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Abstract

The adaptive tyf-1l progressive hybrid censoring has the advantage of savinghmtbtal test time an
the cost of the experiment; also it increases theieffty of the statistical analysis. This article disesgs
k-level step stress accelerated life tests based onaptival type-Il progressive hybrid censoring wjth
products life time following Lomax distribution. The scale paeter of the Lomax failure time
distribution at constant levels is assumed to be a logrlifiegnction of the stress level. Maximum
likelihood estimators of the model parameters are deriBased on normal approximation to the
asymptotic distribution of maximum likelihood estimatorse tapproximate confidence intervals for
model parameters are obtained. The optimal times of amgrgress levels are discussed under| D-
optimality and A-optimality criteria. Such methods maizienthe determinant and the trace of Fisher's
information matrix for the model parameters. Analysis ki humerical data has been presented for
illustrative proposes.

Keywords: Adaptive type-1l progressive censorikdevel step stress accelerated life testing; Cumulative
exposure model; Optimum test plan; Lomax distribution.

Acronyms and Notation

ALT Accelerated life test.
APHC Adaptive type-Il progressive hybrid censoring.
CEM  Cumulative exposure model.
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Cls Confidence intervals

SSALT Step stress accelerated life test.
MLEs Maximum likelihood estimate
MSEs Mean square errors.

Vo Design stress.

V; High stress levels, where 1, ..., k.

Y Ideal total time.

k Number of stress levels.

N Number of test units (total sample size).

timeN Observed failure timgs= 1,2, ....,m .

m Predetermined number of failures.

B a Scale and shape parameters of Lomax distribution.

T Time of changing stress lebgl, toV;, 1 < j < k,7y <7, < < Ty

1 Introduction

In life testing and reliability studies, the experimenterymmeot always observe the failure times of
all components placed on the test. In such cases, dataned from such experiments are called
censored data. The most common censoring schemes ard §ime) censoring, where the life
testing experiment will be terminated at a predeteethirtime Y, and type-Il (failure) censoring,
where the life testing experiment will be terminated updrerth (@ is pre-fixed) failure.
However, the conventional type-l and type-Il censorirthesnes do not have the flexibility of
allowing removal of units at points other than the teahipoint of the experiment. To allow for
more flexibility in removing items from the test befotermination of experiment, more general
censoring approaches known as progressive censorimgsired.

According to [1], under progressive censoring, from altaf N units placed simultaneously on a
life test, only m are completely observed until failure. Then, given a a@@&mgy plan R =
(ry, ..,7y) at the timet.,,y of the first failure,, of the N —1 surviving units are randomly
withdrawn (or censored) from the life testing experiment.tie timet,.,,y Of the second failure,
r, of the N —2—m7 surviving units are randomly withdrawn (or censored)mfréhe life testing
experiment and so on. Finally, at the ting.,y of the m failure, all the remaining;, = N —
m— Y™ 'r; surviving units are removed from the life testing eipent. An integerm < N is
predetermined and the progressive type-Il censoring neehg, ...,7,) with >0 and Y%, 7 +
m = N is also specified.

Kundu and Joarder [2] proposed a censoring scheme calledll typegressive hybrid censoring
scheme, in which a life testing experiment with progwesstype-1l right censoring scheme
R=(r,.., 1) is terminated at a prefixed tim& > 0. However, the drawback of the type-ll
progressive hybrid censoring, similar to the convetiotype-I censoring (time censoring), is that
the effective sample size is random and it can turn oube a very small number (even equal to
zero) and therefore the standard statistical inferenoeedures may not be applicable or they will
have low efficiency. For the purpose of increasing #fficiency of statistical analysis as well as
saving the total test time, [3] introduced an adjustmenttyple-1l progressive hybrid censoring
scheme, so called adaptive type-Il progressive hybridsareng (APHC) scheme. Based on this
scheme the number of observed failures is fixed in advanced but the experimental time is
allowed to run over a prefixed tim& > 0. If t,..v <Y, the experiment stops at timg,.,..n
and it will have a wusual type-ll progressive censoring reehewith the prefixed progressive
censoring (ry, ..., 7). If temn <Y <tsi1mn, Where s+1<m, then the number of items
progressively removed from the experiment is adapted ufadiore by setting (5, = 0,754, =
0,..,Tm—y =0)andr, =N —m—Yi_ ;.
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There are several studies concerned with the estimatioblem based upon APHC, for example,
[4] introduced APHC for exponential and extreme values Uigidns respectively. Mahmoud
et al. [5] obtained the maximum likelihood estimates (MLEsf unknown parameters for
generalized Pareto distribution under APHC.

Accelerated life test (ALT) is often used for relidyil analysis. In order to obtain failures
quickly, test units are run at higher than usual stressdittons. The stress loading in an
accelerated life testing can be applied in various waymstant stress, step stress and random
stress. There are mainly two types of stress aatekkrlife testing (SSALT), a simple SSALT and
a multiple-step K—level) SSALT. In simple SSALT, a test unit is subject® successively higher
levels of stress. A test unit starts at a specifiadl #tress for a specified length of time. If it does
not fail, the stress is raised and held a specifiee.tifthe stress is thus increased step by step until
the test unit fails. Generally, all test units go tlytouthe same specified pattern of stress levels
and test times. The simplest step stress ALT usés tamo stress levels and it is called simple step
stress ALT. Nelson [6] originally proposed the simpl8ABT, in which only one change of stress
occurs with a cumulative exposure model (CEM) for typedd aype-Il censored data. Simple
SSALT has been investigated by several authors sufat), 48], [9], [10] and [11].

