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Event-Triggered Finite-Time Tracking Control for 
Fractional-Order Multi-Agent Systems with Input 
Saturation and Constraints
Lili Hu a,b and Hui Yu a,b

aThree Gorges Mathematical Research Center, China Three Gorges University, Yichang, China; bCollege of 
Science, China Three Gorges University, Yichang, China

ABSTRACT
This paper focuses on the finite-time tracking control problem 
of fractional-order multi-agent systems subject to input satura-
tion and constraints. The interaction topology is assumed to be 
directed and contain a spanning tree. The appropriate barrier 
Lyapunov functions are constructed to tackle the output and 
partial states constraints. Since only the system output is avail-
able, a reduced-order state observer is constructed to obtain the 
unmeasurable state variables. Fuzzy logic system is applied to 
tackle the uncertain nonlinear dynamics in the system and the 
unknown parameters are estimated by adaptive laws. An event- 
triggered control scheme is designed to reduce communication 
burden. The proposed distributed controller can guarantee that 
all signals of the system are bounded, the constrained states 
never breach the time-varying constraints, finite-time tracking 
can be achieved with a bounded error and the Zeno behavior 
does not occur. At last, the effectiveness of the proposed control 
scheme is validated by an example.
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Introduction

For a long time, most studies focus on multi-agent systems (MASs) with 
integer-order dynamic (Antonio et al. 2021; Chang et al. 2022; Li et al. 2022; 
Ma et al. 2022; Viel et al. 2022; Wang, Wang, and Huang 2022). However, 
fractional-order systems (FOSs) have more advantages than traditional inte-
ger-order dynamics in describing biological systems or engineering systems 
with memory and genetic characteristics, which makes the theory of frac-
tional-order calculus play an irreplaceable role in the fields of information 
science, system control, biomedicine and so on. Therefore, the study on 
fractional-order MASs (FOMASs) has been widely concerned by scholars, 
such as containment control (Ling, Yuan, and Mo 2019; Shahamatkhah and 
Tabatabaei 2020; Wu et al. 2021), cluster consensus (Yaghoubi and Talebi 
2020), formation control (Cajo et al. 2021; Liu, Li, Qi et al. 2019, Liu, Li, chen 
2019) and so on. Compared with integer-order MASs, the study on FOMASs is 
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still few, and the control methods of integer-order MASs cannot be applied to 
FOMASs directly, which makes the study of FOMASs more challenging.

In some practical applications, not only the control input but also the 
system state may be limited to a bounded region due to the limitations of 
physical devices. Therefore, it is of theoretical and practical significance to 
consider the control problem of constrained systems. At present, constraint 
problems such as input saturation (IS) (Chen et al. 2018; Fu et al. 2019, 2019, 
2022; Sheng et al. 2018; Wang and Liang 2018; Wang et al. 2020), output 
constraints and state constraints (Wang et al. 2021; Wei, Li, and Tong 2020; 
Yang, Yu, and Zheng 2021) have become the main focus of engineering 
systems. In Wang et al. (2020), the problem of adaptive control of uncertain 
nonlinear incommensurate FOSs with IS based on fuzzy logic system (FLS) 
was considered. In Wang and Liang (2018), an neural network (NN) adaptive 
control method was proposed for FOSs subject to IS. The robust consensus 
problem of FOMASs with IS was studied in Chen et al. (2018). Taking IS into 
account, an adaptive backstepping control scheme with observer was proposed 
for FOSs in Sheng et al. (2018). In Fu et al. (2019), the consensus problem 
of second-order MASs with IS was considered. The robust global containment 
control problem for MASs subject to IS was studied in Fu et al. (2019). In Fu 
et al. (2022), the distributed formation navigation problem of MASs subject to 
IS was considered. In Yang, Yu, and Zheng (2021), the fault-tolerant fuzzy 
adaptive tracking control problem was investigated for uncertain nonaffine 
FOSs with full state constraints (FSCs), in which the barrier Lyapunov func-
tion (BLF) was applied to deal with the FSCs. In Wei, Li, and Tong (2020), an 
adaptive control issue for nonlinear FOSs with FSCs was addressed based on 
NN, and the constraint function considered was constant. Both FSCs and IS 
were considered in Wang et al. (2021), and an NN-based adaptive control for 
nonlinear FOSs was proposed.

Compared with time-triggered control, event-triggered control (ETC) (Cao 
and Nie 2021; Chen et al. 2020; Lin et al. 2022; Shahvali, Naghibi-Sistani, and 
Askari 2022; Wang and Dong 2022a, 2022b; Ye, Su, and Sun 2018; Zhang et al. 
2022) can avoid unnecessary sampling and communication. The tracking 
control problem of FOMASs with unmeasurable states via fuzzy adaptive 
ETC strategy was presented in Wang and Dong (2022a). In Wang and Dong 
(2022b), an output feedback-based adaptive fault-tolerant fuzzy tracking con-
trol problem for FOMASs with nonlinearity and actuator failures using ETC 
scheme was studied. The exponential consensus problem was investigated in 
Zhang et al. (2022) for descriptor leader-following FOMASs with ETC proto-
col. In Shahvali, Naghibi-Sistani, and Askari (2022), an adaptive NN-based 
backstepping control scheme was designed for FOSs with nonlinearity via ETC 
scheme. The consensus problem of FOMASs via pinning impulsive control 
using ETC mechanism was studied in Lin et al. (2022). In Cao and Nie (2021), 
both unknown nonlinear functions and unmodeled dynamics were 
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considered, and an adaptive NN-based ETC strategy was proposed for non-
linear FOSs with IS. In Chen et al. (2020), the consensus problem of linear 
leader-following FOMASs using ETC strategy in directed networks was stu-
died. In Ye, Su, and Sun (2018), the tracking control problem of general linear 
FOMASs via ETC strategy was investigated.

Finite-time stability is also an important aspect in systems and control 
(Chen, Liu, and Yu 2020; Fan et al. 2020; Shang and Cai 2021; Shou et al. 
2022; Zhao et al. 2022). The results show that the finite-time control (FTC) 
approach not only makes the system converge faster, but also has better anti- 
interference and robustness in the case of disturbance and uncertainty. The 
FTC problem was investigated in Fan et al. (2020) for uncertain nonaffine 
MASs with input quantization and unknown nonlinearity. An adaptive con-
tainment FTC scheme for non-strict feedback nonlinear MASs was studied in 
Zhao et al. (2022) based on NN via output feedback. In Shang and Cai (2021), 
the fast finite-time consensus problem of high-order MASs with uncertainty, 
time-varying asymmetric FSCs and nonlinearity was considered. In Chen, Liu, 
and Yu (2020), the FTC problem for strict feedback MASs with heterogeneous 
nonlinear dynamics based on FLS was studied. The finite-time formation 
control problem of MASs was addressed in Shou et al. (2022) based on NN. 
The works mentioned above are all on MASs with integer-order dynamics, 
and there are few studies on FOSs (Li, Wei, and Tong 2021; Liu et al. 2022). An 
NN-based adaptive FTC scheme for nonlinear FOSs via ETC was proposed in 
Li, Wei, and Tong (2021). For nonaffine FOMASs with completely unknown 
high-order dynamics and disturbances, an adaptive bipartite containment 
control problem was considered in Liu et al. (2022) based on FTC algorithm.

In view of the above analysis, it is very meaningful to explore this topic in 
depth. In this paper, the FTC problem of FOMASs with unknown nonlinear 
dynamics and external disturbances in networks including a directed spanning 
tree (DST) is investigated subject to partial state constraints (PSCs) and IS. 
A distributed adaptive saturated control scheme is designed via output feed-
back using ETC strategy to ensure the practical finite-time stability (PFTS). 
The main contributions of this paper are as follows:

(1) A novel output feedback-based distributed adaptive fuzzy FTC scheme 
with PSCs and IS via ETC strategy is proposed to guarantee the con-
strained states of system remaining within the constraint boundaries, all 
system signals being bounded, the PFTS of error system rather than the 
infinite-time stability (Wang and Liang, 2018; Wang et al. 2021; Wang 
and Dong 2022a; Wei, Li, and Tong 2020) and no Zeno behavior 
occurring. Different from the traditional time-triggered control strategy 
(Wang and Liang., 2018; Chen et al. 2018; Sheng et al. 2018), the ETC 
scheme proposed in this paper will be more advantageous.
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(2) The FOMASs considered in this work is more general than that in 
Wang et al. (2020), Wang and Liang (2018), Sheng et al. (2018), 
Yang, Yu, and Zheng (2021), Wang and Dong (2022a), Zhao et al. 
(2022), Chen, Liu, and Yu (2020) and Li et al. (2022). FOMASs 
with uncertain nonlinear dynamics and external disturbance are 
considered in networks containing a DST. The unmeasurable 
states are estimated by a reduced-order state observer. The 
unknown nonlinearities are approximated by FLSs and the FLS 
weight vectors are estimated adaptively. Compared with existing 
works, state feedback-based schemes are considered in Wang et al. 
(2020), Wang and Liang (2018) and Yang, Yu, and Zheng (2021), 
a linearly parameterizable models is considered in Sheng et al. 
(2018), the models without external disturbances are considered 
in Zhao et al. (2022); Chen, Liu, and Yu (2020) and Li et al. 
(2022), only undirected network topology is considered in Wang 
and Dong (2022a).

(3) Different from Yang, Yu, and Zheng (2021), Wei, Li, and Tong 
(2020), Wang et al. (2021), Wang, Dong, and Xi (2020) and Qu, 
Tong, and Li (2018), FOMASs with partial states and output 
constraints are studied in this paper and the BLFs are used to 
solve the time-varying constraint problems. Compared with simi-
lar works, the case of FSCs were considered in Yang, Yu, and 
Zheng (2021), Wei, Li, and Tong (2020) and Wang et al. (2021) 
with constant boundary functions, and the output constraint pro-
blem is considered in Wang, Dong, and Xi (2020) and Qu, Tong, 
and Li (2018) as special cases of this work.

