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1. Introduction

K amps [1] introduced the concept of generalized order statistics (gos) as follows: Let us note n ∈ N,
k ≥ 1, and m̃ = (m1, m2, . . . , mn−1) ∈ Rn−1, 1 ≤ r ≤ n− 1, such that

γr = k + n− r +
n−1

∑
j=r

mj > 0 for 1 ≤ r ≤ n− 1.

The random variables X(1, n, m̃, k), X(2, n, m̃, k), . . . , X(n, n, m̃, k) are said to be gos from a continuous
population with cumulative distribution function (cd f ) F(x) and probability distribution function (pd f ) f (x)
if their joint pd f is of the form

k

(
n−1

∏
j=1

γj

)(
n−1

∏
i=1

[
F̄(xi)

]mi f (xi)

)[
F̄(xn)

]k−1 f (xn), (1)

defined on the cone F−1(0+) < x1 ≤ x2 ≤ . . . ≤ xn < F−1(1) of Rn, where F̄(x) = 1− F(x).
The model of gos contains special cases such as ordinary order statistics (γi = n − i + 1; i =

1, 2, . . . , n i.e. m1 = m2 = · · · = mn−1 = 0, k = 1), k-th record values (γi = k i.e., m1 = m2 = · · · =
mn−1 = −1, k ∈ N), sequential order statistics (γi = (n − i + 1)αi; α1, α2, . . . , αn > 0), order statistics with
non-integer sample size (γi = α − i + 1; α > 0), Pfeifer’s record values (γi = βi; β1, β2, . . . , βn > 0) and
progressive type II censored order statistics (γr = n− r + 1+ ∑l

i=r mi, 1 ≤ r ≤ l ≤ n, mi ∈ N, k = mn + 1), see
[1–3].

Here we shall obtain the results for γi 6= γj and then deduce the results for γi = γj (m1 = m2 = · · · =
mn−1 = m 6= −1).

Therefore, we will consider two cases:
Case I: γi = γj (m1 = m2 = · · · = mn−1 = m 6= −1) [1].
Case II: γi 6= γj, i 6= j i, j = 1, 2, . . . , n− 1 [2].
Case I: The pd f of r−th gos X(r, n, m, k), is given by

fX(r,n,m,k)(x) =
Cr−1

(r− 1)!
[F̄(x)]γr−1 f (x) gr−1

m (F(x)), (2)
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and the joint pd f of X(r, n, m, k) and X(s, n, m, k), 1 ≤ r < s ≤ n, is given by

fX(r,n,m,k),X(s,n,m,k)(x, y) =
Cs−1

(r− 1)! (s− r− 1)!
[F̄(x)]m gr−1

m (F(x)) (3)

× [hm(F(y))− hm(F(x))]s−r−1 [F̄(y)]γs−1 f (x) f (y), x < y, (4)

where

Cr−1 =
r

∏
i=1

γi, γi = k + (n− i)(m + 1),

hm(x) =

−
1

m + 1
(1− x)m+1 , m 6= −1

− ln(1− x) , m = −1

and
gm(x) = hm(x)− hm(0) =

∫ x

0
(1− t)mdt, x ∈ [0, 1).

Case II: The pd f of r−th gos X(r, n, m̃, k), is given by

fX(r,n,m̃,k)(x) = Cr−1

r

∑
i=1

ai(r) [F̄(x)]γi−1 f (x) (5)

with the joint pd f of X(r, n, m̃, k) and X(s, n, m̃, k), 1 ≤ r < s ≤ n,

fX(r,n,m̃,k),X(s,n,m̃,k)(x, y) = Cs−1

[
s

∑
i=r+1

a(r)i (s)
{

F̄(y)
F̄(x)

}γi
][ r

∑
i=1

ai(r)
{

F̄(x)
}γi

]
f (x)
F̄(x)

f (y)
F̄(y)

(6)

where

Cr−1 =
r

∏
i=1

γi,

γr = k + n− r +
n−1

∑
j=r

mj,

ai(r) =
r

∏
j=1

1
(γj − γi)

, j 6= i, γj 6= γi, 1 ≤ i ≤ r ≤ n,

a(r)i (s) =
n

∏
j=r+1

1
(γj − γi)

, j 6= i, γj 6= γi, r + 1 ≤ i ≤ s ≤ n.