In k-level SSALT there are changes of stress more thane.omchamis and Higgins [12]
considered the optimum three steps SSALT for the expongntiidtributed type-I censored data.
Khamis [13] proposed an optimal m level SSALT design with pleltistress. Wu et al. [14]
consideredk-level SSALT with an equal duration time for progresefi type-l censored data for
exponential distribution. Wu et al. [15] have discusdedevel SSALT under type-l1 progressive
censoring with random removals for exponential groupeda.daBalakrishnan and Han [16]
consideredk-level SSALT with an equal duration time for progresefi type-l censored data for
exponential distribution. Recently, based on progressive -ltypgerval censoring, [17] discussed
k-level SSALT based on progressive type-l interval cengowhen the inspection times and the
proportions of removed units in the experiment are pre-fixed.

Lomax distribution is also known in literature as Pardistribution of type-Il. It is considered to
be useful for modeling and analyzing the life time data nedical and biological sciences,
engineering, etc. It also has been received the gteatsntion from theoretical and applied
statisticians primarily due to its use in reliability adifie testing studies see for example [18].
Also, [19] used Lomax distribution as an alternative te #xponential distribution when the data
are heavy tailed. In other hand, [20] used the Lomaxrildigion for applications in economics
and biological sciences. Lomax distribution is also usedSBALT, for example, [21] determined
the optimum test plan for simple SSALT using Lomax distidout Also, [22] considered simple
SSALT under type-l censoring using two-parameter Lomaxtriloligion. The probability density
function (pdf) and the cumulative distribution function (cdf)r foomax distribution respectively
are as follows:

f@® =ap*t+p)"@D, t>0,ap>0. )
F(t)=1-pB%t+p)"% t>0,ap>0, )

In the literature, there were no studies that had been rpwdo on the estimation and optimization
problems about the step stress accelerated lifengestiodels based on APHC scheme. Therefore,
in this article, an attempt had been made on designingpaimum k-level step stress accelerated
life tests for Lomax distribution based on APHC schembke Bcale parameter of the distribution
is assumed to be log linear function of the stresell@nd cumulative exposure model holds. The
model and assumptions are described in details in Secfpn I§ Section (3), the maximum

likelihood method is applied to obtain the point estinstof the unknown parameters. In Section
(4) the asymptotic Fisher information matrix and thenficence intervals of the model parameters
that based on the asymptotic normality of the MLEs dr@ioed In Section (5) the optimum test
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plan is presented using D optimality and an optimality. Tingmerical study is presented to
demonstrate the theoretical results in Section (6). Ficalhclusion is presented in Section (7).

2 Description of the M odel

This section describes the model and presents some mycesssumptions fork-level SSALT
with APHC. The model assumptions fdr-level SSALT for Lomax distribution based on APHC
will be described as follows:

l. There are multiple i-level) of high stressV;,j =1,2,...,k in the experiment and, is
the design stress that is the stress level under nowsal conditions, wherg, <V, <
e < Vk-

Il. A random sample ofV units are simultaneously placed on the test at a sWgsand run
until time ,. At the time t,,,.,yz Of the first failure,r, of the N —1 surviving units are
randomly withdrawn (or censored) from the life testing ezipent. At the timet,.,,.ny oOf
the second failure,r, of the N —2-—r surviving units are randomly withdrawn
(or censored) from the life testing experiment. Startaigtime 7;, the remaining surviving
units from the first step are put on the test under assWg whereV, > V,, these units
are run until time t,. Starting at timet,_;, the remaining surviving units from the
previous steps are put on the test under a stggsehereV, >V, _;.

M. The failure times t;,.n,i =12,...,m; are independent and identically distributed at
stress levelsV;,j =1,2,...,k.The life time of test unit is assumed to be Lomax
distribution; with pdf (1) and cdf (2).

V. Prior to the experiment, an integem < N is predetermined; wheren is the number of
failures and the progressive type-ll censoring scheffrg, ...,r;,) with r, >0 and
ym. rn+m=N is specified. At the timet,,, of the st* failure, , of the remaining
surviving units are randomly withdrawn (or censored) frbelife testing experiment.

V. For given timeY, allowing the experiment to run over tim& then there are two cases
when t,,...v 1S reached. Ift,..n <Y, the experiment stops at timg,,.y and it will
have a wusual type-ll progressive censoring scheme with thefixgd progressive
censoring (ry, ...,%,). Otherwise, once the experimental time passes timebut the
number of failures hasn’t reacheeh failures (tgp.nv <Y < tgp1.mny Wheres +1 < m),
then the number of items progressively removed from thperement is adapted upon
failure by setting (ry4; = 0,754, =0,..,7p_1 =0) and 7, =N-m—-Y_,7;. In
general, as long as the failures occur before tiifje the initially planned progressive
censoring scheme will be applied. After passing tiheno more items will be withdrawn
except for the time of thet" failure where all remaining surviving items are removed

VI. The Lomax scale parametef;,j=12,...,k of the underlying lifetime distribution
are assumed to be log linear function of stress levétg(B;)=a+ bV, j=

1,2,...,k;a,b > 0,where a,b are unknown parameters. The Lomax shape parameter
is independent of stress.

Therefore, at stress levéd; j = 1,2,..,k and according to the CEM, the cdf of the lifetime of a
test unit under k-level SSALT for Lomax distribution iseg by:

Fi(t;B1) 0<t<t,
G(t)z Fz(t_‘[lzl'ul;ﬂz) TlSt<T2,
Fk(t — Tk-1 + uk_1;ﬁk) Tk-1 <t <o
Where F(t—t_+u_yB) =1-B°[(t =1 +uy) + B8] is the cumulative

distribution function of the failure at stressé%,j = 1,2,..,k;u; is the solution of the equation
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Fiya(ui; Bjs1) = Fi(tj — 121 + uj_;8;).  Therefore, the general form ofw is u; =

Bgll (tj —jo1 +uj_y), note thatu, =0,7, =0 where 7; is the time of changing stress level.
J
Hence, the cumulative distribution function of a test unit eand&-level SSALT for Lomax

distribution is:

(1—ﬁ1“(t+ﬁ1)‘“ 0<t<ty,

oo = 4 1- ﬁza{[t -7, + (%T:l)] + ﬁz}_a T, <t<1T,

-a
+ ﬁk} Tk-1 <t<oo

(1 - B” ”t —Tg-1t [% (Thm1 = T2 + uk—z)]

Thus the associated pdf of a test unit is

a’ﬁla(t + ﬁ1)_(a+1) 0<t<1y,
—(a+1)

aff, _ B2 <t<t,
oo - af, {[t T +(ﬁ1T)]S+ﬁ} T.<t<7

—(a+1)
+ Bk Tk-1 <t<oo
k-1

ap” {[t —Tg-1 T [[:i (Tp-1 = Tp—2 + uk—z)]

3 Maximum Likelihood Estimators Based on APHC

Let tipni=12,...,m, be the m completely observed (ordered) lifetimes from Lomax
distribution with censoring schemdr,r,..1,) where m is the predetermined number of
failures, s is the number of failures observed before tilfieand k is the number of stress levels.
The likelihood function fork-level SSALT with APHC data is considered to have tlodoWing
form: (See [3])

k m s
T[] [Tt |- s,
j=1Lli=1 i=1

Wheretij* = ti:m:N - Tj—l + u]'_l fori = 1, ..m ,j = 1, ,kandt:n = tm:m:N — Tg-1 + Up_1-

The likelihood function for the two-parameter Lomax ittion in k-level SSALT based on an
adaptive type-ll progressive censoring data takesollening form:

k m s
| x H |:11:1[ aﬂf-z(tij* + ﬁj)_(a+1):| [B[ﬁjq(tij* + ﬁj)_a]rl] [ﬁ]?(t:n + ﬁk)_a]N_m_2?=1ri_ (4)

The maximum likelihood estimators of the parameters feelihood function (4) are obtained by
maximizing the logarithm of the likelihood function will legpressed in the following form:

k m k s

K
logl « mkloga + maz logB; —(a+1) Z log(tij* + [)’j) + azz 7 log(ﬁj)
j=1 1

j=1i=1

j=1i=
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azk:i rlog(t;;” + B;) — a( zs: ri) log(tm + Bi)

j=1i= i=1
a (N —-m— Z ri> log(By)- )
i=1

Applying the log linear function relationshiplog(ﬁj) =a+bV; then B; = e and the
logarithm of the likelihood function (5) will be:

k

k k m s
logl « mkloga + ma| ka + Z bV; | = (a + l)zz log(tij* + e + azz r(a+ ij)
j=1 j=1i=1

j=1i=1

S
—a Z Z rlog(ty;” +e®*i) —a (N ri> log(t;, + e*+PVk)

j=1i= i=1

a(N—m —Zri> (a + bVy). (6)

i=1

The first partial derivatives of the log-likelihood fiiom (6) with respect to the parameteasb
anda respectively will be as follows:

dlogl L
L =Tk @) )
7a =mak — (¢ + 1) o

j=1i=1

a+bV] a+bV]

k) - aZZ S

j=1i=

ij

N

S ea+ka
o (v o+ o=

Kl lOgl m ‘/jea+bV] k S k S ,rl‘/]ea+bVJ
ab zm“zvf_(““)zzt *+ea+bV1+“Z T‘VJ_aZ t:..* 4 e®thV;
j=1 j=1i=1 Y j=11i=1 j=1i=1 Y
S Vkea+ka S
—a N—m—Zri m-ﬁ-d N—m-— T Vk! (8)
i=1 i=1

and

dlogl k
B(Zf m7+m ka+ZbV +ZZTL(a+bV) ZZlog(t +eathvi)

Jj=1i= j=1i=

k s
- Z Z rlog(t;;" + e®*P"1)

j=1i=1
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N

- (N -m- Z ri> log(ty, +e®*PVk) + (N —m-— Z n) (a+bV), )

i=1 i=1

k k m
a= mk/ -m| ka + Z by; Z Z (a + bV) + Z log(ti,’* + ea+bvj)
j=1 j=1i= =1i=1
ZZ?‘L log(t;;" + e®*?"4)
j=11i=

N

+ <N -m- z rl-) log(t;, + €2+PVi) — (N -m-— Z ri> (a+bV)|.

i=1 i=1

It is observed that the maximum likelihood estimatks not exist in closed form and the nonlinear
Equations (7)-(8) should be solved numerically with resfmettte unknown parameters.

4 Asymptotic Fisher Information Matrix

The asymptotic Fisher information matrik of the maximum likelihood estimator of the model
parameters can be approximated by numerically inverting #symptotic Fisher-information
matrix. It is composed of the negative second and mixed apaderivatives of the natural
logarithm of the likelihood function evaluated at the MLE. can be given according to the
following matrix:

[0%logl 0%logl 0%logl]
da? dadb dada
fin fiz fis
0%logl 0%logl 0%logl PP
= - = - lL(ab,a),
dbda  0b>  0bda ;21 ;22 ;23 (@.5.a)
9%logl 8%logl 92%logl sz U
dada  dadb da?

o)

where, the elements of the asymptotic Fisher informatioatrix f,, fis, fi1, fo2, fo3 and f;; are
obtained as follows:

k
. (tU + ea+bVJ)ea+bVJV a+ij S tij*Vjea+ij
fiz=—(a+ )Zz . a+bV}) — azzn—(t 1y a+ij)2'
j=1i= (t +e =i Gy te
t V ea+ka
—a|N—m-— ZTL @, +ea+ka)2 (10)
. k. m ea+ij . s k s riea+ij N s ea+bvk
=M _ZZt..*+ea+ij+ Zri_z' t--*+ea+bvf— —M—Zri t + eatbVi
j=1i=1 Y i=1 j=11i=1 Y i=
s
+<N—m— ri>, a1
i=1
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k s
f _ (a N 1)22 a+bV] az (t *ea+bVJ)
1m= (t” + ea+bVJ) .y ea+bV])

j=1i=1 j=1i=

tr a+ka

—0!(1\/ m-— Zﬂ) (t,, + eatbvi)2’ (12)

k

m 2 k 2
t: (V. ea+ij t: (V. ea+ij
fzzz—(a"rl) ZL—QZZ‘GL-Z

N\ 2
S (b + i) S (b + e™Y)
m(V )2 a+bVy
4 (N m— Z ) (t* + ea+ka)2 (13)
£ iv i m Vjea+ij +i S ) i s TLV]e‘H'bV]
=m — . _
23 J tlj* + ea+ij % Y] tU* + ea+bV]
j=1 j=1i=1 =i o
2 s
Pt 4 eatbVi i | Vi
=1 i=1
and
—mk

faz = TR as)