The rest of this paper is arranged as follows: The preliminaries are 
introduced and the problem is stated in Section 2. The reduced-order 
observer and the ETC scheme are designed in Section 3 and 4, respec-
tively. The stability analysis and parameter selection, a simulation exam-
ple are given in Section 5 and 6, respectively. Section 7 summarizes the 
paper.

Notations: R�, R, Zþ, Rk and C represent the sets of non-zero real numbers, 
real numbers, positive integers, k-dimensional real vector and complex num-
bers, respectively. For a matrix Q, Q> 0 denotes Q is positive definite, its 
minimum and maximum eigenvalue are denoted by λminðQÞ and λmaxðQÞ, 
respectively. σminð�Þ represents the minimum singular value of a matrix. 
Denote by jj � jj the 2-norm of a vector or matrix. log is the natural logarithm.
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Problem Statement

Fractional Calculus

Definition 2.1 (Podlubny 1998): The Caputo fractional derivative of 
a continuously differentiable function gðtÞ is defined as 

C
0 Dσ

t gðtÞ ¼
1

Γðκ � σÞ

ðt

0

gðκÞðsÞ
ðt � sÞσþ1� κ ds; (1) 

where σ 2 ðκ � 1; κÞ with κ 2 Zþ and ΓðσÞ ¼
ðþ1

0
sσ� 1e� sds. Define the 

fractional integral as 

0Iσ
t gðtÞ ¼

1
ΓðσÞ

ðt

0

gðsÞ
ðt � sÞ1� σ ds: (2) 

Property 2.1 (Podlubny 1998): For constants a1, a2 and a3, one has

(i) C
0 Dσ

t ða1g1ðtÞ � a2g2ðtÞÞ ¼ a1
C
0 Dσ

t g1ðtÞ � a2
C
0 Dσ

t g2ðtÞ;
(ii) C

0 Dσ
t a3 ¼ 0:

Definition 2.2 (Podlubny 1998): The Mittag–Leffler function is defined as 

Ec1;c2ðÀÞ ¼
X1

l¼0

Àl

Γðlc1 þ c2Þ
; (3) 

where À 2 C, c1 > 0 and c2 > 0 are two parameters. When 
c2 ¼ 1, Ec1;1ðÀÞ ¼ Ec1ðÀÞ.

Property 2.2. (Gong, Wang, and Lan 2019): For a4 2 ð0; 1� and a5 > 0, one has

(i) 0< Ea4ð� a5ta4Þ< 1;
(ii) Ea4;a5ð� a5ta4Þ> 0:

Lemma 2.1. (Gong and Lan 2018): For continuous and differentiable function 
XðtÞ 2 Rn, one has  

C
0 Dσ

t ðX
TðtÞQXðtÞÞ � 2XTðtÞQC

0 Dσ
tXðtÞ; (4) 

where σ 2 ð0; 1Þ and matrix Q> 0.

Lemma 2.2. (Zouari et al. 2021): For σ 2 ð0; 1Þ, continuously differentiable 
functions g1ðtÞ 2 R and g2ðtÞ 2 R� satisfying 0 � ðg1ðtÞ

g2ðtÞÞ
2 < 1, one has  
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1
2

C
0 Dσ

t log
g2

2ðtÞ
g2

2ðtÞ � g2
1ðtÞ
�

g1ðtÞC0 Dσ
t g1ðtÞ

g2
2ðtÞ � g2

1ðtÞ
�

1
2

g2
1ðtÞ

C
0 Dσ

t g2
2ðtÞ

g2
2ðtÞðg2

2ðtÞ � g2
1ðtÞÞ

: (5) 

Graph Theory

The interaction among agents can be described by a graph. Let G ¼ ðV; E;WÞ
be a directed graph, in which V ¼ f1; 2; . . . ;Ng corresponding to N agents 
and E � V � V are the set of nodes and edges, respectively. Let N i ¼ fj 2 V :

ðj; iÞ 2 E; i�jg be the set of neighbors of agent i. The pair ðj; iÞ 2 E means that 
agent i can obtain information from agent j. W ¼ wij

� �

N�N is the weighted 
adjacency matrix, where wij ¼ 1, if ðj; iÞ 2 E; wij ¼ 0, otherwise. Assume that 
graph G is simple, i.e., wii ¼ 0. Let D ¼ diagðdð1Þ1 ; . . . ; dð1ÞN Þ with dð1Þi ¼P

j2N i
wij and the Laplacian matrix L ¼ D � W. It is well known that L has 

one simple zero eigenvalue and all nonzero eigenvalues have positive real parts 
if and only if graph G has a DST.

Let the leader be a node labeled by zero, �G ¼ ðV [ f0g; E;WÞ and B ¼
diagðbð1Þ1 ; . . . ; b

ð1Þ

N
Þ with bð1Þi ¼ 1, if agent i being leader’s neighbor, bð1Þi ¼ 0, 

otherwise.

Assumption 2.1. Graph �G has a DST rooted at node 0.

System Description

Consider the following FOMASs: 
C
0 Dσ

t χik ¼ χi;kþ1 þ gikð�χikÞ þ rik;

k ¼ 1; . . . ; n � 1;
C
0 Dσ

t χin ¼ satiðτiÞ þ ginð�χinÞ þ rin;

yi ¼ χi1; i ¼ 1; . . . ;N

8
>><

>>:

(6) 

where σ 2 ð0; 1Þ and χik 2 R is the system state. Let �χin ¼ ½χi1; χi2; . . . ; χin�
T
2

Rn be the full states, which is partitioned into two parts, i.e., the constrained 
states ½χi1; . . . ; χiΞ�

T with 1 � Ξ � n satisfying jχijj � πij, where πij > 0, 
j ¼ 1; . . . ;Ξ, is a time-varying boundary function and the unconstrained states 
½χi;Ξþ1; . . . ; χin�

T . gikð�χikÞ : Rk ! R with �χik ¼ ½χi1; . . . ; χik�
T
2 Rk is an 

unknown continuous function and satisfies the following Assumption 2.3. 
rik 2 R is the bounded external disturbances satisfying jrikj � �rik with �rik > 0 
being a constant. yi 2 R is the system output, which is assumed to be the only 
available data. satiðτiÞ 2 R is the saturated controller described by 
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satiðτiÞ ¼

τiM; τi � τiM;

τi; τim < τi < τiM;

τim; τi � τim;

8
<

:
(7) 

where τiM > 0 and τim < 0 are known constants and τi 2 R is the input of the 
saturation controller and will be designed later.

For convenience of stability analysis, satiðτiÞ is approximated by the follow-
ing smooth function 

HiðτiÞ ¼
τiM � tanhð τi

τiM
Þ; τi � 0;

τim � tanhð τi
τim
Þ; τi < 0;

�

(8) 

and then satiðτiÞ is written as 

satiðτiÞ ¼ HiðτiÞ þ piðτiÞ; (9) 

where piðτiÞ is the approximation error satisfying jpiðτiÞj ¼ jsatiðτiÞ � HiðτiÞj �

maxfτiMð1 � tanhð1ÞÞ; τimðtanhð1Þ � 1Þg ¼ �pi.
Remark 1. The actual saturation controller (7) is approximated by a smooth 

function HiðτiÞ given in (8) with an approximation error piðτiÞ in (9). The 
smooth approximation HiðτiÞ of satiðτiÞ will be applied to construct the 
reduced-order state observer in Section 3 and (9) will be used in the stability 
analysis.

Substituting (9) into (6), one has 

C
0 Dσ

t χik ¼ χi;kþ1 þ gikð�χikÞ þ rik;

k ¼ 1; . . . ; n � 1;
C
0 Dσ

t χin ¼ HiðτiÞ þ piðτiÞ þ ginð�χinÞ þ rin;

yi ¼ χi1; i ¼ 1; . . . ;N:

8
>><

>>:

(10) 

The purpose of this work is to design an output feedback-based distributed 
saturated controller for FOMAS to ensure the following control objectives via 
adaptive ETC strategy:

(i) Practical finite-time tracking can be achieved, i.e., jyi � y0j< ε, as 
t >T�, i ¼ 1; 2; . . . ;N.

(ii) All signals are bounded and the PSCs are never breached, i.e., 
jχijj � πijðtÞ, j ¼ 1; . . . ;Ξ.

(iii) The Zeno behavior does not occur.

Assumption 2.2. y0ðtÞ, C
0 Dσ

t y0ðtÞ and C
0 Dσ

t ð
C
0 Dσ

t y0ðtÞÞ are continuous and 
bounded and satisfy jy0ðtÞj � q0, jC0 Dσ

t y0ðtÞj � q1 and jC0 Dσ
t ð

C
0 Dσ

t y0ðtÞÞj � q2 
with q0, q1, q2 being positive constants.
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Assumption 2.3 gikð�χikÞ satisfies jgikð�χikÞj � �gikðyiÞ for k ¼ 2; . . . ; n, where 
�gikðyiÞ is an unknown continuous function.

The following lemmas are needed for the subsequent finite-time stability 
analysis.

Lemma 2.3. (Polycarpou and Ioannou 1996): For ρ and any 2 > 0, one has 

0< jρj � ρ tanhð
ρ
2
Þ � [ 2 (11) 

with [ ¼ 0:2785.

