperature influence. This was 
also reported for capacitance-frequency 
converters [7], used for the measurement of 
mechanical displacement, dielectric properties 
and density of liquids, small volumes or levels, 
pressure, flow and humidity, and for inductance-
to-frequency converters [8], which are also used 
for measurement of mechanical displacement, as 
well as for nanopositioning, eccentric motion and 
strain sensing.  
 
AFM is a member of the SPM Family. In this 
variety of microscope, the probe, also called tip, 
is mounted in a stem named cantilever. The 
variations in the intensity of the tip-sample 
interaction causes the cantilever to deflect 
proportionally in z direction, what is measured by 
an optical apparatus and saved in the computer 
(Fig. 3). 

 
 

Fig. 2. AFM image of a PMMA-SBR (poly-
methy-methacrylate – styrol-butadien-rubber) 
polymer blend, spin coated on glass. 20X20 
µm scan, 30 nm topographic scale (height) [9] 
 

 
 

Fig. 3. AFM scheme. The cantilever 
deflections change the reflection angle of the 
laser during the scanning, what is detected 
by the photodiode. The controller receives 

this information and generates a signal to the 
piezoelectric ceramic, which moves to adjust 
the tip-sample distance. At each movement of 
the ceramic, the controller registers the data 

and generates the image of the surface 
 
Between the AFM tip and the sample, as well as 
between any two other materials in contact or 
sufficiently close, there are intermolecular 
interaction forces, which belongs to a range of 
varieties but are called in general van der Waals 
interaction. 
 
For a quantitative analysis of this interaction, one 
can derivate the total interaction through an 
integration process starting from the interaction 
between two single atoms, which in this case is 
well modeled by the Lennard-Jones potential  
(eq. 1) [10]. 
 � = 4� ����	
� − ���	�                       (1) 
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Where ε is a constant characteristic of the two 
atoms, σ is the average diameter of the two 
atoms and � is the distance between the atom 
centers. This potential has an attractive term, 
which dominates while the tip is far from the 
sample, and a repulsive term, that dominates 
when the tip approaches or touches the sample 
(Fig. 4). 
 

 
 

Fig. 4. Interaction Potential between two 
single atoms. The force (F) between the 

atoms can be obtained by the derivative of 
this potential. The distance for which the 

energy is minimum is called equilibrium point 
(F=0), and corresponds to a typical chemical 

bond [11] 
 

The AFM device can be operated in three 
different modes. The first one is called contact 
mode, wherein the tip remains continuously in 
the repulsive forces zone. Another operation 
mode is the non-contact mode, wherein the tip 
doesn’t touch the sample during the whole 
scanning and the existing interactions are 
essentially attractive. 
 

There is also the intermittent contact mode, or 
tapping mode, in which an excitation signal is 
applied to the cantilever, causing it to vibrate, 
touching the sample surface once per oscillation. 
This mode is called intermittent because the 
interaction alternates between attractive and 
repulsive. 
 

Some models have been proposed for the 
motion of Cantilever, considering the different 
modes of operation, and in the most general one 
it has been modeled as a Non-linear driven 
harmonic oscillator with damping [4], whose 
movement is governed by the following equation: 
 � ������ = −�� − ���� ���� + �� cos!"#$ + �!�, �&$(2) 

In the above equation, m, k, ω0 and Q represent 
respectively, the mass, the spring constant, the 
resonant frequency and quality factor of the 
stem, determined from its dimensions and from 
its constituent material. The term −��  is the 

elastic force and the term − ���� ����  represents 

the environment damping. The sinusoidal term �� cos!"#$ is the excitation signal applied to the 
cantilever and �!�, �&$  is the interaction 
between tip and sample around the equilibrium 
point zc. 
 
Some different models have been also proposed 
to determine �!�, �&$ . The difference between 
the three modes of operation relies on the form 
of the term �!�, �&$, which is different for the 
two regions separated by the distance a0                
(Fig. 4). For the non-contact zone, the form of �!�, �&$  is obtained considering the van der 
Waals interactions. Therefore, the interaction of 
the tip, mounted on the cantilever, with the 
surface can be approximated by those of a 
sphere, attached to a spring, interacting with a 
flat surface, as indicated in Fig. 4. In the contact 
zone the repulsive force is determined by the 
indentation force, obtained from Hertz model 
[12]: 
 �!�, �&$ = − '(!�)*�$� �& + � ≤ ,�           (3a) 

 �!�, �&$ = − '-� + ./(0 �⁄
2324� !,� − � − �&$2 �⁄  �&                     +� ≥ ,�                                       (3b) 

 
Where R is the tip radius, A is the Hamaker 
constant, and E and ν are the Young modulus 
and Poisson coefficient of the sample, 
respectively. 
 