The determinant of the asymptotic Fisher information rimatan be derived from the following
equation:

|F| = fi1(f22f33 = f23f32) — fi2(f21f33 — fasfs1) + fi3(fa1fs2 — faaf31): (16)

In addition, it can be said that the maximum likelihood nestors have an asymptotic variance-
covariance matrix defined by the inverse Bf The approximate confidence intervals (Cls) of the
parameters are derived based on the asymptotic ditrnbuof the maximum likelihood

estimators for the unknown parameters. The asymptdiistribution of 2E®  can be
var(8)
approximated by a standard normal distribution, wherer(@) is the asymptotic variance.
Therefore, the two-sided approximafel00 percent confidence limits fog ( lower bound (LB),

upper bound (UB) can be obtained, such thaB(g) = Zy/2 /var(e) UB@® =6 +
Zy /var(é) werez, , is the100(y/2)% standard normal percentiledh= (a,&,b).

5 Optimum Test Plan

The main objective of this section is to determine dpgmal test plan which leads to the most accurate
estimate. Optimum time of changing stress lewels,j = 2,..,k will be introduced. Based on D-
optimality criterion (which is based on maximizing the detaamt of the Fisher information matrix of the
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maximum likelihood estimators for the model parametettsd, optimum time of changing stress level
Tj-1,j = 2,...,k can be obtained by solving the following equation:

o|F|
6‘[]-_1

=0,j=2,..,k (17)

where |13| is the determinant of the asymptotic Fisher informatioatrix. In general, the first
partial derivative for the determinant of the asymptbtgher information matrix is as follows:

|F|, = fllrr(f22f33 - f23f32) + fll(f22f33 _f23f32), - f12’(f21f33 - f23f31) _f12(f21f33 _f23f31),
+f13 (f21f32 _f22f31) + f13(f21f32 _f22f31),l

I = fus Gafss = Fastsa) + fur(foa Fos + foafss = fos foz = Fasfsn) = fuz (aafas = foafa)
_f12(f2’1f33 +f21f3’3 _f2’3 f31 _f23f3’1) +f13 (f21f32 _f22f31)
+fi3(fo1 faz + forfaz = foz fa1 = fazfa1)- (18)

To obtain the optimum time of changing stress levels, &mua18) will be derived by taking the
first partial derivatives of Equations from (10) to (18)ith respect to 7;_y,j =2,..,k.
Furthermore, some other optimality criteria can alsoused in this content, such as maximization
of the trace of the asymptotic Fisher information matfithe MLEs (A optimality). (See [23]).

6 Numerical Illustration

To obtain the optimum test plan and the maximum likelihostimators for k-level SSALT with
an adaptive type-ll progressive hybrid censoring, randonsamples of sizes
N = 30,50,70 and 100are generated from two-parameter Lomax distribution. TM8Es for the
MLEs are calculated. In addition, the optimum times f&dranging stress levels are calculated by
using two optimality schemes (A and D optimality). Funthere, following [24], three
progressive censoring schemes are considered awsoll

Scheme 1r; = -+ =1,y =0andn, = N —m.
Scheme 2r, =+ =r,_;=1andrn, =N-2m+ 1.
Scheme 3, = -+ =1p,_; =71, = 2

m

For each progressive scheme, the simulation procedwuesdescribed according to the following
algorithm:

i. The value of the shape parameter of Lomax lifetime areleceed as =
(0.2,0.3,0.4). The stress values are selected 4 =0.5, V, =075, V3=1 and V, =2
for each stress levelk, where (k = 2,3,4),then caIcuIateﬁj=e“+”"ffora=0.5, b=
0.5,Y = 1.5 andm = 10.

ii. Generate random samples of sizedl =30,50,70and 100 from uniform (0,1)
distribution and then obtain the order statis(i¢sy ..., Uy.y)-

iii. For a given value of the first time of changing stresseller; =1, if 0< Uy <
F(ty,B,) whereF(ty;3,) is defined in Equation (2) andi=1,..,N, obtainT=

1

Bi(1 = Upp)@ — By
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Vi.

Vii.

viii.

For a given value of the second time of changing stresel lt, =2, if F(ry,(;) <

Upn < F(1y — 71 + g, f2) obtain,T = B, (1 — Ui:N)71 —Br—us + 14

For a given value of the third time of changing strdssel 73 =4, if F(r,—1; +
-1

Uy, B2) < Upy S F(13 — T3 + Uy, f3) obtainT = B3(1 — Upy) @ — fs — up + 7.

For a given value of the fourth time of changing strdesel t, =8, if F(t3 — 1, +
-1

Uy, B3) < Upy < F(t4 — T3 +us, ) Obtain,T = (1 — Upy)@ — By — uz + 15.

Based on different values oi,Y,7;,j =1,2,3,4and for given values of the parameters

a,b and a«, MLEs for the unknown parameters are calculated nwallri Equations from

(7) to (9).

The MSEs for MLEs of the unknown parameters are obtaineldo, Athe approximate

confidence intervals of the parameters are obtaineorisg95% confidence level.

The optimum times of changing stress levels using the different optimality schemes

for the three different progressive schemes.

The previous steps are repeated for 100 replications.

The numerical results based dnlevel SSALT for Lomax distribution under APHC data with
k = 2,3,and 4 are summarized in Tables 1-6.

