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ABSTRACT
Aiming at the problems of difficult data collection and labor- 
intensive manual annotation, few-shot object detection (FSOD) 
has gained wide attention. Although current transfer-learning- 
based detection methods outperform meta-learning-based 
methods, their data organization fails to fully utilize the diversity 
of the source domain data. In view of this, Data Resampling (DR) 
organization is proposed to fine-tune the network, which can be 
employed as a component of any model and dataset without 
additional inference overhead. In addition, in order to improve 
the generalization of the model, a Cross-Iteration Metric- 
Learning (CIML) branch is embedded in the few-shot object 
detector, thus actively improving intra-category feature propin-
quity and inter-category feature discrimination. Our generic DR- 
CIML approach obtained competitive scores in extensive com-
parative experiments. The nAP50 performance on PASCAL VOC 
improved by up to 6.3 points, and the bAP50 performance 
reached 81.0, surpassing the base stage model (80.8) for the 
first time. The nAP75 performance on MS COCO improved by up 
to 1.6 points.
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Introduction

With their forceful feature learning and visual perception capability, deep 
convolutional neural networks (CNNs) show performance beyond human 
level, achieving great success in computer vision fields such as image classifi-
cation, object detection, and segmentation (Bochkovskiy, Wang, and Liao  
2020; He et al. 2016; Ren et al. 2015; Simonyan and Zisserman 2014; Tan 
and Le 2019; Tian et al. 2019). However, general object detection algorithms 
require a large amount of labeled data to generalize well and obtain an effective 
model, which imposes a heavy workload and is costly (Deng et al. 2009; 
Everingham et al. 2010, 2015; Lin et al. 2014). In cases such as medical 
applications (Katzmann et al. 2021) or rare species (Mannocci et al. 2022), it 
is unrealistic to obtain a large amount of data, while ordinary people quickly 
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learn new concepts from only a few observations, even at early ages 
(Samuelson and Smith 2005). In view of this, it is of great significance to 
study how to obtain a vision system with good generalization performance 
using a small number of samples.

Scholars have researched deep learning-based few-shot object detection (Lu 
et al. 2020), which is complicated because it must accurately locate different 
categories of objects (Köhler, Eisenbach, and Gross 2021). If only a small 
number of novel categories are trained, the detector is prone to nonconver-
gence or overfitting, resulting in poor generalization (Chen et al. 2018), and it 
cannot correctly detect instances from novel categories.

Some meta-learning-based methods (Finn, Abbeel, and Levine 2017; 
Nichol, Achiam, and Schulman 2018; Vinyals et al. 2016; Yan et al. 2019) 
effectively learn prior knowledge from multiple subtasks and even learn to 
learn, so as to learn new tasks with few training examples. The performance of 
transfer-learning-based FSOD methods (Sun et al. 2021; Wang et al. 2020) 
exceeds that of meta-learning-based FSOD methods. Among them, TFA 
(Wang et al. 2020) has a simple and effective two-stage, single-branch struc-
ture. By freezing all model parameters except the last layer, the problem of 
losing source domain knowledge in transfer-learning (Zhuang et al. 2020) was 
solved. In addition, TFA has established a new evaluation protocol and new 
benchmarks by repeating runs to obtain a stable evaluation. FSCE (Sun et al.  
2021) adopts the same data division as TFA, where the major cause affecting 
the AP on novel class (nAP) is the misclassification of novel categories rather 
than inaccurate positioning. Therefore, a CPE branch is embedded in the RoI 
feature extractor to improve classification performance, inspired by the suc-
cessful application of comparative learning in image recognition (Schroff, 
Kalenichenko, and Philbin 2015; Sun et al. 2014) and self-supervised repre-
sentation learning (Khosla et al. 2020). However, CPE is slow to increase the 
differences of feature embeddings of inter-class objects, and a large amount of 
data is needed for self-supervised learning. Therefore, we apply triple loss, 
which is considered more appropriate (Schroff, Kalenichenko, and Philbin  
2015), to actively minimize the distance between the anchor and the positive 
examples of the same category and to maximize the distance between the 
anchor and negative examples of different categories. Cross-iteration metric 
learning is added to increase the feature diversity of metric learning, so as to 
better solve the problem of misclassification in FSOD.