For m1 = m2 = · · · = mn−1 = m 6= −1, it can be shown that [3]:

ai(r) =
(−1)r−i

(m + 1)r−1 (r− 1)!

(
r− 1
r− i

)
(7)

and

a(r)i (s) =
(−1)s−i

(m + 1)s−r−1 (s− r− 1)!

(
s− r− 1

s− i

)
. (8)

In this paper we are interested in a situation when a random variable X follows the Pareto-Rayleigh(P-R)
distribution with pd f

f (x; α, σ) =
α

σ2 x
(

1 +
x2

2σ2

)−(α+1)
x > 0, α > 1, and σ > 0, (9)

and with d f

F(x; α, σ) = 1−
(

1 +
x2

2σ2

)−α
x > 0, α > 1, and σ > 0. (10)

In view of (8) and (9), (
1 +

x2

2σ2

)
f (x) =

α

σ2 x F̄(x) (11)
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Pareto-Rayleigh distribution can be seen as a member of Transformed-Transformer family (or T-X family)
of distributions proposed by Alzaatreh et al., [4]. This distribution is recognized as a good model for fitting
various lifetime data, see Jebeli and Deiri [5]. This is also confirmed in [6] were a comparative study on the
performance of Pareto-Rayleigh distribution against biased Lomax distribution was conducted. Further, for
more details on Pareto-Rayleigh distribution one can see [7–9].

Exact moments expressions of gos for different distributions have been obtained by literature.
Some examples are exponentiated Log-logistic distribution, Burr type XII distribution, linear exponential
distribution, Erlang-truncated exponential distribution, Burr distribution, power function distribution, type
II exponentiated Log-logistic distribution, extended exponential distribution, generalized Pareto distribution,
q-Weibull distribution; see, respectively, Athar and Nayabuddin [10], Khan et al., [11], Ahmad [12], Khan et
al., [13], Khan and Khan [3], Kumar and Khan [14], Kumar [15], Kumar and Dey [16], Malik and Kumar [17],
Singh et al., [18] and Kumar et al., [19].

In this paper, we have derived explicit expression for single and product moments of Pareto-Rayleigh
distribution based on gos.

2. Relations for Product Moments

In this section, we derive the exact expressions for product moments of generalized order statistics in the
following theorems. Before coming to the main result, the following lemma is proved.

Lemma 1. For the Pareto-Rayleigh distribution with cd f (1.9) next relations holds

Φj,l(a, b) =
(2σ2)

(
j+l
2 +2)

2 (j + 2)
B
( j + l

2
+ 2, α b− l

2

)
3
F2

( j
2
+ 1, 1− a α +

j
2

,
j + l

2
+ 2;

j
2
+ 2,

j
2
+ α b + 2; 1

)
(12)

where

Φj,l(a, b) =
∫ ∞

0

∫ y

0

xj+1(
1 + x2

2σ2

)a α+1
yl+1(

1 + y2

2σ2

)α b+1 dx dy

and

pFq[a1, . . . , ap; b1, . . . , bq; x] =
∞

∑
r=0

[ p

∏
j=1

Γ(aj + r)
Γ(aj)

][ q

∏
j=1

Γ(bj)

Γ(bj + r)

] xr

r!
,

for p = q + 1 and ∑
q
j=1 bj −∑

p
j=1 aj > 0.

Proof. We have

Φj,l(a, b) =
∫ ∞

0

yl+1(
1 + y2

2σ2

)α b+1

[ ∫ y

0

xj+1(
1 + x2

2σ2

)a α+1 dx

]
dy (13)

Let

B(y) =
∫ y

0

xj+1(
1 + x2

2σ2

)a α+1 dx (14)

Substituting 1− u = 1(
1+ x2

2σ2

) in (14), we get

B(y) =
(2σ2)

(
1+ j

2

)
2

∫ y2

2σ2(
1+ y2

2σ2

)
0

u
j
2 (1− u)a α− j

2−1 du

=
(2σ2)

(
1+ j

2

)
2

B y2

2σ2(
1+ y2

2σ2

)
( j

2
+ 1, aα− j

2

)
.