From Tables 1-3, the following conclusions can be observed:

VI.

VIL.

In all cases, based on the three selected progressigaBored schemesy;(=0=r,_, =0,
m=N-m), (n="=r,1=1andrn, =N-2m+1) and(r, = =1, =1, =N_Tm),

the biases and the MSEs®have the smallest values for all different values ofpdm@meters and
for each value ok.

In almost all cases, for different values of the patems and based on the three progressively
censored schemes, the values of the biases and the MSEsdexsample size increases for each
value ofk.

In all cases, for different values of the parameters asddban the three progressively censored
plans, it is observed thathas the shortest confidence intervals.

In some cases, it is noticed that the asymptotic Cis ahdb can take negative values especially
for N = 70 and100.

The values of the MSEs @f are the smallest for the third progressively censscééme for almost
all different values of the parameter and for each vdlée o

The MSEs ofi have the smallest values for the first and the secorgtgssively censored plan,
for almost all different values of the parameter ancefwh value ok.

The MSEs of@ have the smallest values fadncreases for almost all different values of the
parameter and for the three selected progressively cerstreches.

From Tables 4-6, the following conclusion can be observed:

Based on the three progressively censoring plan, the optirtiomas of changing stress levels
using A optimality have greater values than D optimality almost all different values of the
parameters and for each valugcof
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Table 1. The biases, the M SEs and asymptotic confidence intervals of the MLEs of a, b and a under various censoring schemes of the k-level SSALT with APHC
schemefor a =0.5,b=0.5,a=0.2andY = 1.5when k = (2,3,4)

N Scheme Bias M SE Confidence Interval
a b a a b a a b a
k=2

1 -0.32(C -0.48¢ -0.077 0.10z 0.23¢ 0.007% (0.175,0.18¢ (0.015,0.01¢ (0.111,0.13¢
30 2 -0.334 -0.485 -0.063 0.122 0.235 0.005 (0.1293%).2 (0.014,0.015) (0.123,0.152)

3 -0.320 -0.485 -0.049 0.103 0.235 0.004 (0.17310.1 (0.015,0.016) (0.133,0.168)

1 -0.317 -0.485 -0.086 0.100 0.235 0.008 (0.188,0. (0.015,0.016) (0.106,0.122)
50 2 -0.315 -0.485 -0.071 0.100 0.235 0.006 (00.289) (0.015,0.016) (0.119,0.138)

3 -0.32¢ -0.48¢ -0.057 0.10¢ 0.23¢ 0.00¢ (0.162,0.18¢ (0.015,0.01¢ (0.132,0.15¢

1 -0.323 -0.484 -0.100 0.106 0.234 0.011 (0.1680.1 (0.015,0.017) (0.093,0.107)
70 2 -0.328 -0.484 -0.085 0.111 0.234 0.008 (0.158%).1 (0.016,0.017) (0.107,0.123)

3 -0.349 -0.484 -0.070 0.135 0.234 0.006 (0.12729.1 (0.015,0.017) (0.120,0.139)

1 -0.343 -0.483 -0.103 0.126 0.233 0.011 (0.139%).1 (0.016,0.018) (0.092,0.102)
100 2 -0.337 -0.48¢ -0.10(¢ 0.12: 0.232 0.011 (0.145,0.182 (0.016,0.01¢ (0.095,0.10%

3 -0.344 -0.483 -0.088 0.135 0.234 0.008 (0.13870).1 (0.016,0.017) (0.105,0.118)

k=3

1 -0.326 -0.485 -0.059 0.110 0.235 0.004 (0.1526%). (0.015,0.016) (0.127,0.155)
30 2 -0.32¢ -0.48¢ -0.03¢ 0.107 0.23¢ 0.00: (0.161,0.18¢ (0.015,0.01¢ (0.149,0.182

3 -0.352 -0.485 -0.030 0.140 0.235 0.003 (0.10923). (0.014,0.016) (0.152,0.187)

1 -0.331 -0.48¢ -0.07(¢ 0.112 0.23¢ 0.00¢ (0.155,0.18¢ (0.015,0.017% (0.121,0.14C
50 2 -0.325 -0.484 -0.050 0.107 0.234 0.003 (0L&38B) (0.015,0.017) (0.140,0.160)

3 -0.347 -0.484 -0.035 0.131 0.235 0.003 (0.128M. (0.015,0.016) (0.152,0.178)

1 -0.33( -0.48¢ -0.08¢ 0.11¢ 0.23¢ 0.00¢ (0.152,0.18¢ (0.015,0.017 (0.108,0.122
70 2 -0.337 -0.486 -0.070 0.119 0.237 0.005 (0@.a8p) (0.008,0.02) (0.123,0.137)

3 -0.581 -0.48( -0.02:2 0.36¢ 0.2¢ 0.001 (-0.122-0.04 (0.018,0.022 (0.172,0.18¢

1 -0.364 -0.482 -0.090 0.154 0.232 0.008 (0.1080. (0.017,0.019) (0.105,0.115)
100 2 -0.359 -0.482 -0.087 0.151 0.233 0.008 (QL189) (0.017,0.018) (0.108,0.119)

3 -0.361 -0.485 -0.068 0.144 0.236 0.005 (0.1163). (0.009,0.021) (0.126,0.137)
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N Scheme Bias M SE Confidence Interval
a b a a b a a b a
k=4

1 -0.328 -0.485 -0.047 0.110 0.235 0.003 (0.15389). (0.015,0.016) (0.138,0.168)
30 2 -0.33¢ -0.48¢ -0.01¢ 0.11: 0.23¢ 0.00z (0.153,0.177 (0.015,0.01¢ (0.167,0.202

3 -0.440 -0.484 -0.008 0.123 0.234 0.003 (0.1322). (0.015,0.017) (0.187,0.229)