Lemma 2.4. (Zhou et al. 2019): Let a; b 2 R, k> 1 and m > 1 be two real 
numbers with ðk � 1Þðm � 1Þ ¼ 1. For any ρ> 0, one has  

ab �
ρk

k
jajk þ

1
mρm jbj

m
: (12) 

Lemma 2.5. (Huang, Lin, and Yang 2005): For 0<m � 1, one has  

ð
Xn

i¼1
joijÞ

m
�
Xn

i¼1
joij

m
� n1� mð

Xn

i¼1
joijÞ

m
: (13) 

Lemma 2.6. (Qian and Lin 2001): For any variables ψ and �, positive con-
stants 3 , κ, c, one has  

jψj3j�jκ �
3

3 þκ
cjψjþκ

þ
κ
3 þκ

c�
3
κ j�j

3þκ
: (14) 

Lemma 2.7. (Liu et al. 2022): For σ 2 ð0; 1Þ, consider the FOSs C
0 Dσ

t ζðtÞ ¼
gðζðtÞÞ with ζðtÞ 2 Rn. If there exist a positive-definite and continuous function 
Wðt; ζðtÞÞ, K- class function a1, a2 and constants l1 > 0, l2 > 0, 0< β ¼ m=n< 1 
with m> 0 and n> 0 being odds, satisfying  

a1ðjjζðtÞjjÞ �Wðt; ζðtÞÞ � a2ðjjζðtÞjjÞ;

and  

C
0 Dσ

t Wðt; ζðtÞÞ � � l1Wðt; ζðtÞÞβ þ l2;

then, the considered system is practical finite-time stable with settling time  

T� ¼ ½W1� β
0 � ð

l2
l1ð1 � $Þ

Þ
1� β

β �
1
σ � ½

Γð2 � βÞΓð1þ 1
1� βÞΓð1þ σÞ

Γð1þ 1
1� β � σÞl1$

�
1
σ; (15) 

with $ 2 ð0; 1Þ and W0 ¼Wð0; ζð0ÞÞ, i.e., jjζðtÞjj � ε as t >T� with 
a sufficient small constant ε.
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Remark 2. Note that most of the existing works focus on MASs with integer- 
order dynamic. However, the results of integer-order system cannot be applied 

to FOSs directly. From Lemma 2.7, one has Wðt; ζðtÞÞ � l2
l1ð1� $Þ

h i1=β
, 

for "t � T�.

Lemma 2.8. Consider the fractional differential equation 
C
0 Dσ

t �̂ðtÞ ¼ � γ�̂ðtÞ þ ρvðtÞ, where 0< σ < 1, γ> 0 and ρ> 0 are constants, vðtÞ
is a positive function. If �̂ðt0Þ � 0, then �̂ðtÞ � 0 holds for "t � t0.

Proof. The solution of the fractional differential equation is 

�̂ðtÞ ¼ �̂ðt0ÞEσð� γðt � t0Þ
σ
Þ þ ρ

ðt

t0

ðt � sÞσ� 1Eσ;σð� γðt � sÞσÞvðsÞds: (16) 

According to Property 2.2, we have Eσð� γðt � t0Þ
σ
Þ � 0 as t � t0 and 

Eσ;σð� γðt � sÞσÞ � 0 as t0 � s � t. Since ρ> 0 and vðtÞ> 0, thus the integral 
part of equation (16) is also positive. Therefore, if �̂ðt0Þ � 0, �̂ðtÞ � 0 holds 
for "t � t0.                                                                                             □

Lemma 2.9. (Wang et al. 2008): Let Ωvi :¼ f Si1

ðη2
i1� S2

i1Þ
1
2
j
jSi1j

ðη2
i1� S2

i1Þ
1
2
� 0:2554vig

with vi > 0 being constants. Then, the inequality 1 � 16 tanh2½ Si1

υiðη2
i1� S2

i1Þ
1
2
�< 0 

holds for Si1

ðη2
i1� S2

i1Þ
1
2
‚Ωvi .

Lemma 2.10. (Polendo and Qian 2005): For a; b 2 R, p � 1 is a constant, one 
has  

jaþ bjp � 2p� 1jap þ bpj: (17) 

FLS

Lemma 2.11. (Wang et al. 2013): For " > 0 and a continuous function gðχÞ on 
a compact set Ω, there exists a FLS UTΦðχÞ such that  

sup
χ2Ω
jgðχÞ � UTΦðχÞj �; (18) 

where U ¼ ½U1; � � � ;U��
T is the ideal weight vector of the FLS with �> 1 being 

the number of the fuzzy rules, ΦðχÞ ¼ ½Φ1ðχÞ;...;Φ�ðχÞ�TP�

j¼1
ΦjðχÞ

is its basis function vector, 
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where ΦjðχÞ ¼ exp½
� ðχ� μjÞ

T
ðχ� μjÞ

,2
j

� is a Gaussian membership function with μj 

and ,j, j ¼ 1; . . . ; �, being its center and width, respectively.
From Lemma 2.11, an unknown nonlinear function gðχÞ can be approxi-

mated by a FLS UTΦðχÞ as 

gðχÞ ¼ UTΦðχÞ þ ðχÞ; (19) 

where U is the approximate parameter vector and ðχÞ is the approximation 
error.

In order to simplify the design procedure, let 

�i ¼ jjUijj
2
; i ¼ 1; . . . ;N; (20) 

where �i is an unknown positive scalar to be estimated. Let �̂i be the estimation 
of �i and ~�i ¼ �i � �̂i be the estimated error.

BLF

To handle the PSCs in the system, a BLF 

WðtÞ ¼
1
2

log
η2ðtÞ

η2ðtÞ � S2ðtÞ
; (21) 

is employed for control design, where SðtÞ is some error variable, which is 
restricted by jSðtÞj< ηðtÞ.

Lemma 2.12. (Ren et al. 2010): If jSðtÞj< ηðtÞ with given ηðtÞ> 0, then  

log
η2ðtÞ

η2ðtÞ � S2ðtÞ
<

S2ðtÞ
η2ðtÞ � S2ðtÞ

: (22) 

Observer Design

A reduced-order state observer is designed as follows: 

C
0 Dσ

t χ̂ik ¼ χ̂i;kþ1 þ
�li;kþ1yi � �likðχ̂i1 þ

�li1yiÞ;

k ¼ 1; . . . ; n � 2;
C
0 Dσ

t χ̂i;n� 1 ¼ HiðτiÞ � �li;n� 1ðχ̂i1 þ
�li1yiÞ;

8
<

:
(23) 

to estimate the unmeasurable state variables, where χ̂ik is the estimation of 
χi;kþ1, k ¼ 1; 2; . . . ; n � 1.

Let ~χik ¼ χik � χ̂i;k� 1 �
�li;k� 1yi, k ¼ 2; . . . ; n, one has 
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C
0 Dσ

t ~χi ¼ Ai~χi þF i þRi þ bpiðτiÞ; (24) 

where 

~χi ¼

~χi2
~χi3

..

.

~χin

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;Ai ¼

� �li1 1 � � � 0
..
. ..

. . .
. ..

.

� �li;n� 2 0 � � � 1
� �li;n� 1 0 � � � 0

2

6
6
6
4

3

7
7
7
5
;

Ri ¼

ri2 � �li1ri1
ri3 � �li2ri1

..

.

rin � �li;n� 1ri1

2

6
6
6
4

3

7
7
7
5
;

F i ¼

gi2ð�χi2Þ �
�li1gi1ðχi1Þ

gi3ð�χi3Þ �
�li2gi1ðχi1Þ

..

.

ginð�χinÞ �
�li;n� 1gi1ðχi1Þ

2

6
6
6
4

3

7
7
7
5
; b ¼

0
..
.

0
1

2

6
6
6
6
4

3

7
7
7
7
5
:

Choose positive parameters �li1, �li2, . . . , �li;n� 1 such that matrix Ai is Hurwitz. 
Thus, there exists a matrix Pi ¼ P

T
i > 0 such that PiAi þA

T
i Pi ¼ � Qi with 

a given matrix QT
i ¼ Qi > 0.

Construct the Lyapunov function W0 as 

W0 ¼
XN

i¼1
~χT

i Pi~χi: (25) 

The fractional-order derivative of W0 is 

C
0 Dσ

t W0 �
XN

i¼1
2~χT

i Pi
C
0 Dσ

t ~χi ¼
XN

i¼1
2~χT

i Pi½Ai~χi þF i þRi þ bpiðτiÞ�:

(26) 

According to Assumption 2.3, Lemma 2.4 and 2.10, one has 

2~χT
i PiF i � 2ð~χT

i Pi~χiÞ
1
2ðFT

i PiF iÞ
1
2

� ~χT
i Pi~χi þ 2jjPijj

Xn

k¼2
½�g2

ikðyiÞ þ�l2
i;k� 1g2

i1ðχi1Þ�: (27) 

Similarly, 

2~χT
i PiRi � 2ð~χT

i Pi~χiÞ
1
2ðRT

i PiRiÞ
1
2 � ~χT

i Pi~χi þ 2jjPijj
Xn

k¼2
½�r2

ik þ
�l2

i;k� 1�r
2
i1�;

(28) 
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and 

2~χT
i PibpiðτiÞ � 2ð~χT

i Pi~χiÞ
1
2½ðbpiðτiÞÞ

T
PiðbpiðτiÞÞ�

1
2 � ~χT

i Pi~χi þ jjPijj�p2
i : (29) 

From (26) to (29), one has 

C
0 Dσ

t W0 �
XN

i¼1
f� ½λminðQiÞ � 3λmaxðPiÞ�jj~χijj

2
þ 2jjPijj

Xn

k¼2
½�r2

ik þ
�l2

i;k� 1�r
2
i1�

þ jjPijj�p2
i þ Υig;

(30) 

where Υi ¼ 2jjPijj
Pn

k¼2½�g2
ikðyiÞ þ�l2

i;k� 1g2
i1ðχi1Þ�.

Adaptive Finite-Time ETC Design

In this section, a new adaptive finite-time ETC scheme is proposed. Let 

Si1 ¼
X

j2N i
wijðyi � yjÞ þ bð1Þi ðyi � y0ðtÞÞ; (31) 

Sik ¼ χ̂i;k� 1 � �hik; k ¼ 2; . . . ; n � 1; (32) 

Sin ¼ χ̂i;n� 1 � �hin � ~νi; (33) 

and 

#ik ¼ �hik � αi;k� 1; k ¼ 2; . . . ; n; (34) 

where Si1 is the local consensus error, Sik, Sin and #ik are defined error 
variables, ~νi and αi;k� 1 are the auxiliary design signal and the virtual controller 
respectively, which will be designed later. A fractional-order filter is con-
structed as 

ζik
C
0 Dσ

t �hik þ �hik ¼ αi;k� 1; k ¼ 2; . . . ; n; (35) 

with hik being its output, �hikð0Þ ¼ αi;k� 1ð0Þ and ζik > 0 being a constant.