In addition, it is obvious that current methods based on transfer learning 
train on the fixed base class and novel class samples, i.e., the training data of 
each epoch are exactly the same. Although this settles the problem of data 
imbalance, the diversity of the abundant base data is not fully utilized. As 
a result, the model still has room to improve its detection performance. In view 
of the above problems, the main contributions of this paper include the 
following:
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● Base data resampling. To fully utilize the diversity of the abundant base 
data, instead of fixing the base categories samples in the fine-tuning 
phase, we randomly sample K-shot base category instances for each 
epoch when maintaining the same partition and fixed novel categories 
instances as TFA (Wang et al. 2020). We believe this is the first application 
of data resampling organization to transfer-learning-based FSOD;

● Cross-iteration metric-learning branch. To deal with the misclassification 
of novel category instances, we employ a cross-iteration metric-learning 
branch with triplet loss (Weinberger and Saul 2009) in FSOD for super-
vised learning. We retain object feature embeddings from adjacent itera-
tions to increase the feature diversity of metric learning, so as to actively 
promote intra-category feature propinquity and inter-category feature 
discrimination.

Figure 1 shows the modifications and improvements of transfer-learning- 
based FSOD via our proposed DR-CIML.

In extensive experiments, our generic training scheme obtained the highest 
novel-categories AP50 (nAP50) almost in three different splits under K-shot 
settings with K = 1, 2, 3, 5, and 10 on PASCAL VOC (Everingham et al. 2010,  
2015), and the nAP50 performance improved by up to 6.3 points. 
Furthermore, the proposed method is the first to achieve>80 base-categories 
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Figure 1. Modifications and improvements of DR-CIML applied to transfer-learning-based FSOD.
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AP50 (bAP50) on all shots after fine-tuning on PASCAL VOC, even exceeding 
the bAP50 performance of the base training stage (80.8) when K > 3. 
Competitive scores were also achieved on MS COCO (Lin et al. 2014) under 
the K-shot setting with K = 10, 30. The nAP75 performance improved by up to 
1.6 points.

The remainder of this paper is organized as follows. Section 2 introduces 
work related to few-shot object detection. Section 3 introduces our proposed 
data resampling and cross-iteration metric-learning methods. Section 4 dis-
cusses our experimental results and provides a comparative analysis. Section 5 
summarizes the paper.

Related Work

Most FSOD methods were developed in the context of few-shot classification 
(Sun et al. 2021). However, it is more difficult than the classification task 
because it must accurately and simultaneously locate and classify objects 
(Zhuang et al. 2020). Many FSOD approaches are based on meta-learning 
and feature re-weighting to avoid overfitting and learn to learn (Finn, Abbeel, 
and Levine 2017; Han et al. 2022; Karlinsky et al. 2019; Li et al. 2020; Michaelis 
et al. 2018; Nichol, Achiam, and Schulman 2018; Wang, Ramanan, and Hebert  
2019). Recent transfer-learning-based FSOD methods have shown strong 
generalization capability (Fan et al. 2021; Li et al. 2021; Sun et al. 2021; 
Wang et al. 2020; Wu et al. 2020; Zhang, Wang, and Forsyth 2020), surpassing 
many methods based on meta-learning.

Meta-Learning

Meta-learning aims to learn meta-knowledge through episodic training, so as 
to quickly learn new concepts through small amounts of labeled data.

In the MAML method (Finn, Abbeel, and Levine 2017), the meta-network 
assigns parameters to each n-way k-shot subtask. The sub-network performs 
one-step learning and parameter updating on the supply set of the subtask. 
The query set of the subtask is used to calculate the sub-network loss, and the 
gradient is calculated to update the meta-network parameters.

Reptile (Nichol, Achiam, and Schulman 2018) improves MAML by updat-
ing meta-network parameters through the difference between them and sub- 
network parameters instead of the gradient of subtasks.