1 -0.340 -0.484 -0.056 0.121 0.234 0.004 (0.1209). (0.015,0.018) (0.134,0.154)
50 2 -0.347 -0.48¢ -0.03( 0.12¢ 0.23¢ 0.002 (0.136,0.17C (0.015,0.01¢ (0.156,0.18¢

3 -0.440 -0.482 -0.008 0.137 0.233 0.002 (0.113%). (0.016,0.019) (0.194,0.223)

1 -0.33( -0.48¢ -0.06¢ 0.11: 0.23¢ 0.00& (0.155,0.18¢ (0.015,0.017 (0.127,0.14<
70 2 -0.350 -0.482 -0.052 0.128 0.233 0.004 (0L.388) (0.016,0.019) (0.138,0.157)

3 -0.370 -0.481 -0.016 0.143 0.232 0.003 (0.112Q%). (0.017,0.020) (0.170,0.198)

1 -0.367 -0.48: -0.07¢ 0.14¢ 0.232 0.00¢ (0.109,0.15¢ (0.017,0.01¢ (0.120,0.13C
100 2 -0.364 -0.482 -0.071 0.147 0.232 0.005 (Qa.180) (0.017,0.019) (0.123,0.134)

3 -0.34( -0.48( -0.04¢ 0.157 0.231 0.00: (0.098,0.141 (0.018,0.021 (0.146,0.162

Table 2. The biases, the M SEs and asymptotic confidence intervals of the MLEs of a, b and a under various censoring schemes of the k-level SSALT with APHC
schemefor a=0.5,b=0.5,a=0.3andY = 1.5when k = (2,3,4)

N Scheme Bias M SE Confidence Interval
a b a a b @ a b a
k=2

1 -0.320 -0.485 -0.157 0.102 0.235 0.027 (0.17834).1 (0.015,0.016) (0.127,0.158)
30 2 -0.360 -0.485 -0.113 0.147 0.235 0.015 (0.098,0.1 (0.014,0.016) (0.171,0.203)

3 -0.32¢ -0.48¢ -0.147% 0.10¢ 0.23¢ 0.02¢ (0.169,0.182 (0.015,0.01¢ (0.135,0.17C

1 -0.341 -0.484 -0.145 0.123 0.234 0.022 (0.128D. (0.015,0.017) (0.145,0.165)
50 2 -0.35¢ -0.48¢ -0.12¢ 0.13¢ 0.23¢ 0.017 (0.120,0.16¢ (0.016,0.01¢ (0.164,0.184

3 -0.380 -0.485 -0.111 0.159 0.235 0.014 (0.0864). (0.010,0.020) (0.178,0.200)

1 -0.372 -0.475 -0.170 0.210 0.231 0.030 (0.069D.1 (0.008,0.042) (0.123,0.136)
70 2 -0.342 -0.483 -0.164 0.125 0.233 0.028 (0.137®).1 (0.016,0.018) (0.129,0.143)

3 -0.380 -0.483 -0.150 0.168 0.233 0.024 (0.0858).1 (0.016,0.019) (0.142,0.158)

12



Hassan et al.; BIMCS, 13(2): 1-19, 2016; ArticleBiIMCS.21964

N Scheme Bias M SE Confidence Interval
a b a a b a a b a

1 -0.40¢ -0.48(C -0.18(C 0.18¢ 0.23( 0.03: (0.066,0.12¢ (0.019,0.021 (0.115,0.12¢
100 2 -0.434 -0.472 -0.182 0.258 0.228 0.034 (0.0120.1 (0.014,0.041) (0.113,0.124)

3 -0.430 -0.482 -0.156 0.223 0.233 0.025 (0.0328%).1 (0.014,0.022) (0.139,0.149)

k =

1 -0.33¢ -0.48¢ -0.107 0.11¢ 0.23¢ 0.01: (0.143,0.18¢ (0.015,0.01¢ (0.178,0.20¢
30 2 -0.325 -0.485 -0.134 0.107 0.235 0.020 (0L&BI) (0.015,0.016) (0.149,0.182)

3 -0.455 -0.490 -0.094 0.256 0.241 0.010 (-0.02%) (-0.003,0.02) (0.194,0.219)

1 -0.331 -0.48¢ -0.17¢ 0.112 0.23¢ 0.03( (0.155,0.18¢ (0.015,0.017% (0.121,0.14C
50 2 -0.383 -0.483 -0.103 0.159 0.234 0.012 (Qmaas) (0.011,0.022) (0.187,0.207)

3 -0.48¢ -0.48: -0.10z2 0.28: 0.23¢ 0.01: (-0.047,0.0€ (0.016,0.02C (0.186,0.20¢

1 -0.372 -0.482 -0.152 0.154 0.233 0.024 (0.029%). (0.016,0.019) (0.141,0.155)
70 2 -0.370 -0.482 -0.146 0.149 0.232 0.022 (0@L.@56) (0.017,0.02) (0.147,0.161)

3 -0.426 -0.482 -0.127 0.209 0.233 0.017 (0.035.9). (0.016,0.020) (0.165,0.181)

1 -0.476 -0.478 -0.176 0.270 0.228 0.032 (-0.00B)0 (0.021,0.024) (0.118,0.129)
10C 2 -0.501 -0.47¢ -0.17¢ 0.29¢ 0.22¢ 0.03: (-0.044,0.04 (0.021,0.02¢ (0.115,0.127

3 -0.489 -0.480 -0.146 0.270 0.231 0.022 (-0.024)0 (0.015,0.026) (0.150,0.159)

k=4

1 -0.334 -0.485 -0.138 0.115 0.235 0.021 (0.1486). (0.015,0.016) (0.146,0.178)
30 2 -0.37¢ -0.48: -0.05¢ 0.15C 0.23¢ 0.00¢ (0.091,0.152 (0.015,0.01¢ (0.222,0.261

3 -0.395 -0.481 -0.040 0.164 0.231 0.005 (0.0738D. (0.017,0.021) (0.237,0.283)