Finite-Time Controller Design

Step 1: Taking the fractional-order derivative of Si1, one has 

C
0 Dσ

t Si1 ¼
X

j2N i
wijð

C
0 Dσ

t yi �
C
0 Dσ

t yjÞ þ bð1Þi ð
C
0 Dσ

t yi �
C
0 Dσ

t y0ðtÞÞ

¼ ðdð1Þi þ bð1Þi ÞðSi2 þ #i2 þ αi1 þ ~χi2 þ
�li1χi1 þ gi1ðχi1Þ þ ri1Þ

�
X

j2N i
wijð~χj2 þ χ̂j1 þ

�lj1χj1 þ gj1ðχj1Þ þ rj1Þ � bð1Þi 0CDσ
t y0ðtÞ:

(36) 

Let 
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Wi1 ¼
1
2

log
η2

i1
η2

i1 � S2
i1
þ

1
2γi

~�2
i ; (37) 

where ~�i is defined in (20), ηi1ðtÞ> 0 is a time-varying boundary function 
which will be given later and γi > 0 is a constant.

According to Lemma 2.1 and Lemma 2.2, one has 

C
0 Dσ

t Wi1 �
Si1

C
0 Dσ

t Si1

η2
i1 � S2

i1
�

S2
i10CDσ

t η2
i1

2η2
i1ðη2

i1 � S2
i1Þ
�

1
γi

~�i
C
0 Dσ

t �̂i: (38) 

The Lyapunov function W1 is selected as 

W1 ¼W0 þ
XN

i¼1
Wi1: (39) 

From (36) to (39) and Property 2.1, one has 

C
0 Dσ

t W1 �
XN

i¼1
f� ½λminðQiÞ � 3λmaxðPiÞ�jj~χijj

2
þ 2jjPijj

Xn

k¼2
½�r2

ik þ
�l2

i;k� 1�r
2
i1�

þ jjPijj�p2
i þ

Si1

η2
i1 � S2

i1
½ðdð1Þi þ bð1Þi ÞðSi2 þ #i2 þ αi1 þ ~χi2 þ

�li1χi1 þ ri1Þ

þ GiðZiÞ �
X

j2N i
wijð~χj2 þ χ̂j1 þ rj1Þ �

Si1
C
0 Dσ

t η2
i1

2η2
i1
� �

1
γi

~�i
C
0 Dσ

t �̂i

þ ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υig;

(40) 

where 

GiðZiÞ ¼ ðd
ð1Þ
i þ bð1Þi Þgi1ðχi1Þ �

X

j2N i
wijð�lj1χj1 þ gj1ðχj1ÞÞ � bð1Þi 0CDσ

t y0ðtÞ

þ 16
η2

i1 � S2
i1

Si1
tanh2ð

Si1

υiðη2
i1 � S2

i1Þ
1
2
ÞΥi 

with Zi ¼ ½χi1; χj1; y0ðtÞ;C0 Dσ
t y0ðtÞ�T; j 2 N i, and υi being a constant.

Remark 3. The hyperbolic tangent function tanhð�Þ is used in the derivation of 
(40) to avoid singularity. Based on L’Hospital rule, one has 
lim

Si1!0

η2
i1� S2

i1
Si1

tanh2ð Si1

υiðη2
i1� S2

i1Þ
1
2
Þ ¼ 0. Thus, function GiðZiÞ has no singularity at Si1 ¼

0 and can be approximated by an FLS. The last term in (40) will be dealt later.
Since GiðZiÞ is unknown, it is approximated by an FLS UT

i ΦiðZiÞ as 

GiðZiÞ ¼ UT
i ΦiðZiÞ þ iðZiÞ; (41) 

where the approximation error iðZiÞ satisfies jiðZiÞj ��i with �i > 0 being 
a constant.
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According to Lemma 2.4, one has 

Si1

η2
i1 � S2

i1
GiðZiÞ �

1
2a2

i

S2
i1

ðη2
i1 � S2

i1Þ
2 �iΦT

i ðZiÞΦiðZiÞ þ
1
2

a2
i þ

S2
i1

2ðη2
i1 � S2

i1Þ
2

þ
1
2
�i

2; (42) 

where ai > 0 is a constant.
Substituting (42) into (40), one has 

C
0 Dσ

t W1 �
XN

i¼1
f� ½λminðQiÞ � 3λmaxðPiÞ�jj~χijj

2
þ 2jjPijj

Xn

k¼2
½�r2

ik þ
�l2

i;k� 1�r
2
i1�

þ jjPijj�p2
i þ

Si1

η2
i1 � S2

i1
½ðdð1Þi þ bð1Þi ÞðSi2 þ #i2 þ αi1 þ ~χi2 þ

�li1χi1 þ ri1Þ

þ
1

2a2
i

Si1

η2
i1 � S2

i1
�̂iΦT

i ðZiÞΦiðZiÞ þ
Si1

2ðη2
i1 � S2

i1Þ
�
X

j2N i
wijð~χj2 þ χ̂j1

þ rj1Þ �
Si1

C
0 Dσ

t η2
i1

2η2
i1
� þ ½1 � 16 tanh2ð

Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi þ

1
2

a2
i þ

1
2
�i

2

þ
1
γi

~�ið
γi

2a2
i

S2
i1

ðη2
i1 � S2

i1Þ
2 ΦT

i ðZiÞΦiðZiÞ �
C
0 Dσ

t �̂iÞg:

(43) 

Similarly, 

Si1ðd
ð1Þ
i þ bð1Þi Þ

η2
i1 � S2

i1
ðSi2 þ #i2Þ �

S2
i1ðd

ð1Þ
i þ bð1Þi Þ

2

ðη2
i1 � S2

i1Þ
2 þ

1
2

S2
i2 þ

1
2
#2

i2; (44) 

Si1ðb
ð1Þ
i þ bð1Þi Þ

η2
i1 � S2

i1
ð~χi2 þ ri1Þ �

S2
i1ðd

ð1Þ
i þ bð1Þi Þ

2

ðη2
i1 � S2

i1Þ
2 þ

1
2
jj~χijj

2
þ

1
2

�r2
i1; (45) 

and 

�
Si1

η2
i1 � S2

i1

X

j2N i
wijð~χj2 þ rj1Þ �

S2
i1ðd

ð1Þ
i þ bð1Þi Þ

2

ðη2
i1 � S2

i1Þ
2 þ

1
2
jj~χijj

2
þ

1
2

�r2
j1: (46) 

Substituting (44)–(46) into (43), one has 
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C
0 Dσ

t W1 �
XN

i¼1
f� a0jj~χijj

2
þ 2jjPijj

Xn

k¼2
½�r2

ik þ
�l2i;k� 1�r

2
i1� þ jjPijj�p2

i þ
1
2
ð�i

2 þ a2
i Þ

þ
Si1

η2
i1 � S2

i1
½ðdð1Þi þ bð1Þi Þðαi1 þ�li1χi1Þ þ

3Si1ðd
ð1Þ
i þ bð1Þi Þ

2

η2
i1 � S2

i1
�
X

j2N i
wijχ̂j1

þ
Si1

2ðη2
i1 � S2

i1Þ
þ

1
2a2

i

Si1

η2
i1 � S2

i1
�̂iΦT

i ðZiÞΦiðZiÞ �
Si1

C
0 Dσ

t η2
i1

2η2
i1
�

þ
1
γi

~�ið
γi

2a2
i

S2
i1

ðη2
i1 � S2

i1Þ
2 ΦT

i ðZiÞΦiðZiÞ �
C
0 Dσ

t �̂iÞ þ
1
2
ð�r2

i1 þ �r2
j1Þ

þ ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi þ

1
2
ðS2

i2 þ #
2
i2Þg;

(47) 

where a0 ¼ λminðQiÞ � 3λmaxðPiÞ � 1.
Select the virtual controller αi1 as 

αi1 ¼
1

dð1Þi þ bð1Þi

½�
bi1S2β� 1

i1

ðη2
i1 � S2

i1Þ
β� 1 �

3Si1ðd
ð1Þ
i þ bð1Þi Þ

2

η2
i1 � S2

i1
� ðdð1Þi þ bð1Þi Þ

�li1χi1

�
Si1

2ðη2
i1 � S2

i1Þ
�

1
2a2

i

Si1

η2
i1 � S2

i1
�̂iΦT

i ðZiÞΦiðZiÞ þ
X

j2N i
wijχ̂j1

þ
Si1

C
0 Dσ

t η2
i1

2η2
i1
�;

(48) 

and the fractional-order adaptive law C
0 Dσ

t �̂i as 

C
0 Dσ

t �̂i ¼ � ρi�̂i þ
γi

2a2
i

S2
i1

ðη2
i1 � S2

i1Þ
2 ΦT

i ðZiÞΦiðZiÞ; (49) 

where bi1 > 0 and ρi > 0 are design parameters.
Remark 4 From Lemma 2.8, the adaptive law C

0 Dσ
t �̂i designed in (49) can 

guarantee that �̂iðtÞ � 0 for given �̂ið0Þ � 0.
According to (47)–(49), one has 

C
0 Dσ

t W1 �
XN

i¼1
f� a0jj~χijj

2
�

bi1S2β
i1

ðη2
i1 � S2

i1Þ
β þ ½1 � 16 tanh2ð

Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi

þ
ρi
γi

~�i�̂i þ
1
2
ðS2

i2 þ #
2
i2Þg þ Hð1Þi ;

(50) 

where 
Hð1Þi ¼

PN
i¼1f2jjPijj

Pn
k¼2½�r2

ik þ
�l2

i;k� 1�r
2
i1� þ jjPijj�p2

i þ
1
2 ð�r

2
i1 þ�i

2 þ �r2
j1 þ a2

i Þg.
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Step ^ ð2 � ^ � ΞÞ: From (23), (32) and (34), one has 