From (13), we have

Φj,l(a, b) =
(2σ2)

(
1+ j

2

)
2

∫ ∞

0

yl+1(
1 + y2

2σ2

)α b+1 B y2

2σ2(
1+ y2

2σ2

)
( j

2
+ 1, aα− j

2

)
dy, (15)
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where Bx(p, q) =
∫ x

0 up−1 (1− u)q−1 du. We know that

Bx(p, q) = p−1 xp
2F1 (p, 1− q; p + 1; x) (16)

and ∫ 1

0
ua−1 (1− u)b−1

2F1 (c, d; e; u) du = B(a, b) 3F2 (c, d, a; e, a + b; 1) (17)

Substituting (16) and (17) in (15), we get

Φj,l(a, b) =
(2σ2)

(
1+ j

2

)
2

∫ ∞

0

yl+1(
1 + y2

2σ2

)α b+1

( y2

2σ2

1 + y2

2σ2

) j
2+1 ( j

2
+ 1
)−1

2F1

 j
2
+ 1, 1− a α +

j
2

, ;
j
2
+ 2;

 y2

2σ2

1 + y2

2σ2

 dy. (18)

Setting t =
y2

2σ2

1+ y2

2σ2

in (18), we get

Φj,l(a, b) =
(2σ2)

(
j+l
2 +2

)
2 (j + 2)

∫ 1

0
t

j+l
2 +1 (1− t)α b− l

2−1
2F1

[
j
2
+ 1, 1− a α +

j
2

, ;
j
2
+ 2; t

]
dt

=
(2σ2)

(
j+l
2 +2

)
2 (j + 2)

B
(

j + l
2

+ 2, α b− l
2

)
3

F2

(
j
2
+ 1, 1− a α +

j
2

,
j + l

2
+ 2;

j
2
+ 2,

j
2
+ α b + 2; 1

)
.

Lemma 2. Setting j = 0 or l = 0 in Lemma 1, we obtain

Φ0,l(a, b) =
σ2

a α
[Φl(b)−Φl(a + b)] (19)

and

Φj,0(a, b) =
σ2

b α
[Φj(a + b)] (20)

where

Φj(a) =
∫ ∞

0

xj+1(
1 + x2

2σ

)a α+1 dx =
(2σ2)

(
1+ j

2

)
2

B
(

aα− j
2

, 1 +
j
2

)
.

Proof. Substituting j = 0 in (13), we get

Φ0,l(a, b) =
∫ ∞

0

yl+1(
1 + y2

2σ2

)α b+1

∫ y

0

x(
1 + x2

2σ2

)a α+1 dx

 dy

=
σ2

a α

∫ ∞

0

yl+1(
1 + y2

2σ2

)α b+1

1− 1(
1 + y2

2σ2

)a α

 dy

=
σ2

a α
[Φj(b)−Φl(a + b)].

Similarly, we get (20) by noting that

3F2(a, b, c; c, d; 1) =2 F1(a, b; d; 1) =
Γ(d) Γ(d− a− b)
Γ(d− a) Γ(d− b)

.
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Theorem 1. Generalized product moments for Pareto-Rayleigh distribution are given as

µ
(j, l)
r,s,n,m̃,k = E[X j(r, n, m̃, k) Xl(s, n, m̃, k)] = Cs−1

( α

σ2

)2
[

s

∑
t=r+1

a(r)t (s)

(
r

∑
i=1

ai(r)Φj, l(γi − γt, γt)

)]
. (21)

Proof. We have

µ
(j, l)
r,s,n,m̃,k = Cs−1

∫ ∞

0

∫ y

0
xj yl

[
s

∑
i=r+1

a(r)i (s)
{

F̄(y)
F̄(x)

}γi
](

r

∑
i=1

ai(r) {F̄(x)}γi

)
f (x)
F̄(x)

f (y)
F̄(y)

dx dy.

which yields (21).