1 -0.37: -0.487 -0.107 0.151 0.23¢ 0.01: (0.097,0.15¢ (0.002,0.02¢ (0.181,0.204
50 2 -0.377 -0.482 -0.106 0.154 0.232 0.013 (Qmas2) (0.016,0.020) (0.181,0.207)

3 -0.440 -0.480 -0.086 0.238 0.231 0.009 (0.02G6D. (0.018,0.021) (0.200,0.228)

1 -0.40¢ -0.47¢ -0.12¢ 0.177 0.23( 0.01¢ (0.069,0.12: (0.019,0.02z (0.164,0.17¢
70 2 -0.392 -0.482 -0.129 0.166 0.232 0.018 (0ma34) (0.016,0.021) (0.163,0.180)

3 -0.44(C -0.47¢ -0.09¢ 0.21C 0.22¢ 0.011 (0.030,0.08¢ (0.020,0.02z (0.193,0.21%

1 -0.460 -0.477 -0.156 0.231 0.228 0.025 (0.0088). (0.021,0.024) (0.140,0.149)
100 2 -0.472 -0.475 -0.151 0.239 0.226 0.023 (QmO33) (0.024,0.026) (0.145,0.153)

3 -0.431 -0.478 -0.123 0.200 0.228 0.017 (0.0852). (0.021,0.024) (0.169,0.184)
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Table 3.The biases, the M SEs and asymptotic confidence intervals of the MLEs of a, b and a under various censoring schemes of the k-level SSALT with APHC
schemefor a =0.5,b =0.5,a =0.4andY = 1.5when k = (2,3,4)

N Scheme Bias M SE Confidence Interval
a b a a b a a b a
k=2
1 -0.38¢ -0.47¢ -0.19¢ 0.22( 0.23¢ 0.041 (0.019,0.21C (--009,0.05¢ (0.186,0.217%
30 2 -0.422 -0.485 -0.184 0.219 0.235 0.035 (0.0050.1 (0.013,0.016) (0.202,0.230)
3 -0.324 -0.485 -0.246 0.106 0.235 0.063 (0.163%).1 (0.015,0.016) (0.136,0.171)
1 -0.42¢ -0.47: -0.22¢ 0.25¢ 0.232 0.052 (-0.003,0.14 (0.001,0.05¢ (0.165,0.18¢
50 2 -0.382 -0.482 -0.212 0.158 0.232 0.046 (0mazg) (0.017,0.020) (0.178,0.198)
3 -0.403 -0.483 -0.201 0.182 0.233 0.042 (0.083%). (0.015,0.018) (0.189,0.209)
1 -0.41¢ -0.47: -0.252 0.227 0.22¢ 0.06¢ (0.028,0.13¢ (0.0112,0.042 (0.142,0.152
2 -0.402 -0.480 -0.245 0.176 0.231 0.060 (0.076M.1 (0.018,0.021) (0.150,0.160)
3 -0.479 -0.483 -0.236 0.277 0.234 0.056 (-0.032.0 (0.012,0.021) (0.157,0.172)
1 -0.54( -0.46¢ -0.28¢ 0.347 0.22¢ 0.08: (-0.08,0.00& (0.019,0.04- (0.109,0.12(
100 2 -0.554 -0.475 -0.289 0.337 0.225 0.084 (-0.08820 (0.024,0.026) (0.106,0.116)
3 -0.540 -0.480 -0.250 0.329 0.230 0.063 (-0.0@0D) (0.016,0.025) (0.146,0.154)
=3
1 -0.41¢ -0.48¢ -0.18¢ 0.21: 0.23¢ 0.03¢ (0.013,0.15¢ (0.014,0.01¢ (0.201,0.22¢
30 2 -0.341 -0.485 -0.213 0.123 0.235 0.213 (00.288) (0.015,0.016) (0.169,0.188)
3 -0.552 -0.496 -0.171 0.371 0.254 0.031 (-0.1.04)0 (-0.02,0.035) (0.214,0.243)
1 -0.331 -0.48: -0.21: 0.261 0.23¢ 0.043 (-0.02,0.092 (0.017,0.02C (0.176,0.19¢
50 2 -0.452 -0.481 -0.202 0.227 0.232 0.042 (Omos) (0.014,0.024) (0.189,0.208)
3 -0.347 -0.484 -0.209 0.318 0.234 0.045 (-0.038) (0.013,0.019) (0.180,0.203)
1 -0.44( -0.48( -0.23¢ 0.21¢ 0.23( 0.057 (0.025,0.094 (0.018,0.02z (0.157,0.16¢
70 2 -0.465 -0.479 -0.235 0.247 0.230 0.056 (-0m0%) (0.019,0.023) (0.158,0.171)
3 -0.555 -0.483 -0.221 0.337 0.234 0.049 (-0.001B) (0.009,0.025) (0.174,0.185)
1 -0.54¢ -0.47¢ -0.29¢ 0.457 0.22¢ 0.087 (-0.184-0.10 (0.023,0.02¢ (0.100,0.111
100 2 -0.551 -0.475 -0.290 0.469 0.225 0.085 (5601208) (0.024,0.026) (0.104,0.116)
3 -0.489 -0.480 -0.246 0.270 0.231 0.061 (-0.025) (0.015,0.026) (0.150,0.159)
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k=4
1 -0.337 -0.48¢ -0.23¢ 0.117 0.23¢ 0.057 (0.142,0.18¢ (0.014,0.017 (0.149,0.187
30 2 -0.425 -0.479 -0.119 0.187 0.230 0.017 (0m402) (0.018,0.023) (0.262,0.300)
3 -0.32¢ -0.48¢ -0.144 0.10¢ 0.23¢ 0.021 (0.169,0.17< (0.015,0.01€ (0.253,0.25¢
1 -0.45¢ -0.47¢ -0.182 0.221 0.22¢ 0.03E (0.013,0.082 (0.020,0.022 (0.207,0.23C
50 2 -0.463 -0.478 -0.174 0.231 0.229 0.032 (0OMOT1) (0.020,0.024) (0.214,0.239)
3 -0.44( -0.47¢ -0.16¢ 0.29¢ 0.22¢ 0.03( (-0.066,0.02 (0.020,0.02¢ (0.219,0.25:
1 -0.49( -0.47¢ -0.21¢ 0.25¢ 0.227 0.04¢ (-0.01,0.037 (0.022,0.02€ (0.176,0.18¢
70 2 -0.505 -0.475 -0.212 0.266 0.226 0.046 (-QmPQ) (0.023,0.026) (0.181,0.194)
3 -0.44( -0.47¢ -0.17¢ 0.29¢ 0.22¢ 0.03: (-0.06-0.006 (0.023,0.02¢ (0.216,0.24<
1 -0.557 -0.47¢ -0.257 0.32z 0.22¢ 0.067 (-0.079-0.03 (0.026,0.02¢ (0.137,0.14¢
100 2 -0.566 -0.473 -0.245 0.333 0.224 0.061 (-0804) (0.026,0.028) (0.148,0.162)
3 -0.56( -0.47¢ -0.197 0.32: 0.22¢ 0.04: (-0.07-0.042 (0.025,0.02¢ (0.192,0.21¢