Eq. (3a) applies for contact mode, regarding the 
fact that the sinusoidal term in Eq. (2) is absent, 
and (3b) for non-contact mode. In tapping mode, �!�, �&$  alternates between (3a) and (3b) for 
each oscillation. 
 
However, beyond the elastic deformations, the 
model used to explain the penetration of the tip in 
the sample (a phenomenon called 
nanoindentation) should take in consideration 
also the plastic deformations, that is, the 
permanent deformations on the material. Due to 
this is necessary to include some aspects of 
tensor analysis, like the generalized Hooke law 
equation and the deformation tensor [13]. 
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Fig. 5. Tip-sample interaction in tapping 
mode. In the left, the tip is away from the 

sample. In the right, the tip elastically indents 
the surface 

 

In any way, the existence of the term �!�, �&$ in 
equation (2) is responsible for inserting other 
vibration modes of the cantilever, compared to 
the one it would have if the above term do not 
exist [14]. Nevertheless, the solution of this 
equation in the conditions determined above 
occurs only by numerical methods. For the 
purpose of this article, the interaction between tip 
and sample is neglected and the differential 
equations are solved only for the first normal 
mode of vibration of the cantilever. 
 

3. DIFFERENTIAL EQUATIONS 
 
Neglecting the interaction between probe and 
sample, eq. (2) becomes: 
 � ������ = −�� − ���� ���� + �� cos!"#$   (4) 

 

In the following sections are shown the methods 
to determine the general solution of this equation 
considering different physical situations. 
 
3.1 1st Case: Dynamic Equilibrium  
 
In this case, the resulting force on the cantilever 
is null, therefore eq. (4) takes the form: 
 �� + ���� ���� = �� cos!"#$          (5) 

 
The solution of this equation can be obtained by 
the method of the integration factor. This method 
applies for differential equations of the form: 
 7879 + ,8 = :!9$ 

 
And consists in multiplying the whole equation by 
a function ℎ!9$ , so that the left side of the 
equation becomes the derivative of a product. 
This integration factor is given by  <-�. Rewriting 
(5) we obtain: 
 7�7# + �=�"� � = ��=�"� cos!"#$ 

 

Multiplying by < >?@A��
: 

 ���� < >?@A�� + B���� < >?@A��� = C����� cos!"#$ < >?@A��
 

��� D�< >?@A��E = C����� cos!"#$ < >?@A��
 

 
Integrating in function of time: 

 

F 7 D�< >?@A��E 7# = C����� F cos!"#$ < >?@A��7#  �< >?@A�� = C����� F cos!"#$ < >?@A��7#                             (6) 

 
Integrating by parts the integral in the right side (6), we have: 
 

F cos!"#$ < >?@A��7# = � B���
B���*�������	 Gcos "# + ����B� sin "#J ���B� < >?@A��

  

 
Substituting in (6), we have 
 � = C�B��

B���*������� cos "# + C������B���*������� sin "#                    (7)

 
This solution shows that the cantilever behaves like an harmonic oscillator, once that its motion 
equation is a linear combination of harmonic terms, that is, sinusoidal terms.  
 
As there is no dissipative term, or in other terms, the amplitude of the movement is constant, the 
energy of the movement is also constant. The total energy of the movement, in any instant, is 
calculated by the sum of kinetic and potential energy: 
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� = ��K �� + B��
�                         (8) 

 
Then, from (7) and (8), one have: 
 � = B� G C��B��L

!B���*�������$� + C�����������
!B���*�������$�J    (9) 

 
3.2 2nd Case: Simple Oscillations 
 
In this case, cantilever is considered to not being 
under damping forces nor external forces, so that 
the elastic force is the resulting force. Thus, eq. 
(4) takes the following form: 
 

� 7��7#� = −�� 

 
Or also, considering that "�� = � �⁄  and 
rewriting the above equation, 

 ������ + "��� = 0                      (10) 

 
To get the general solution of the equation (10), 
one must find a function of the form <�� inasmuch 
as the second derivative reproduces the original 
function. Then, supposing a solution of this type, 
it leads to the following result: 
 � = N<��; ���� = N�<��; ������ = N��<�� 
 
What, substituting in eq. (10), leads to: 
 �� + "�� = 0   � = ±P"�                          (11) 
 