C
0 Dσ

t Si^ ¼
C
0 Dσ

t χ̂i;^� 1 �
C
0 Dσ

t �hi^

¼ Si;^þ1 þ #i;^þ1 þ αi^ þ�li^χi1 �
�li;^� 1ðχ̂i1 þ

�li1χi1Þ �
C
0 Dσ

t �hi^:
(51) 

Let 

Wi^ ¼
1
2

log
η2

i^
η2

i^ � S2
i^
þ

1
2
#2

i^; (52) 

where ηi^ðtÞ> 0 is a boundary function which will be given later.
Thus, 

C
0 Dσ

t Wi^ �
Si^

C
0 Dσ

t Si^

η2
i^ � S2

i^
�

S2
i^0CDσ

t η2
i^

2η2
i^ðη2

i^ � S2
i^Þ
þ #i^

C
0 Dσ

t #i^: (53) 

The Lyapunov function W^ is given by 

W^ ¼W^� 1 þ
XN

i¼1
Wi^: (54) 

From (51) to (54), one has 

C
0 Dσ

t W^ �
C
0 Dσ

t W^� 1 þ
XN

i¼1
f

Si^

η2
i^ � S2

i^
½Si;^þ1 þ #i;^þ1 þ αi^ þ�li^χi1

� �li;^� 1ðχ̂i1 þ
�li1χi1Þ �

C
0 Dσ

t �hi^ �
Si^

C
0 Dσ

t η2
i^

2η2
i^
� þ #i^

C
0 Dσ

t #i^g:

(55) 

Similarly, 

Si^

η2
i^ � S2

i^
ðSi;^þ1 þ #i;^þ1Þ �

S2
i^

ðη2
i^ � S2

i^Þ
2 þ

1
2
ðS2

i;^þ1 þ #
2
i;^þ1Þ: (56) 

By the definition of αi;k� 1, C
0 Dσ

t αi;k� 1 is a continuous function 
ςikðSi1; . . . ; Si;k� 1; �̂i; y0;

C
0 Dσ

t y0;
C
0 Dσ

t ð
C
0 Dσ

t y0Þ; #i2; . . . ; #i;k� 1Þ, k ¼ 2; . . . ; n, 
defined on some compact set. Thus, jςi;k� 1j � �ςik with �ςik > 0 being 
a constant. From (34) and (35), one has 

C
0 Dσ

t #ik ¼ �
#ik

ζik
� C

0 Dσ
t αi;k� 1 � �

#ik

ζik
þ �ςik; k ¼ 2; . . . ; n: (57) 

According to Lemma 2.4, one has 

#ik
C
0 Dσ

t #ik � #ikð�
#ik

ζik
þ �ςikÞ � � ð

1
ζik
�

�ς2
ik

2νik
Þ#2

ik þ
νik

2
; k ¼ 2; . . . ; n; (58) 

where νik > 0 is a constant.
Substituting (56) and (58) into (55), one has 

e2166689-268 L. HU AND H. YU



C
0 Dσ

t W^ �
C
0 Dσ

t W^� 1 þ
XN

i¼1
f

Si^

η2
i^ � S2

i^
½αi^ þ�li^χi1 �

�li;^� 1ðχ̂i1 þ
�li1χi1Þ

þ
Si^

η2
i^ � S2

i^
� C

0 Dσ
t �hi^ �

Si^
C
0 Dσ

t η2
i^

2η2
i^
� þ

1
2
ðS2

i;^þ1 þ #
2
i;^þ1Þ

� ð
1

ζi^
�

�ς2
i^

2νi^
Þ#2

i^ þ
νi^

2
g:

(59) 

The virtual controller αi^ is designed as 

αi^ ¼ �
bi^S2β� 1

i^

ðη2
i^ � S2

i^Þ
β� 1 �

1
2

Si^ðη2
i^ � S2

i^Þ �
Si^

η2
i^ � S2

i^
� �li^χi1

þ�li;^� 1ðχ̂i1 þ
�li1χi1Þ þ

C
0 Dσ

t �hi^ þ
Si^

C
0 Dσ

t η2
i^

2η2
i^

;

(60) 

where bi^ > 0 is a design parameter.
According to (59)–(60), one has 

C
0 Dσ

t W^ �
XN

i¼1
f� a0jj~χijj

2
�
X^

j¼1

bijS
2β
ij

ðη2
ij � S2

ijÞ
β þ

ρi
γi

~�i�̂i

�
X^

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ij þ
1
2
ð#2

i;^þ1 þ S2
i;^þ1Þ þ

X^

j¼2

νij

2

þ ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υig þ Hð1Þi :

(61) 

Step Ξ +1: From (23), (32) and (34), one has 

C
0 Dσ

t Si;Ξþ1 ¼
C
0 Dσ

t χ̂iΞ �
C
0 Dσ

t �hi;Ξþ1

¼ Si;Ξþ2 þ #i;Ξþ2 þ αi;Ξþ1 þ�li;Ξþ1χi1 �
�liΞðχ̂i1 þ

�li1χi1Þ

� C
0 Dσ

t �hi;Ξþ1:

(62) 

Let 

Wi;Ξþ1 ¼
1
2

S2
i;Ξþ1 þ

1
2
#2

i;Ξþ1: (63) 

Taking the fractional-order derivative of Wi;Ξþ1, one has 

C
0 Dσ

t Wi;Ξþ1 � Si;Ξþ1
C
0 Dσ

t Si;Ξþ1 þ #i;Ξþ1
C
0 Dσ

t #i;Ξþ1: (64) 

The Lyapunov function WΞþ1 is selected as 

WΞþ1 ¼WΞ þ
XN

i¼1
Wi;Ξþ1: (65) 
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From (62) to (65), one has 

C
0 Dσ

t WΞþ1 �
C
0 Dσ

t WΞ þ
XN

i¼1
fSi;Ξþ1½Si;Ξþ2 þ #i;Ξþ2 þ αi;Ξþ1 þ�li;Ξþ1χi1

� �liΞðχ̂i1 þ
�li1χi1Þ �

C
0 Dσ

t �hi;Ξþ1� þ #i;Ξþ1
C
0 Dσ

t #i;Ξþ1g:

(66) 

Similarly, 

Si;Ξþ1ðSi;Ξþ2 þ #i;Ξþ2Þ � S2
i;Ξþ1 þ

1
2
ðS2

i;Ξþ2 þ #
2
i;Ξþ2Þ: (67) 

From (58) and (67), one has 

C
0 Dσ

t WΞþ1 �
C
0 Dσ

t WΞ þ
XN

i¼1
fSi;Ξþ1½αi;Ξþ1 þ�li;Ξþ1χi1 �

�liΞðχ̂i1 þ
�li1χi1Þ

þ Si;Ξþ1 �
C
0 Dσ

t �hi;Ξþ1� � ð
1

ζi;Ξþ1
�

�ς2
i;Ξþ1

2νi;Ξþ1
Þ#2

i;Ξþ1 þ
νi;Ξþ1

2

þ
1
2
ðS2

i;Ξþ2 þ #
2
i;Ξþ2Þg:

(68) 

The virtual controller αi;Ξþ1 is designed as 

αi;Ξþ1 ¼ � bi;Ξþ1S2β� 1
i;Ξþ1 �

3
2

Si;Ξþ1 � �li;Ξþ1χi1 þ
�liΞðχ̂i1 þ

�li1χi1Þ þ
C
0 Dσ

t �hi;Ξþ1;

(69) 

where bi;Ξþ1 > 0 is a design parameter.
From (68) to (69), one has 

C
0 Dσ

t WΞþ1 �
XN

i¼1
f� a0jj~χijj

2
�
XΞ

j¼1

bijS
2β
ij

ðk2
ij � S2

ijÞ
β � bi;Ξþ1S2β

i;Ξþ1 þ
ρi
γi

~�i�̂i

þ ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi �

XΞþ1

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ij

þ
XΞþ1

j¼2

νij

2
þ

1
2
ð#2

i;Ξþ2 þ S2
i;Ξþ2Þg þHð1Þi :

(70) 

Step _ ð_ ¼ Ξþ 2; . . . ; n � 1Þ: From (23), (32) and (34), one has 

C
0 Dσ

t Si_ ¼
C
0 Dσ

t χ̂i;_� 1 �
C
0 Dσ

t �hi_

¼ Si;_þ1 þ #i;_þ1 þ αi_ þ�li_χi1 �
�li;_� 1ðχ̂i1 þ

�li1χi1Þ �
C
0 Dσ

t �hi_:
(71) 

Let 
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Wi_ ¼
1
2

S2
i_ þ

1
2
#2

i_: (72) 

Taking the fractional-order derivative of Wi_, one has 

C
0 Dσ

t Wi_ � Si_
C
0 Dσ

t Si_ þ #i_
C
0 Dσ

t #i_: (73) 

The Lyapunov function Wi_ is selected as 

W_ ¼W_� 1 þ
XN

i¼1
Wi_: (74) 

From (71) to (74), one has 

C
0 Dσ

t W_ �
C
0 Dσ

t W_� 1 þ
XN

i¼1
fSi_½Si;_þ1 þ #i;_þ1 þ αi_ þ�li_χi1

� �li;_� 1ðχ̂i1 þ
�li1χi1Þ �

C
0 Dσ

t �hi_� þ #i_
C
0 Dσ

t #i_g:
(75) 

Similarly, 

Si_ðSi;_þ1 þ #i;_þ1Þ � S2
i_ þ

1
2
ðS2

i;_þ1 þ #
2
i;_þ1Þ: (76) 

From (58) and (76), one has 

C
0 Dσ

t W_ �
C
0 Dσ

t W_� 1 þ
XN

i¼1
fSi_½Si_ þ αi_ þ�li_χi1 �

�li;_� 1ðχ̂i1 þ
�li1χi1Þ

� C
0 Dσ

t �hi_� � ð
1

ζi_
�

�ς2
i_

2νi_
Þ#2

i_ þ
νi_

2
þ

1
2
ðS2

i;_þ1 þ #
2
i;_þ1Þg:

(77) 