Corollary 2. Product moment for Pareto-Rayleigh distribution, when m1 = m2 = · · · = mn−1 = m 6= −1 is given as

µ
(j, l)
r,s,n,m,k =E

[
X j(r, n, m, k) Xl(s, n, m, k)

]
=

Cs−1

(r− 1)! (s− r− 1)! (m + 1)s−2

( α

σ2

)2 r−1

∑
i=0

s−r−1

∑
t=0

(−1)i+t
(

r− 1
i

)(
s− r− 1

t

)
Φj, l(γr−i − γs−t, γs−t).

(22)

Remark 1. Setting m1 = m2 = · · · = mn−1 = 0 and k = 1 in (22), we get the result as the product moment of
order statistics as

µ
(j, l)
r,s,n,0,1 = µ

j, l
r,s:n

=
Cs−1

(r− 1)! (s− r− 1)!

( α

σ2

)2 r−1

∑
i=0

s−r−1

∑
t=0

(−1)i+t
(

r− 1
i

)(
s− r− 1

t

)
Φj, l(s− r− t + i, n− s + t + 1).

(23)

Corollary 3. Single moments of the Pareto-Rayleigh distribution are of the form

µ
(l)
s,n,m̃,k = Cs−1

( α

σ2

) s

∑
i=1

ai(s)Φl(γi). (24)

Proof. Putting j = 0 in (21) and using (19), we get

µ
(l)
r,s,n,m̃,k =Cs−1

( α

σ2

) [ s

∑
t=r+1

a(r)t (s)
(γi − γt)

(
r

∑
i=1

ai(r) {Φl(γt)−Φl(γi)}
)]

.

µ
(l)
s,n,m̃,k =Cs−1

( α

σ2

) [ s

∑
t=r+1

a(r)t (s)Φl(γt)

(
r

∑
i=1

ai(r)
(γi − γt)

)]

+ Cs−1

( α

σ2

) [ r

∑
i=1

ai(r)Φl(γi)

(
s

∑
t=r+1

a(r)t (s)
(γi − γt)

)]
.

Now using the results found in [20] we obtain

r

∑
i=1

ai(r)
(γi − γj)

=
r

∏
j=1

1
(γi − γj)

, j 6= i, γj 6= γi, 1 ≤ i ≤ r ≤ n,

and
s

∑
i=r+1

a(r)i (s)
(γi − γj)

=
s

∏
j=r+1

1
(γi − γj)

, j 6= i, γj 6= γi, r + 1 ≤ i ≤ s ≤ n.

Hence,

µ
(l)
s,n,m̃,k = Cs−1

( α

σ2

)[ s

∑
t=r+1

a(r)t (s)Φl(γt)

(
r

∏
j=1

1
(γi − γj)

)]
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+ Cs−1

( α

σ2

)[ r

∑
i=1

ai(r)Φl(γi)

(
s

∏
j=r+1

1
(γi − γj)

)]
,

which yields (24).

Corollary 4. Corollary2.3 Single moments of gos for Pareto-Rayleigh distribution, when m1 = m2 = · · · = mn−1 =

m 6= −1, are given as

µ
(l)
s,n,m,k =

Cs−1

(s− 1)!
1

(m + 1)s−1

( α

σ2

) s−1

∑
i=0

(−1)i
(

r− 1
i

)
Φj(γs−i). (25)

Proof. Setting m1 = m2 = · · · = mn−1 = m 6= −1 in (24) and using (7) we get the result as the single
moment.

Remark 2. Setting m1 = m2 = · · · = mn−1 = 0 and k = 1 in (25), we get the result as the single moment from
order statistics

µ
(l)
s,n,0,1 = µ

(l)
s:n =

Cs−1

(s− 1)!