With an episodic training scheme, meta-learning inadequately trains exist-
ing data, but the model can quickly learn new concepts through a small 
amount of annotated data. Therefore, meta-learning pays more attention to 
the future potential of initialization parameters than pre-training, and not the 
current performance on multitasking
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Metric Learning

Metric learning learns feature embedding, where inputs with similar content 
are encoded in features with small metric distances, while coded features from 
different types of inputs should be far from each other (Kaya and Bilge 2019), 
so as to obtain better feature representation ability for more accurate classifi-
cation prediction (Weinberger, Blitzer, and Saul 2005; Xing et al. 2002). Basic 
metric distance calculation methods include Euclidean, Mahalanobis, 
Matusita (Matusita et al. 1955), Bhattacharyya (Aherne, Thacker, and 
Rockett 1998), and Kullback Leibler (Elgammal, Duraiswami, and Davis  
2003). A metric-learning loss function such as triplet loss (Weinberger and 
Saul 2009) or its variant form (Aganian et al. 2021) can shorten the distance 
between the anchor and positive examples, and increase the distance between 
the anchor and negative examples, and is suitable for few-shot learning tasks. 
Because the learned feature-embedding network usually has good general-
ization, the model can make metric-based decisions without further training 
for unseen objects (Köhler, Eisenbach, and Gross 2021). For example, in the 
inference stage of the classification task, the feature embedding of the test 
image is compared with those of the novel categories, and the class corre-
sponding to the nearest feature embeddings is the recognized class.

Therefore, metric learning is conducive to the alleviation of the misclassi-
fication of novel categories in few-shot object detection.

Meta-Learning-Based Few-Shot Object Detection

Meta-learning-based FSOD includes dual-branch (Han et al. 2022; Li et al.  
2020; Michaelis et al. 2018; Yan et al. 2019) and single-branch (Karlinsky et al.  
2019; Wang, Ramanan, and Hebert 2019) methods, both of which utilize 
episodic training.

Dual-branch methods consist of a query branch Q and support branch S, 
which share the backbone. Q extracts the query RoI features through a region 
proposal network (RPN) and RoI Align, and S extracts the representative 
support feature vector of each category. Therefore, the query RoI features 
and support feature vectors can be aggregated, and these are input to the RoI 
head for bounding box regression and binary classification. Dual-branch 
methods vary most in the means of aggregation between RoIs, and support 
feature vectors are employed. Meta R-CNN (Yan et al. 2019) takes channel- 
wise soft-attention on RoI features to remodel the predictor head when more 
complicated aggregation approaches are adopted by OSWF (Li et al. 2020), 
OSIS (Michaelis et al. 2018), and Meta Faster R-CNN (Han et al. 2022). 
Although dual-branch methods allow the quick learning of new categories 
without fine-tuning in meta-testing, they demand complex episodic training. 
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As the support category increases, to aggregate separately for each category 
requires more RAM.

Without Q and S branches, single-branch methods obtain more discrimi-
native features through metric learning or diminish learnable parameters 
when training novel data. (Karlinsky et al. 2019) calculated the similarity 
between the embedded feature vector of RoI and category-representative 
vectors, exploiting extra embedding loss to learn discriminative feature 
embeddings.

Transfer-Learning-Based Few-Shot Object Detection

Compared with meta-learning-based FSOD methods, which require complex 
episodic training, transfer-learning-based FSOD methods utilize a relatively 
simple two-stage approach on a single-branch architecture. In the first stage, 
the detector is trained on all base categories. In the second stage, unfrozen 
layers on the balanced base and novel categories are fine-tuned, while freezing 
the other components of the model. There are many modifications based on 
this.

Modifications of RPN
CoRPN (Zhang, Wang, and Forsyth 2020) replaces the single binary classifier 
in the original RPN with N binary classifiers to avoid missing the foreground 
RoI from RPN. FSCE (Sun et al. 2021) doubles the maximum number of 
proposals kept after Non-Maximum Suppression (NMS) to avoid abandoning 
the foreground RoI. RPN parameters are learnable in the fine-tuning stage to 
benefit novel detection results.

Modifications of FPN
FSCE is based on the assumption that fine-tuning FPN parameters in 
the second stage performs better than freezing them. MPSR (Wu et al. 2020) 
implements the FPN processing of multiscale positive sample refinement 
through object pyramids, so as to expand the scale distribution of novel 
categories and reduce improper negative samples containing a large propor-
tion of positive instances.