Select the virtual controller αi_ as 

αi_ ¼ � bi_S2β� 1
i_ �

3
2

Si_ � �li_χi1 þ
�li;_� 1ðχ̂i1 þ

�li1χi1Þ þ
C
0 Dσ

t �hi_; (78) 

where bi_ > 0 is a design parameter.
From (77) to (78), one has 

C
0 Dσ

t W_ �
XN

i¼1
f� a0jj~χijj

2
�
XΞ

j¼1

bijS
2β
ij

ðk2
ij � S2

ijÞ
β �

X_

j¼Ξþ1
bijS

2β
ij þ

ρi
γi

~�i�̂i

þ ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi �

X_

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ij

þ
X_

j¼2

νij

2
þ

1
2
ð#2

i;_þ1 þ S2
i;_þ1Þg þHð1Þi :

(79) 

Step n: From (33), 
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Sin ¼ χ̂i;n� 1 � �hin � ~νi; (80) 

where the auxiliary signal ~νi is designed as 

C
0 Dσ

t ~νi ¼ � ~νi þHiðτiÞ � τi: (81) 

The fractional-order derivative of Sin is 

C
0 Dσ

t Sin ¼
C
0 Dσ

t χ̂i;n� 1 �
C
0 Dσ

t �hin �
C
0 Dσ

t ~νi

¼ τi þ ~νi � �li;n� 1ðχ̂i1 þ
�li1χi1Þ �

C
0 Dσ

t �hin:
(82) 

Let 

Win ¼
1
2

S2
in þ

1
2
#2

in: (83) 

Taking the fractional-order derivative of Win, one has 

C
0 Dσ

t Win � Sin
C
0 Dσ

t Sin þ #in
C
0 Dσ

t #in: (84) 

Construct the Lyapunov function Wn as 

Wn ¼Wn� 1 þ
XN

i¼1
Win: (85) 

From (82) to (85), one has 

C
0 Dσ

t Wn �
C
0 Dσ

t Wn� 1 þ
XN

i¼1
fSin½τi þ ~νi � �li;n� 1ðχ̂i1 þ

�li1χi1Þ �
C
0 Dσ

t �hin�

þ #in
C
0 Dσ

t #ing:

(86) 

The ETC scheme is designed as 

τiðtÞ ¼ φiðt
i
kÞ;"t 2 ½ti

k; t
i
kþ1Þ; (87) 

φiðtÞ ¼ αin � mð1Þi tanhð
Sinmð1Þi
2i
Þ (88) 

and 

ti
kþ1 ¼ infft : jzij � að1Þi e� að2Þi t þmð2Þi g; (89) 

where að1Þi > 0, að2Þi > 0, 2i > 0, mð1Þi > 0, mð2Þi > 0 satisfying mð1Þi > að1Þi þmð2Þi are 
known parameters, αin is the virtual controller and zi ¼ φi � τi is the sampling 
error. When the above trigger condition (89) is satisfied, the control signal is 
updated and remains constant within the next time interval.

Similar to Wang and Dong (2022a), one has 
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τiðtÞ ¼ φiðtÞ � λiðtÞða
ð1Þ
i e� að2Þi t þmð2Þi Þ; (90) 

where λiðtÞ is a continuous function satisfying jλiðtÞj � 1.
Thus, 

� λiðtÞða
ð1Þ
i e� að2Þi t þmð2Þi Þ � að1Þi þmð2Þi <mð1Þi ; (91) 

which means that 

Sinτi � SinðφiðtÞ þmð1Þi Þ

� Sin½αin � mð1Þi tanhð
Sinmð1Þi
2i
Þ þmð1Þi �

� Sinαin þ [2i:

(92) 

Substituting (58) and (92) into (86) yields that 

C
0 Dσ

t Wn �
C
0 Dσ

t Wn� 1 þ
XN

i¼1
fSin½αin þ ~νi � �li;n� 1ðχ̂i1 þ

�li1χi1Þ �
C
0 Dσ

t �hin�

� ð
1

ζin
�

�ς2
in

2νin
Þ#2

in þ
νin

2
þ [2ig:

(93) 

Select the virtual controller αin as 

αin ¼ � binS2β� 1
in � ~νi �

1
2

Sin þ�li;n� 1ðχ̂i1 þ
�li1χi1Þ þ

C
0 Dσ

t �hin; (94) 

where bin > 0 is a design parameter.
From (93) to (94), one gets 

C
0 Dσ

t Wn �
XN

i¼1
f� a0jj~χijj

2
�
XΞ

j¼1

bijS
2β
ij

ðk2
ij � S2

ijÞ
β �

Xn

j¼Ξþ1
bijS

2β
ij þ

ρi
γi

~�i�̂i

þ ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi �

Xn

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ij

þ
Xn

j¼2

νij

2
þ [2ig þHð1Þi :

(95) 

Obviously, 

� a0jj~χijj
2
� �

a0

λmaxðPiÞ
~χT

i Pi~χi: (96) 

Using Lemma 2.12, one has 
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�
XΞ

j¼1

bijS
2β
ij

ðη2
ij � S2

ijÞ
β < �

XΞ

j¼1
bijðlog

η2
ij

η2
ij � S2

ij
Þ

β
: (97) 

According to Lemma 2.4, one has 

ρi
γi

~�i�̂i ¼
ρi
γi

~�ið�i � ~�iÞ � �
ρi

2γi

~�2
i þ

ρi
2γi

�2
i : (98) 

Substituting (96)–(98) into (95), one gets 

C
0 Dσ

t Wn �
XN

i¼1
f�

a0

λmaxðPiÞ
~χT

i Pi~χi �
XΞ

j¼1
bijðlog

η2
ij

η2
ij � S2

ij
Þ

β
�
Xn

j¼Ξþ1
bijS

2β
ij

�
ρi

2γi

~�2
i �

Xn

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ij þ ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi

þ
ρi

2γi
�2

i þ
Xn

j¼2

νij

2
þ [2ig þ Hð1Þi :

(99) 

Using Lemma 2.6, one gets 

11� β � ð
a0

λmaxðPiÞ
~χT

i Pi~χiÞ
β
� ð1 � βÞβ

β
1� β þ

a0

λmaxðPiÞ
~χT

i Pi~χi; (100) 

which means that 

�
a0

λmaxðPiÞ
~χT

i Pi~χi � � ð
a0

λmaxðPiÞ
~χT

i Pi~χiÞ
β
þ ð1 � βÞβ

β
1� β: (101) 

Similarly, 

�
ρi

2γi

e�2
i � � ð

ρi
2γi

e�2
i Þ

β
þ ð1 � βÞβ

β
1� β; (102) 

and 

�
Xn

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ij � � f
Xn

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ijg
β
þ ð1 � βÞβ

β
1� β:

(103) 

Substituting (101)–(103) into (99), one gets 
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C
0 Dσ

t Wn �
XN

i¼1
f� ð

a0

λmaxðPiÞ
~χT

i Pi~χiÞ
β
�
XΞ

j¼1
bijðlog

η2
ij

η2
ij � S2

ij
Þ

β

�
Xn

j¼Ξþ1
bijS

2β
ij � ð

ρi
2γi

~�2
i Þ

β
� f
Xn

j¼2
ð

1
ζij
�

�ς2
ij

2νij
�

1
2
Þ#2

ijg
β

þ
ρi

2γi
�2

i þ
Xn

j¼2

νij

2
þ ½1 � 16 tanh2ð

Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi

þ [2i þ 3ð1 � βÞβ
β

1� βg þ Hð1Þi :

(104) 

As a result, it follows from (104) that 

C
0 Dσ

t Wn � � l1Wβ
n þ l2 þ

XN

i¼1
½1 � 16 tanh2ð

Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi; (105) 

where 

l1 ¼ minfð
a0

λmaxðPiÞ
Þ

β
; 2βbi1; � � � ; 2βbiΞ; 2βbi;Ξþ1; � � � ; 2βbin; ρ

β
i ;

2βð
1

ζi2
�

ς2
i2

2νi2
�

1
2
Þ

β

; � � � ; 2βð
1

ζin
�

ς2
in

2νin
�

1
2
Þ

β

g> 0 

and 

l2 ¼
XN

i¼1
f

ρi
2γi

�2
i þ

Xn

j¼2

νij

2
þ 3ð1 � βÞβ

β
1� β þ [2ig þ Hð1Þi > 0 

by selecting appropriate parameters.
Remark 5. Note that the last term 

PN
i¼1½1 � 16 tanh2ð Si1

υiðη2
i1� S2

i1Þ
1
2
Þ�Υi in (105)  

is indefinite. A discussion will be conducted in Section 5 using Lemma 2.9.
Remark 6. The time-varying PSCs are considered in this work rather than 

constant FSCs, which requires computing the fractional-order derivatives of 
the time-varying constraint boundary and then increases the difficulty of 
stability analysis.

To illustrate the previous design, the flowchart of the control system 
structure is shown in Figure 1.
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Stability Analysis and Parameter Selection

Stability Analysis

Theorem 5.1. Consider a FOMAS given in (6). Under Assumption 2.1–2.3, 
virtual control functions (48), (60), (69), (78) and (94), reduced-order state 
observer (23), fractional-order adaptive laws (49) and the ETC mechanism 
(87)–(89), the practical finite-time output tracking can be achieved, i.e., 
jyi � y0j< ε, as t >T�. In addition, the following conditions can be guaranteed:

(i) The PSCs are never breached, i.e., χij

�
�
�

�
�
� � πij; j ¼ 1; � � � ;Ξ

(ii) All the system signals are bounded.
(iii) No Zeno behavior occurs.

Proof. Let’s prove it in two cases.