Table 4.0ptimum time of changing stress level under various censoring schemes of the k-level SSALT with APHC schemefor a =0.5,b = 0.5, = 0.2 and

when k = (2,3,4)

N Scheme T4
k=2 k=3 k=4
A Optimality D Optimality A Optimality D Optimality A Optimality D Optimality
1 1.590 0.173 1.596 0.510 0.770 0.526
30 2 1.507 0.67¢ 0.56% 0.25( 0.93- 0.481
3 1.176 0.125 1.169 0.117 0.515 0.275
1 0.741 1.447 1.297 0.154 0.473 0.738
50 2 1.202 0.635 1.124 0.264 0.400 0.625
3 1.579 0.865 1.263 0.147 0.210 0.106
1 0.57: 2.51C 0.38: 0.33¢ 0.347 0.19(
70 2 1.079 0.150 1.120 0.350 0.884 0.117
3 0.92¢ 1.25¢ 0.931 0.53¢ 0.81: 0.24(
1 0.502 0.766 0.315 0.310 0.323 0.357
100 2 0.472 0.646 0.522 0.306 0.464 0.310
3 1.35¢ 0.14( 1.257 0.661 0.40z2 0.207
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Table 5. Optimum time of changing stresslevel under various censoring schemes of the k-level SSALT with APHC schemefor a = 0.5,b = 0.5, = 0.3 and
when k = (2,3,4)

N Scheme T4
k=2 k=3 k=4
A Optimality D Optimality A Optimality D Optimality A Optimality D Optimality
1 1.402 0.237 1.281 0.346 0.637 0.526
30 2 1.334 0.447 0.856 0.638 0.899 0.402
3 1.013 0.826 1.298 0.422 0.584 0.113
1 0.533 0.461 1.176 0.680 0.353 0.509
50 2 1.00¢ 0.59¢ 0.951 0.29: 0.312 0.25(
3 1.244 0.279 1.335 0.740 0.230 0.278
1 0.49: 1.10z 0.321 0.122 0.31¢ 0.56:
70 2 1.084 1.763 0.408 0.194 0.565 0.250
3 0.562 1.217 1.227 2.035 0.626 0.770
1 0.37( 1.157 0.367 0.731 0.36¢ 0.17:
100 2 0.362 0.250 0.432 0.250 0.340 0.153
3 0.36¢ 1.62¢ 0.557 0.172 0.16¢ 0.364
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Table 6. Optimum time of changing stresslevel under various censoring schemes of the k-level
SSALT testing with APHC schemefor a=0.5, b=0.5, ¢ = 0.4 and when k = (2,3,4)

N  Scheme T
k=2 k=3 k=4
A D A D A D
optimality  optimality  optimality optimality optimality optimality
1 1.549 0.284 0.435 0.304 0.568 0.526
30 2 1.384 0.451 0.842 0.214 0.216 0.463
3 1.395 1.403 1.267 0.112 0.437 0.213
1 0.48¢ 0.38¢ 0.951 0.181 0.57( 0.447
50 2 0.971 1.161 0.790 0.872 0.299 0.476
3 1.40¢ 0.43i 1.471 0.87¢ 0.221 0.52(
1 0.418 2.719 0.338 0.270 0.392 0.122
70 2 1.049 1.575 0.744 0.770 0.184 0.500
3 0.61¢ 0.25¢ 0.59¢ 0.67¢ 0.157 0.367
1 0.303 1.036 0.360 0.170 0.316 0.250
100 2 0.307 0.37¢ 0.49¢ 0.48( 0.32¢ 0.25(
3 0.529 2.007 0.429 0.340 0.387 0.595
7 Conclusion

This paper concerns with the estimation problem aptimal test plans fork-level SSALT based
on APHC data. A Lomax failure time distribution kitscale parameter which is a log-linear
function of the stress and a cumulative exposuredemncare assumed. The performance of the
MLEs is evaluated using the mean square error ricnitethrough numerical data. Asymptotic Cls
have been established for the model parametersadtition, the optimum times of changing stress
levels are computed using A optimality and D optitpaschemes. The calculations have been
worked out based on different sample sizes ane thetected progressive censored schemes.

In the numerical study, it is observed that the MISEave its smallest values &s increases for
almost all values of the parameters. In generalthé# experimental time is not a major concern,
then consideringk = 4 is recommended in order to obtain better estimaitesmodel parameters.
The decision problem of obtaining appropriate numbef failures under adaptive type-ll
progressive hybrid censored life testing experimeah save the total test time and increase the
efficiency of statistical analysis. In this study, is noted that the optimum number of changing
stress levels is not the same but has relativelsecvalues for the two optimality criteria.
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