( α

σ2

) s−1

∑
i=0

(−1)i
(

s− 1
i

)
Φj(n− s + i + 1). (26)

Remark 3. Setting j = 0 and l = 0 in (21) we get

r

∑
i=1

s

∑
t=r+1

ai(r) ar
t(s)

γi γt
=

1
Cs−1

, (27)

and setting l = 0 in (24) we obtain
r

∑
i=1

ai(r)
γi

=
1

Cr−1
. (28)

Combining (27) and (28), we get another identity,

s

∑
t=r+1

ar
t(s)
γt

=
Cr−1

Cs−1
. (29)

When m1 = m2 = · · · = mn−1 = m 6= −1, (29) reduces to another identity

s−r−1

∑
t=0

(−1)t
(

s− r− 1
t

)
1

γs−t
=

Cr−1(s− r− 1) ! (m + 1)s−r−1

Cs−1
, (30)

which is obtained in [3].

Remark 4. Setting γr = k + n − r + ∑l
i=r mj, 1 ≤ r ≤ l ≤ n, mi ∈ N, in (21), then the product moments of

progressive type II censored order statistics of Pareto-Rayleigh distribution can be obtained.

3. Numerical Computations

Here we have calculated means and variances for order statistics (Table 1 & 2), and generalized order
statistics (gos) (Table 3 & 4). All computations here we obtained using Mathematica. Mathematica like other
algebraic manipulation packages allow for arbitrary precisions, so the accuracy of the given values is not an
issue. In case of order statistics, the relation ∑n

r=1 µ
j
r,n,0,1 = n µ

j
1,1,0,1, j = 1, 2, is used to evaluate the means

and variancess, see [21]. It is observed that when the sample size n is fixes, increasing the value of r directly
increases the means and variances, whereas, for fixed r, the opposite occurs in the case when the sample size
n increases.
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Table 1. Means of order statistics from Pareto-Rayleigh distribution (α=2, σ=1)

n
r 1 2 3 4 5 6 7 8
1 1.1107 0.6942 0.5469 0.4653 0.4120 0.3736 0.3443 0.3209
2 1.5272 0.9892 0.7907 0.6786 0.6040 0.5496 0.5078
3 1.7962 1.1877 0.9589 0.8279 0.7398 0.6752
4 1.9991 1.3403 1.0900 0.9453 0.8474
5 2.1638 1.4654 1.1984 1.0433
6 2.3035 1.5722 1.2916
7 2.4253 1.6658
8 2.5339

Table 2. Variances of order statistics from Pareto-Rayleigh distribution (α=2, σ=1)

n
r 1 2 3 4 5 6 7 8
1 0.7663 0.1847 0.1011 0.0692 0.0525 0.0422 0.0353 0.0303
2 1.0009 0.2214 0.1176 0.0792 0.0594 0.0475 0.0395
3 1.1735 0.2464 0.1281 0.0852 0.0635 0.0504
4 1.3180 0.2672 0.1366 0.0900 0.0666
5 1.4450 0.2855 0.1441 0.0942
6 1.5599 0.3021 0.1509
7 1.6655 0.3175
8 1.7639

Table 3. Means of gos from Pareto-Rayleigh distribution (α=2, σ=1, m=1, k=2)

n
r 1 2 3 4 5 6 7 8
1 0.3471 0.2327 0.1868 0.1605 0.1428 0.1300 0.1200 0.1121
2 0.2308 0.1622 0.1329 0.1155 0.1036 0.0947 0.0878
3 0.1325 0.0957 0.0795 0.0697 0.0628 0.0577
4 0.0724 0.0532 0.0447 0.0394 0.0357
5 0.0386 0.0288 0.0243 0.0216
6 0.0203 0.0153 0.0130
7 0.0105 0.0080
8 0.0054

Table 4. Variances of gos from Pareto-Rayleigh distribution (α=2, σ=1, m=1, k=2)

n
r 1 2 3 4 5 6 7 8
1 0.2128 0.0887 0.0560 0.0409 0.0322 0.0266 0.0226 0.0197
2 0.2086 0.0971 0.0641 0.0481 0.0385 0.0321 0.0275
3 0.1480 0.0733 0.0499 0.0380 0.0308 0.0259
4 0.0914 0.0471 0.0327 0.0253 0.0207
5 0.0527 0.0280 0.0197 0.0154
6 0.0292 0.0158 0.0113
7 0.0158 0.0087
8 0.0084
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