Case 1: If Si1

ðη2
i1� S2

i1Þ
1
2
‚Ωvi , it follows from Lemma 2.9 that 

1 � 16 tanh2ð Si1

υiðη2
i1� S2

i1Þ
1
2
Þ< 0. Since Υi � 0 by its definition, thus, ½1 �

16 tanh2ð Si1

υiðη2
i1� S2

i1Þ
1
2
Þ�Υi is negative in this case. Then inequality (105) is simpli-

fied as 

C
0 Dσ

t Wn � � l1Wβ
n þ l2: (106) 

According to Lemma 2.7, it follows from (106) that for "t � T�1 , 

Figure 1. The flowchart of the control system structure.
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Wn � ½
l2

l1ð1 � $Þ
�

1
β (107) 

with the settling time 

T�1 ¼ ½W
1� β
0 � ð

l2
l1ð1 � $Þ

Þ
1� β

β �
1
σ � ½

Γð2 � βÞΓð1þ 1
1� βÞΓð1þ σÞ

Γð1þ 1
1� β � σÞl1$

�
1
σ: (108) 

It can be seen from the definition of WnðtÞ that 

1
2

log
η2

ij

η2
ij � S2

ij
� ½

l2
l1ð1 � $Þ

�
1
β; j ¼ 1; . . . ;Ξ: (109) 

Thus, 

jSijj � ηijðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � e� 2½ l2
l1ð1� $Þ

�
1=β

q

� ηijðtÞ; j ¼ 1; . . . ;Ξ: (110) 

Case 2: If Si1

ðη2
i1� S2

i1Þ
1
2
2 Ωvi , one has jSi1j

ðη2
i1� S2

i1Þ
1
2
� 0:2554vi, which means that 

jSi1j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:2554Þ2v2
i η2

i1

1þ ð0:2554Þ2v2
i

s

� ηi1ðtÞ: (111) 

From the definition of Υi, let 0 � Υi � �Υi with �Υi being a positive constant. 
Therefore, 

0< ½1 � 16 tanh2ð
Si1

υiðη2
i1 � S2

i1Þ
1
2
Þ�Υi < �Υi: (112) 

Then, (105) can be rewritten as 

C
0 Dσ

t Wn � � l1Wβ
n þ l02; (113) 

where l02 ¼ l2 þ
PN

i¼1
�Υi.

Similar to the Case 1, for "t � T�2 , 

Wn � ½
l02

l1ð1 � $Þ
�

1
β (114) 

with the settling time 

T�2 ¼ ½W
1� β
0 � ð

l02
l1ð1 � $Þ

Þ
1� β

β �
1
σ � ½

Γð2 � βÞΓð1þ 1
1� βÞΓð1þ σÞ

Γð1þ 1
1� β � σÞl1$

�
1
σ: (115) 

According to the Case 1 and Case 2, it can be obtained from (110) and (111) 
that jSi1j � ηi1ðtÞ. Let S1 ¼ ½S11; . . . ; SN1�

T , �η1 ¼ maxfη11; . . . ; ηN1g and 
δ ¼ ½y1 � y0; . . . ; yN � y0�

T . Equation (31) can be rewritten in vector form as 
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S1 ¼ ðL þ BÞδ. It follows from jSi1j � ηi1 that jjS1jj �
ffiffiffiffi
N
p

�η1. Then, one gets 

jyi � y0j � jjδjj � jjS1jj

σminðLþBÞ
�

ffiffiffi
N
p

�η1
σminðLþBÞ

. Therefore, the practical finite-time 
output tracking can be achieved.

Since (113) in Case 2 has the same form as (106) in Case 1, the following 
proof only considers Case 1 and Case 2 can be similarly proved.

i). According to Assumption 2.2, jy0ðtÞj � q0. Thus, jχi1j � jjδjj þ jy0j

�
jjS1jj

σminðLþBÞ
þ jy0j �

ffiffiffi
N
p

�η1
σminðLþBÞ

þ q0. Choosing ηi1ðtÞ �
σminðLþBÞðπi1� q0Þffiffiffi

N
p , one 

has jχi1j � πi1ðtÞ.
According to (107), one has 

~χT
i Pi~χi � ½

l2
l1ð1 � $Þ

�
1
β: (116) 

Thus, 

j~χijj � jj~χijj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½l2=ðl1ð1 � $ÞÞ�
1
β

λminðPiÞ

s

; j ¼ 2; . . . ; n: (117) 

Similarly, 

j#ijj �
ffiffiffi
2
p
½

l2
l1ð1 � $Þ

�
1

2β; j ¼ 2; . . . ; n: (118) 

By the boundedness of αi1, one has jαi1j � �bi1 with �bi1 > 0 being 
a constant. Since χi2 ¼ Si2 þ #i2 þ ~χi2 þ αi1 þ�li1yi, it follows from (110), 
(117) and (118) that jχi2j � jSi2j þ j#i2j þ j~χi2j þ jαi1j þ�li1jyij � ηi2 

þ
ffiffiffi
2
p
½ l2
l1ð1� $Þ�

1
2β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l2=ðl1ð1� $ÞÞ�1=β

λminðPiÞ

r

þ �bi1 þ�li1πi1: Choosing ηi2ðtÞ � πi2ðtÞ

�
ffiffiffi
2
p
½ l2
l1ð1� $Þ�

1
2β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l2=ðl1ð1� $ÞÞ�1=β

λminðPiÞ

r

� �bi1 � �li1πi1, we have jχi2j � πi2ðtÞ. 

Similarly, we can obtain that jχijj � πijðtÞ by choosing 

ηijðtÞ � πijðtÞ �
ffiffiffi
2
p
½ l2
l1ð1� $Þ�

1
2β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l2=ðl1ð1� $ÞÞ�1=β

λminðPiÞ

r

� �bi;j� 1 � �li;j� 1πi1, 

j ¼ 3; . . . ;Ξ. Therefore, the PSCs are never breached.
ii). According to (107), one has 

1
2

S2
ij � ½

l2
l1ð1 � $Þ

�
1
β; j ¼ Ξþ 1; . . . ; n: (119) 

Then, 

jSijj �
ffiffiffi
2
p
½

l2
l1ð1 � $Þ

�
1

2β; j ¼ Ξþ 1; . . . ; n: (120) 
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Similarly, 

j~�ij �
ffiffiffiffiffiffi
2γi

p
½

l2
l1ð1 � $Þ

�
1

2β: (121) 

From (110), (117), (118), (120) and (121), we obtain that ~χij, #ij, 
j ¼ 2; . . . ; n, the error variables Sij, j ¼ 1; . . . ; n, and ~�i are bounded. �̂i is 

also bounded due to j�̂ij � j�ij þ j~�ij � j�ij þ
ffiffiffiffiffiffi
2γi

p
½ l2
l1ð1� $Þ�

1
2β. Since 

χi;Ξþ1 ¼ ~χi;Ξþ1 þ Si;Ξþ1 þ #i;Ξþ1 þ αiΞ þ�liΞyi, one has jχi;Ξþ1j � j~χi;Ξþ1j þ

jSi;Ξþ1j þ j#i;Ξþ1j þ jαiΞj þ�liΞjyij �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½l2=ðl1ð1� $ÞÞ�
1
β

λminðPiÞ

r

þ 2
ffiffiffi
2
p
½ l2
l1ð1� $Þ�

1
2β þ �biΞ 

þ�liΞπi1, thus χi;Ξþ1 is bounded. Similarly, χij; j ¼ Ξþ 2; . . . ; n, are bounded. 
Since the boundedness of χi1, χij and ~χij, χ̂i;j� 1 is also bounded due to 
χ̂i;j� 1 ¼ χij � ~χij �

�li;j� 1χi1, j ¼ 2; . . . ; n. As a result, all the system signals are 
bounded.

iii). We just need to prove that ti
kþ1 � ti

k � Ti > 0. Computing the fractional- 
order derivative of jziðtÞj ¼ jφiðtÞ � τiðtÞj, we have 

C
0 Dσ

t jzij ¼
C
0 Dσ

t
ffiffiffiffiffiffiffiffiffiffiffi
zi � zi
p

¼ signðziÞ
C
0 Dσ

t zi � j
C
0 Dσ

t φij: (122) 

It is inferred from (88) that C
0 Dσ

t φiðtÞ is continuous on some compact set. 
Therefore, jC0 Dσ

t φiðtÞj � �ci with constant �ci > 0. Noting that jziðti
kÞj ¼ 0 and 

limt!ti
kþ1

ziðtÞj j ¼ að1Þi e� að2Þi ti
kþ1 þmð2Þi , we obtain that the lower bound Ti of 

ti
kþ1 � ti

k satisfies Ti �
að1Þi e� að2Þi ti

kþ1þmð2Þi
�ci

> 0, which implies that the Zeno beha-
vior is ruled out.□

Parameter Selection

The guideline of the parameter selections is given as follows:
Consider an FOMAS with the fractional-order σ satisfying 0< σ < 1. The 

leader signal y0ðtÞ satisfying Assumption 2.2, the saturation limits τiM and τiM, 
and the time-varying constraint boundary function πijðtÞ, i ¼ 1; . . . ;N, j ¼
1; . . . ;Ξ; are given. For a given directed interconnected graph satisfying 
Assumption 2.1, the matrices W, D, L and B can be obtained.

Step 1: Set the initial values of χijð0Þ, �̂ið0Þ, ~νið0Þ, i ¼ 1; . . . ;N, j ¼ 1; . . . ; n, 
and χ̂ijð0Þ, i ¼ 1; . . . ;N, j ¼ 1; . . . ; n � 1, satisfying χijð0Þ � πijð0Þ for 
j ¼ 1; . . . ;Ξ, and χ̂i;j� 1ð0Þ � πijð0Þ for j ¼ 2; . . . ;Ξ. The initial state �hijð0Þ of 
the fractional-order filter satisfying �hijð0Þ ¼ αi;j� 1ð0Þ, i ¼ 1; . . . ;N, 
j ¼ 2; . . . ; n, can be obtained by (48), (60), (69) and (78).
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Step 2: Define fuzzy If-Then rules, select appropriate fuzzy membership 
functions and obtain the fuzzy basis functions. Thus, a FLS can be constructed.