Modifications of Loss Function
MPSR applies a refinement branch, adding the extra classification loss of the 
extracted multiscale positive samples to the RPN loss function and ROI loss 
function of Faster R-CNN. FSCE employs contrastive proposal encoding 
(CPE) loss to promote the compactness of intra-class instances. CGDP 
+FSCN (Li et al. 2021) applies additional semi-supervised loss to exploit 
unlabeled instances, thereby promoting the learning of sparse novel category 
objects.
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Maintaining Performance on Base Categories
Retentive R-CNN (Fan et al. 2021) utilizes separate classification heads for 
novel and base categories to avoid the catastrophic forgetting of base 
categories.

To sum up, transfer-learning-based FSOD does not need complex episodic 
training; it achieves state-of-the-art (SOTA) performance by appropriately 
freezing network components or modifying the loss function.

Nonetheless, existing transfer-learning-based FSOD approaches are trained 
on fixed base class objects and novel class objects, and it is obvious that the 
diversity of the abundant annotated base data is not fully utilized. These mean 
that the model still has room to improve the detection performance. 
Therefore, we expect that our transfer-learning-based DR-CIML can make 
full use of base class data.

Method

Our proposed method follows the standard transfer-learning-based FSOD 
methods (Sun et al. 2021; Wang et al. 2020). We explore some neglected 
properties of the abundant base data for fine-tuning. The training scheme 
has two stages. The first stage is training Faster R-CNN with abundant base 
data. In the second stage, the metric-learning branch is embedded in the RoI 
feature extractor, and the base model is fine-tuned with sufficient base data 
and sparse novel data. In addition, we freeze different components of the 
model according to particular K-shot tasks. We optimize the model by jointly 
optimizing the RPN, regression, and classification loss of the standard Faster 
R-CNN, as well as the cross-iteration metric-learning loss added in the fine- 
tuning stage. Figure 2 shows the structure of the DR-CIML method.

Data Resampling

Standard FSOD methods adopt a unified dataset organization. In the basic 
training phase, the model is trained on all base data. In the fine-tuning phase, 
we utilize the fixed-base and novel class samples under the K-shot setting. This 
dataset organization has the advantage of avoiding the imbalance of base and 
novel categories, as well as constructing practical few-shot application scenar-
ios. The disadvantage is that a large amount of base-class data is not fully 
exploited. Hence the data resampling organization technique is proposed. The 
basic training stage is the same as with the standard FSOD. However, in the 
fine-tuning stage, novel class data Dnovel are organized in the same way as 
Wang et al. (2020), Sun et al. (2021), and Kang et al. (2019), and base-class data 
Dbase consist of all data that do not contain Dnovel, i.e., Dbase \ Dnovel ¼ ;. 
Because the data volume of Dbase is much larger than that of Dnovel, at the 
beginning of each epoch, Dbase is randomly sampled to construct a balanced 
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sub-dataset under the K-shot setting. Data resampling has two advantages: 1) 
We have constructed a new balanced sub-dataset that conforms to the FSOD 
application scenario, so that we can make full use of the base-class data and 
reduce performance degradation on the base categories; 2) It improves the 
diversity of sample features, so as to promote the inter-class distance between 
novel and base categories (Figure 3).

Cross-Iteration Metric-Learning Branch

Standard Faster R-CNN extracts features with its backbone. RPN regresses the 
bounding box of the predefined anchor and decides whether it is foreground 
or background. Then region proposals are given by RoI Align. Finally, the 
regressor of the RoI head fine-tunes the location of region proposals again, and 
the classifier of the RoI head classifies objects contained in region proposals. 
Among them, the optimization goal of the classifier is a one-hot vector. In the 
scenario with large-scale training data, the optimization goal of the classifier is 
applicable, but it will decrease the robustness of the model while it lacks 
training data. From this point of view, we embed the metric-learning branch 
in the RoI feature extractor and calculate the similarity of object features 
generated by RPN. Specifically, the triple loss (Schroff, Kalenichenko, and 
Philbin 2015) function is applied to increase intra-category feature propin-
quity and inter-category feature discrimination, so as to reduce misclassifica-
tion. Our metric loss function is 

fmetricðxa
i ; x

p
i ; x

n
i Þ ¼ max jjf ðxa

i Þ � f ðxp
i Þjj

2
2 � jjf ðx

a
i Þ � f ðxn

i Þjj
2
2 þ αm; 0 (1) 

where f ðxÞ 2 Rd embeds a proposal x into a d-dimensional Euclidean space, xa
i 

is a proposal of a specific object (anchor), xp
i is a proposal of the same class 