The result expressed in (11) shows that exist two 
possible solutions for this equation (�
 = Q
<R��� 
and �� = Q�<3R���). It’s convenient to express a 
general solution as a linear combination of these 
two simplest solutions, in order to the function 
thus obtained is also a solution of (10). 
 � = Q
<R��� + Q�<3R��� � = Q
!cos "�# + P sin "�#$ + Q�!cos "�# − P sin "�#$ � =  !Q
 + Q�$ cos "�# + P!Q
 − Q�$ sin "�#       (12) 
 
If we make a convenient substitution, we can 
express this solution in form of an amplitude A 
and a phase φ [15], in the following way: 
 Q
 + Q� = Q cos S        (13a) 

 Q
 − Q� = PQ sin S        (13b) 
 
Substituting (13) in (12): 

 � = Acos S cos "�# − Asin S sin "�# � = Acos!"�# + S$        (14a) 

Equation (14a) is the general solution of (10). 
The constants A and φ should be found by the 
boundary conditions, which are usually the 
position ( �� = �!0$ ) and velocity ( �UK = ���� !0$ ) 

values in the initial instant # = 0 . Using the 
boundary conditions in the general solution, it's 
found the following values for the constants: 
 Q = ��VWX Y          (14b) 

 S = − tan3
 � ��K����	        (14c) 

 
Similarly to the first case, this movement 
undergoes no energy dissipation, and the total 
energy in this case is, from (8): 
 � = B���

� + ���K �
�           (15) 

 
3.3 3rd Case: Damped Oscillations 
 
In this case, the cantilever motion is considered 
to be damped by the environment, which may be 
air, water, or any other fluid. In this case, eq. (4) 
assumes the form: 
 � ������ = −�� − ���� ����         (16) 

 
Or even 
 7��7#� + "�= 7�7# + "�� = 0 

 
The procedure is performed supposing a solution 
of the same form as in the previous situation, 
obtaining thus: 
 �� + ��� � + "� = 0  

� = − ���� ± ����
.�� − "�	
 �⁄

  � = − ���� ± 
�� !"�� − 4=�"�$
 �⁄   
 
Making the linear combination of the solutions: 
 

� = <3ω��?� \ N
<D 0�?]���3.����^0 �⁄ E�
+N�<3D 0�?]���3.����^0 �⁄ E�_        (17) 

 
One must consider three different possibilities as 
to the term within the root [15,16]. 
 
3.3.1 Overdamped oscillations  
 
If ω0> 4Q2

ω
2, so the tem within the root is 

positive and the root is a real number, then it's 
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said in this case that the motion of the cantilever 
is overdamped, and the oscillator reaches, 
without oscillating, an stability position 
determined by N
 and N�. 
 
Considering the boundary conditions (�� = �!0$ 
and �UK = ���� !0$ ), it's possible to determine the 

values of N
 and N�: 
 

N
 = D��*]���3.����^0 �⁄ E��*��� K̀
�!���3.����$0 �⁄         (18) 

 

N� = D3��*]���3.����^0 �⁄ E��3��� K̀
�!���3.����$0 �⁄         (19) 

 
3.3.2 Critically damped oscillations  
 
Another possibility happens when ω0

2 = 4Q2 ω2. 
In this hypotheses the term inside the root is null 
and the general solution of (16) is simply: 
 � = N<3ω����

 
 
This is the faster amplitude decay the object can 
execute without oscillating, and is called critically 
damped motion. Through the initial value �� = �!0$, it's easy to observe that N = ��. So the 
solution for this case is: 
 � = ��<3ω��?�

           (20) 
 
3.3.3 Underdamped oscillations  
 
The third case happens when ω0

2< 4Q2
ω

2. In this 
case the term inside the root is negative and the 

root is a complex number. We call this movement 
underdamped, because the amplitude decay 
occurs gradually as the cantilever oscillates. 
Then, Eq. (17) now becomes: 
 

� = <3ω���� aN
<RD 
��]���3.����^0 �⁄ E�

+ N�<3RD 
��]���3.����^0 �⁄ E�	 

 
And developing the algebra in the same way that 
for the 2nd case, one finally obtains: 
 � = N<3ω��?� cos �
� !4=�"� − "��$
 �⁄ # + S	(21) 
 
Considering the term within the root in (17), this 
is, experimentally, the typical situation of the 
operation of the AFM cantilever. This is because 
we have typically Q2

≈104, therefore, ω0
2 - 4Q2

ω
2 

≈ - 4Q2 ω2 and the dissipation is underdamped 
[16]. 
 