Step 3: Choose parameters �lij, i ¼ 1; . . . ;N, j ¼ 1; . . . ; n � 1, such that 
matrix Ai is Hurwitz. For a given matrix Qi > 0, solve the Lyapunov equation 
AT

i Pi þ PiAi ¼ � Qi to obtain a positive definite matrix solution Pi.
Step 4: Select appropriate boundary function ηijðtÞ, i ¼ 1; . . . ;N, 

j ¼ 1; . . . ;Ξ, satisfy ηi1ðtÞ �
σminðLþBÞðπi1� q0Þffiffiffi

N
p and ηijðtÞ � πijðtÞ

�
ffiffiffi
2
p
½ l2
l1ð1� $Þ�

1
2β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l2=ðl1ð1� $ÞÞ�1=β

λminðPiÞ

r

� �bi;j� 1 � �li;j� 1πi1, j ¼ 2; . . . ;Ξ. 

Step 5: Select suitable constants β, bij, σi, γi, ai for j ¼ 1; . . . ; n, and νij, ζij for 
j ¼ 2; . . . ; n, to meet 0< β< 1, bij > 0, σi > 0, γi > 0, ai > 0 for j ¼ 1; . . . ; n, and 
1
ζij
�

�ς2
ij

2νij
� 1

2 > 0 for j ¼ 2; . . . ; n.
Step 6: Solve the fractional differential equations according to system in (6), 

state observer in (23), fractional-order filter in (35) and the fractional-order 
adaptive laws in (49), in which the virtual controllers are calculated according 
to (48), (60), (69), (78) and (94), the ETC scheme according to (87) and (89) 
with the intermediate control function (88), and the saturated controller 
according to (7).

Example

An example is given in this section to demonstrate the correctness of the 
proposed control algorithm. In this example, the considered FOMASs consist 
of a leader and four followers, labeled by 0; 1; 2; 3; 4, respectively. The inter-
connection graph of five agents is given in Figure 2.

For simplicity, assume that all edges of the interconnected graph have 
weights of 1. Thus, B ¼ diagf1; 0;1; 0g, D ¼ diagf0; 1; 1; 1g and 

W ¼

0 0 0 0
1 0 0 0
0 0 0 1
1 0 0 0

2

6
6
4

3

7
7
5;L ¼ D � W ¼

0 0 0 0

� 1 1 0 0

0 0 1 � 1

� 1 0 0 1

2

6
6
4

3

7
7
5:

Consider a FOMAS consisting of four single-machine-infinite bus power 
subsystem (Song et al. 2019) described by 

C
0 Dσ

t φi ¼ �i þ gi1 þ ri1ðtÞ;
C
0 Dσ

t �i ¼ satiðτiÞ �
Fi
Ji
�i �

PiM
Ji

sinðφiÞ þ
Pim
Ji
þ Pia

Ji
cosðκitÞ

þgi2 þ ri2ðtÞ; i ¼ 1; 2; 3; 4:

8
<

:
(123) 

Let χi1 ¼ φi, χi2 ¼ �i, dð1Þi ¼
Fi
Ji

, dð2Þi ¼
PiM
Ji

, dð3Þi ¼
Pim
Ji

, dð4Þi ¼
Pia
Ji

, 
gi1 ¼ 0:3 cosðπχi1Þ cosðπχi2Þ, gi2 ¼ 0:2 sinðπχi1Þ sinðπχi2Þ, ri1ðtÞ ¼ 0:2 
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sinð100tÞ, ri2ðtÞ ¼ 0:3 cosð100tÞ and set dð1Þi ¼ 0:02, dð2Þi ¼ 1, dð3Þi ¼ 0:2, 
dð4Þi ¼ 0:2593, κi ¼ 1. System (123) can be rewritten as 

C
0 Dσ

t χi1 ¼ χi2 þ 0:3 cosðπχi1Þ cosðπχi2Þ þ 0:2 sinð100tÞ;
C
0 Dσ

t χi2 ¼ satiðτiÞ � 0:02χi2 � sinðχi1Þ þ 0:2þ 0:2593 cosðtÞ
þ0:2 sinðπχi1Þ sinðπχi2Þ þ 0:3 cosð100tÞ; i ¼ 1; 2; 3; 4;

8
<

:
(124) 

where σ ¼ 0:98. The leader signal is y0 ¼ sinð0:5tÞ � cosð1:5tÞ. χi1; i ¼
1; 2; 3; 4; are required to be constrained by time-varying boundaries 
π11 ¼ 3e� t þ 2, π21 ¼ 4e� t þ 3:4, π31 ¼ 4e� t þ 3:4 and π41 ¼ 4e� t þ 3:4, 
respectively. χi2; i ¼ 1; 2; 3; 4; are unconstrained.

The saturated controller satiðτiÞ given as 

satiðτiÞ ¼

15; τi � 15;
τi; � 15< τi < 15;
� 15; τi � � 15:

8
<

:
(125) 

Choose parameters β ¼ 99=101, b11 ¼ 25, b21 ¼ b31 ¼ b41 ¼ 15, bi2 ¼ 10, 
γi ¼ 8, ρi ¼ 0:2, ai ¼ 1, ζi2 ¼ 0:05, �li1 ¼ 1, að1Þ1 ¼ að1Þ3 ¼ 1, að1Þ2 ¼ að1Þ4 ¼ 2, 
að2Þ1 ¼ að2Þ3 ¼ 0:01, að2Þ2 ¼ að2Þ4 ¼ 0:1, mð1Þ1 ¼ mð1Þ3 ¼ 3, mð1Þ2 ¼ mð1Þ4 ¼ 4, 
mð2Þi ¼ 1:5, 2i ¼ 1. Set initial states χ11ð0Þ ¼ � 0:5, χ21ð0Þ ¼ � 0:2, 
χ31ð0Þ ¼ 0:5, χ41ð0Þ ¼ 0:1, χi2ð0Þ ¼ χ̂i1ð0Þ ¼ �̂ið0Þ ¼ 0.

The simulation results of example are shown in Figures 3–12. The curves of 
yiðtÞ and y0ðtÞ are shown in Figure 3. The curves of the tracking errors yi � y0 
are given in Figure 4. It can be watched from Figures 3–4 that yiðtÞ ¼ χi1 can 
track y0ðtÞ in a short time with a good tracking performance. Figures 5–6 
provide the trajectories of the constrained state χi1 and the local consensus 
error Si1, respectively. It can be watched from Figures 5–6 that they never 

0

1

2

3

4

Figure 2. Directed interaction graph.
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exceed their restricted boundaries πi1 and ηi1. Figure 7 depict the trajectories of 
the system state χi2 and its estimation χ̂i1. It can be seen from Figure 7 that they 
are bounded. Figures 8–11 give the trajectories of τiðtÞ and its saturation input 
satiðτiðtÞÞ. It can be seen from Figures 8 to 11 that when the required control 
input are large, the actual saturation control inputs works well. The inter-event 

0 2 4 6 8 10 12 14 16 18 20

time(sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5
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Figure 3. The trajectories of y1, y2, y3, y4 and y0.
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Figure 4. The curves of the tracking errors yi � y0.
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time ti
kþ1 � ti

k and the trigger time instant ti
k of four agents are shown in 

Figure 12. Obviously, the Zeno behavior is excluded successfully.
To highlight the advantages of this work, a comparison with ETC scheme 

proposed in Yang et al. (2022) is conducted with the same parameters. 

Figure 5. The trajectories of the system states χi1 with constraints.

Figure 6. The trajectories of the error variables Si1 with constraints.
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Figure 13 shows the trajectories of yi and y0 with ETC scheme proposed in 
Yang et al. (2022). The trigger numbers of the ETC scheme proposed in Yang 
et al. (2022) and this paper are shown in Table 1. As can be seen from Figures 3 
and 13 and Table 1, even though more general cases are considered in this 
paper, there is no significant difference in control performance, but the 
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Figure 7. The trajectories of the system states χi2 and its estimation χ̂i1.
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Figure 8. The curves of the controller τ1ðtÞ and its saturation input sat1ðτ1ðtÞÞ.

e2166689-284 L. HU AND H. YU



number of triggers using the ETC scheme proposed in this paper is signifi-
cantly less than that using the ETC scheme proposed in Yang et al. (2022)

Remark 7. The saturation controller (7) is realized with its input defined in 
(87)–(89). The initial values of the constrained states should be set within the 
constraint boundaries. Under the proposed control scheme, all error variables 
converging to a neighborhood of the origin in finite time is ensured. In 
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Figure 9. The curves of the controller τ2ðtÞ and its saturation input sat2ðτ2ðtÞÞ.
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Figure 10. The curves of the controller τ3ðtÞ and its saturation input sat3ðτ3ðtÞÞ.
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addition, as can be seen from Figures 8 to 11, although the required control 
feedback is large, the actual saturation control can still achieve satisfactory 
control effect.
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Figure 11. The curves of the controller τ4ðtÞ and its saturation input sat4ðτ4ðtÞÞ.
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Figure 12. The inter-event time of τiðtÞ.
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Figure 13. The trajectories of y1, y2, y3, y4 and y0 with ETC scheme proposed in Yang et al. (2022).
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Table 1. Trigger numbers for agents.
Agent 1 Agent 2 Agent 3 Agent 4

ETC scheme in Yang et al. (2022) 889 443 504 461
ETC scheme proposed in this paper 483 396 381 423
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Conclusion

An output feedback-based fuzzy adaptive finite-time ETC problem is investi-
gated in this paper for a FOMAS with PSCs and IS in directed networks. 
A reduced-order state observer is designed to estimate the unmeasurable 
states. FLS is used to tackle the nonlinearity and the unknown parameters 
are estimated adaptively. A fractional-order filter is constructed to avoid 
repeatedly calculating the high-order derivatives of the virtual controllers. By 
introducing an appropriate BLF, the designed ETC scheme can ensure state 
constraints are not breached and the communication resources can be 
reduced. By analyzing the stability, it is guaranteed that finite-time tracking 
can be achieved with a bounded error, all signals of system are bounded and 
the Zeno behavior does not occur. Finally, a numerical example is given to 
demonstrate the effectiveness of the proposed control scheme.
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