(positive), xn
i is a proposal of any other class (negative), and αm is the margin 

enforced between positive and negative pairs.
However, the quality of region proposals from RPN is uneven, including 

both high-quality proposals with high IoU with ground truth, and low-quality 
ones with low IoU with ground truth. Although low-quality proposals with 
low IoU can be filtered by the IoU threshold TIoU , to select an appropriate TIoU 
is usually problematic. When TIoU is undersized, numerous low-quality pro-
posals containing superfluous backgrounds will be kept, which leads to nega-
tive optimization of the model, and when TIoU is too large, few high-quality 
proposals are preserved, which will make it hard to optimize the model. 
Therefore, to improve the diversity of features when metric-learning, we 
consider that adjacent iterations contain features that can be fed into the 
metric-learning branch to optimize the model. Specifically, we employ a cross- 
iteration metric-learning branch. Our cross-iteration metric loss function is 
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Lmetric ¼ αLn þ ð1 � αÞ
Xn� 1

i¼n� k
βiLi (2) 

Li ¼ fmetricðFn [ FiÞ (3) 

Ln ¼ fmetricðFnÞ (4) 

βi ¼ ð0:9Þ
n� i (5) 

where n is the current iteration; Fi denotes the input features of the metric 
branch of the ith iteration, i.e., the filtered RPN output; α is the weight 
coefficient of the metric loss of the current iteration; and βi is the weight 
coefficient of the metric loss of all feature embeddings of the current and the 
ith iterations.

Therefore, the joint optimization objectives of the model are 

L ¼ λrpnLrpn þ λclsLcls þ λregLreg þ λmetricLmetric (6) 

where Lrpn utilizes binary cross-entropy loss to generate foreground proposals; 
Lcls utilizes cross-entropy loss for bounding box classifiers; Lreg utilizes 
smooth-L1 loss for bounding box regression deltas; Lmetric is the metric loss; 
and λrpn, λcls, λreg , and λmetric are the weight coefficients of Lrpn, Lcls, Lreg , and 
Lmetric, respectively. Our revised joint loss functions are improved based on the 
standard Faster R-CNN loss (Ren et al. 2015).

Experiments

Comprehensive experiments were conducted on PASCAL VOC and MS 
COCO, and our proposed method showed competitive scores. We followed 
the dataset division method of Wang et al. (2020), Sun et al. (2021), and Kang 
et al. (2019) in order to provide reliable comparative evaluation results. We 
provide implementation details and results of comparative and ablation 
experiments, as well as visualization outcomes.

Implementation

Faster R-CNN with ResNet-101 and FPN were employed as our few-shot 
object detector, and a single Nvidia GeForce RTX 3080 Ti was used to 
accelerate graphic calculation while loading two images per iteration. 
Because it would lead to gradient oscillation and non-convergence if the 
batch were undersized, we adopted the accumulate gradients approach 
which updates parameters once every n batches trained to update the para-
meters every eight iterations, so as to increase the batch size to 16. The 
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maximum number of iterations was 48,000. The optimizer was SGD, with 
momentum 0.9 and weight decay 1e-4. The learning rate scheduler adopted 
linear preheating and cosine attenuation. Multiscale training, random flipping, 
image mosaic, and other data-enhancement methods were adopted.

Few-Shot Object Detection Benchmarks

Pascal Voc
We used the dataset division of Wang et al. (2020), Sun et al. (2021), and Kang 
et al. (2019), randomly dividing PASCAL VOC (Everingham et al. 2010, 2015) 
into split 1, split 2, and split 3, each containing 15 base categories with 
abundant instances and five novel categories sampled from training data 
under the K-shot setting with K = 1, 2, 3, 5, and 10. In the base training 
stage, the detector was trained on all annotated base categories. In the fine- 
tuning stage, balanced base category instances and novel category instances 
were utilized with K-shot, with the modification that the training scheme of 
data resampling was adopted to fully utilize the diversity of the abundant base 
data. We evaluated AP50 for novel categories (nAP50) and base categories 
(bAP50) on the PASCAL VOC2007 test set.