The exponential term in Eq. (21) is called 
envelope, since it determines the decay in the 
oscillation amplitude. From the boundary 
conditions (�� = �!0$ ;�UK = ���� !0$), it's possible to 

determine the values of N and S: 
 N =  ��VWX Y           (22) 

 S = tan3
 � 3��� K̀ 3������!.����3���$0 �⁄ 	         (23) 
 

The total energy in this case is: 
 � = ����

.� VWX� Y <bA�? � G���*�����
�� cos!"# + S$ + !""� + 2="�$ sin!"# + S$J     (24)

 
The exponential term represents the energy dissipation, so the energy goes to zero as time passes. 
 

3.4 4th Case: Forced Oscillations 
 
When a force is applied to the cantilever, through an excitation signal, and disregarding the 
environment damping, eq. (4) turns 
 � ������ = −�� + �� cos!"#$                                                                                (25) 
 
This equation can be written in the following form: 
 ������ + "��� = C�� cos!"#$                                                                                             (26) 
 
The general solution for an equation of the form of (26) are given by the sum of a complementary 
solution (homogeneous solution) and a particular solution (non-homogeneous solution), without loss 
of generality. 
 � = �& + �d 
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The complementary solution is given by                  
Eqs. (14). To find the particular solution, we 
suppose an harmonic function which oscillates in 
phase (S = 0) and with the same frequency " of 
the source: 
 �d = e cos!"#$          (27) 
 
Substituting (27) in (16), one finds 
 −e"� cos!"#$ + e"�� cos!"#$ = ��� cos!"#$ e = C��!���3��$          (28) 
 
So, the vibration of the cantilever is composed of 
linear combinations of normal modes, but now 
each small vibration occurs with the same 
frequency of the applied force. 
 
As a consequence of the denominator of eq. 
(28), the closer ω is from ω0 the more intense will 
be the excitation on this vibration mode. 
Apparently, Eq. (28) predicts an infinite amplitude 
when ω = ω0, but this is not physically plausible, 
since the theory behind this equation is grounded 
for small oscillations around the equilibrium 
position, so that (28) is not still valid if the 
amplitude becomes much larger. 
 
Therefore, the general solution is given by: 
 �!#$ = Acos!"�# + S$ + C��!���3��$ cos!"#$(29) 
 
The constants A and φ should be determined 
through the boundary conditions, what leads to: 
 Q =  3� K̀�� Xfg Y           (30) 

 S = cot3
 � ��C�� K̀ �!���3��$ − ���`� K̀ 	        (31) 
 
If ω = ω0 so the supposition of eq. (27) is a 
solution of the homogeneous problem, and must 
be substituted by another one of the form 
 �d = e# cos!"�#$ 
 
This term presents a linear growth in amplitude 
as it oscillates, what characterizes a 
phenomenon called resonance. The oscillator, 
thereby, continually receives energy provided by 
the external force.  
 

3.5 5th Case: Damped and Forced 
Oscillations 

 
This is the most general case in our description, 
in which Eq. (4) undergoes no change. The 

frequency of a forced oscillator is determined by 
the frequency of the external force and not by the 
resonant frequency [17]. To study what would be 
the general solution in this case, eq. (4) is written 
in the following manner: 
 ������ + �� ���� + "�� = C�� cos!"#$         (32) 

 
As for Eq. (19), the general solution for Eq. (32) 
involves a complementary and a particular 
solution. For the same reason of the previous 
case, the complementary solution is the solution 
of the homogeneous equation, Eq. (21). To find 
the particular solution of (32), it is assumed a 
function of the form: 
 �d!#$ = h
 cos!"#$ + h� sin!"#$        (33) 
 
Substituting (33) in (32), and solving the linear 
system, one obtains D1 = 0 and D2 = F0Q/ "2. 
Then the particular solution is: 
 �d = ��="� sin!"#$ 

 
And, in turn, the general solution is: 
 �!#$ = N<3ω��?� cos!"# + S$ + C���� sin!"#$   (34) 
 
From the initial conditions, the constants for this 
case are given by (30) and (31), once that 
changes took place only in the particular solution. 
 
4. CONCLUSION 
 
We purposed a didactic mechanism for the 
teaching of the physical and mathematical 
concepts with respect to the mechanical 
oscillations, which is commonly addressed in 
undergraduate courses in Physics, in the chair of 
Classical Mechanics or correlated ones. 
 
By applying the differential equations to a recent 
and instigating research area, the subject 
becomes better understood by students, gaining 
great results of learning. 
 
This also evidences the practical character of 
mathematics that is studied in undergraduation, 
associating it to physical concepts and making 
the learning to be more significant. 
 
This also contributes to the professional 
formation of the undergraduate student, since the 
discipline of classical mechanics is essential for 
the subsequent other disciplines of 
undergraduation and, eventually, graduation. 
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This purpose needs, however, further work to 
confirm its educational potential by applying to an 
undergraduation class. 
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