Ms Coco
There are 80 categories in MS COCO (Lin et al. 2014), which were divided into 
60 base categories and 20 novel categories with K = 10, 30. We report novel 
AP50–95 and novel AP75 on 5,000 images of COCO2014val.

Few-Shot Object Detection Comparison Results

Results on PASCAL VOC
Table 1 compares nAP50 between our proposed method and existing methods 
on PASCAL VOC with three novel splits. Our proposed method reaches the 
highest nAP50 in different splits under K-shot settings with K = 1, 2, 3, 5, 10, 
and nAP50 improves by up to 6.3 points, which fully demonstrates the 
effectiveness of our method. Moreover, for further demonstration the general-
ity of our DR-CIML, we implement them on multiple baselines, as shown in 
Table 2. Both nAP50 and bAP50 have been improved which fully verifies the 
generalization ability of the DR-CIML for different baselines.

The bAP50 performance on three base splits is shown in Table 3. Obviously, 
the proposed method is the first to achieve>80 bAP50 on all shots after fine- 
tuning, even exceeding bAP50 of the base training stage (80.8) when K > 3. 
Besides, its score slightly lower than that of the base training stage when K = 3 
mainly because the sampled base class data is insufficient. However, the bAP50 
score of the other methods decreased significantly, FSCE reduced by 6.7% and 
TFA reduced by 2.4%. This shows the strong capacity of DR-CIML to retain 
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base category knowledge in the fine-tuning stage. DR-CIML improves accu-
racy while incurring no extra inference overhead.

Results on MS COCO
Table 4 compares the results (nAP50–95 and nAP75) of the proposed and 
existing methods with K = 10, 30. Our method surpasses many methods, with 
nAP50–95 and nAP75 improved by up to 1.6 points, which fully verifies the 
generalization ability of the proposed method for different datasets.

Ablation Research and Visualization

Modifications were implemented in the fine-tuning stage, and the baseline was 
the standard FSCE (Sun et al. 2021) which employs contrastive proposal 
encoding (CPE) loss to promote instance-level intra-class compactness and 
inter-class variance. DR-CIML increases instance diversity through base data 
resampling (DR) to fully utilize source domain data and increases feature 

Table 2. Apply DR-CIML to different baselines on PASCAL VOC split 1 with K = 3, 5, 10. “◊” 
represents transfer-learning-based methods. “–“represents unreported results of other methods.

Method/Shot

Novel Split 1 Base Split 1

3 5 10 3 5 10

◊ TFA w/cos 
(Wang et al. 2020)

44.7 55.7 56.0 79.1 - 78.4

◊ TFA + DR-CIML 
(ours)

53.2 (+8.5%) 62.7 (+7.0%) 64.0 (+8.0%) 79.2 (+0.1%) 78.3 79.0 (+0.6%)

◊ FSCE 
(Sun et al. 2021)

51.4 61.9 63.4 74.1 76.6 -

◊ FSCE + DR-CIML 
(ours)

57.3 (+5.9%) 62.7 (+0.8%) 65.3 (+1.9%) 80.5 (+6.4%) 80.9 (+4.3%) 81.0

Table 3. bAP50 of existing FSOD methods on three PASCAL 
VOC base splits. “–“represents unreported results of other 
methods.

Method/Shot

Base Split 1

3 5 10

● Meta YOLO 
(Kang et al. 2019)

64.8 - 69.7

● Meta R-CNN 
(Yan et al. 2019)

64.8 - 67.9

◊ MPSR 
(Wu et al. 2020)

67.8 - 71.8

● PNPDet 
(Zhang et al. 2021)

75.5 - 75.5

◊ TFA w/cos 
(Wang et al. 2020)

79.1 - 78.4

◊ FSCE 
(Sun et al. 2021)

74.1 76.6 -

Train Dbase only 
(Wang et al. 2020)

80.8 80.8 80.8

◊ FSCE + DR-CIML 
(ours)

80.5 80.9 81.0
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diversity of comparative learning through CIML. We performed ablation 
experiments combining DR, CPE, or CIML components when fine-tuning 
the model. The ablation results obtained from PASCAL VOC split 1 are shown 
in Table 5.

Ablation for Base Data Resampling
FSCE fine-tunes on the fixed base categories, so that the diversity of base data 
is not fully utilized. We promote this by adopting the training scheme of data 
resampling (DR). The results of (Exp1, E×P3) and (Exp2, E×p4) show that 
under different metric-learning methods, the DR strategy can improve both 
nAP50 and bAP50, and even bAP50 surpasses that of the base model (80.8) 
obtained in the basic training stage, which indicates that DR has a strong 
ability to maintain base category knowledge.

Ablation for Metric-Learning Branch
We also explored the effect of the cross-iteration metric-learning (CIML) 
branch. The experimental results of (Exp1, E×p2) show that nAP50 is 
increased by up to 4.7 points with K = 2, as compared to CPE. (Exp3, E×p4) 
show that both nAP50 and bAP50 are improved through DR-CIML, which 

Table 4. Evaluation results of existing FSOD methods on two MS COCO novel splits.

Method/Shot

Novel AP50–95 Novel AP75

10 30 10 30

● MetaYOLO 
(Kang et al. 2019)

5.6 9.1 4.6 7.6

◊ CoRPN w/cos 
(Zhang, Wang, and Forsyth 2020)

9.0 13.9 8.3 13.9

● Meta-RCNN 
(Yan et al. 2019)

8.7 12.4 6.6 10.8

◊ MPSR 
(Wu et al. 2020)

9.8 14.1 9.7 14.2

◊ TFA w/cos 
(Wang et al. 2020)

10.0 13.7 9.3 13.4

● QA-FewDet 
(Han et al. 2021)

10.2 16.5 9.0 15.5

◊ FSCE 
(Sun et al. 2021)

11.9 16.4 10.5 16.2

◊ SVD (FSCE) 
(Wu et al. 2021)

12.0 16.2 10.4 15.9

◊ FSCE + DR-CIML 
(ours)

13.6 17.2 12.0 16.6

Table 5. Ablation for data resample organization and cross-iteration metric learning; results gained 
from PASCAL VOC split 1. “–” represents unreported results of other methods.

Model Exp
Data 

Resample
Metric 

Learning

Base AP50 Novel AP50

1 2 3 5 10 1 2 3 5 10

ResNet- 
101

Exp1 × CPE 78.9 - 74.1 76.6 - 44.2 43.8 51.4 61.9 63.4
Exp2 × CIML 77.5 77.9 74.4 75.1 76.8 45.2 48.5 55.1 63.4 65.0
Exp3 √ CPE 80.4 80.4 80.1 80.4 81.0 45.2 48.1 57.1 62.7 65.2
Exp4 √ CIML 80.6 80.6 80.5 80.9 81.0 47.4 48.7 57.3 62.7 65.3
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demonstrates that our CIML branch can improve intra-category feature pro-
pinquity and inter-category feature discrimination.

To sum up, the experimental results show that the DR and CIML branches 
can both promote model performance, and only the combined DR-CIML can 
maximize this. Furthermore, DR-CIML does not lead to extra inference cost, 
so the inference speed is the same as that of Faster R-CNN.

Visualization for Analysis
Figure 4 shows the visualization results of our method and the standard FSCE. 
It is found that our proposed DR-CIML method improves misclassification, 
uncertain recognition, and missed detection. For example, our method would 
unlikely to recognize dogs and cats as birds or cows, it can also detect the 
bicycle in Figure 4 while FSCE ignores it. Therefore, DR-CIML learns superior 
semantic and spatial information.

Conclusion

We explored the deficiencies of transfer-learning-based FSOD methods in data 
utilization. We are the first to apply data resampling organization and cross- 
iteration metric learning (DR-CIML) in the transfer-learning-based detection 
method, so as to make full use of the diversity of base-class data and increase 
the feature diversity of metric learning. Extensive experiments in PASCAL VOC 
and MS COCO fully verified the effectiveness of the data resampling method 

E
CSF

D
R

-
L

MI
C

Misclassification Missed detectionUncertain

Figure 4. Visual detection results of our method and standard FSCE.
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applied to transfer-learning-based FSOD. Our proposed method is independent 
of models and datasets; hence it can be readily embedded in any object detector 
without extra inference overhead. FSOD is a challenging task, and we hope our 
work can inspire more research on FSOD regarding data resampling and visual 
feature metric-learning. In the future, we will study the effectiveness of data 
resampling in few-shot segmentation.
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