
 
 
 

___________________________________________________________________________________________ 
 
*Corresponding author: Email: geoffreys@sherinstitute.com; 
 

British Journal of Medicine & Medical Research  
4(15): 2910-2930, 2014 

 
 SCIENCEDOMAIN international 

                     www.sciencedomain.org 

 
 

A Review of Non-invasive and Invasive Embryo 
Characteristics to Indentify the Most Competent 

Embryo for Transfer 
 

Dirk Kotze1*, Thinus F. Kruger2, Geoffrey Sher3 and S. Oehninger4 
 

1Jones Institute, Norfolk, Virginia, USA. 
2Department of Obstetrics and Gynaecology, Tygerberg Hospital and Stellenbosch 

University, Tygerberg, South Africa. 
3University of Nevada, School of Medicine (USA); Executive Medical Director: Sher 

Institute for Reproductive Medicine, Las Vagas, USA. 
4Department of Obstetrics and Gynecology; Director, The Jones Institute for Reproductive 

Medicine | EVMS Medical Group; 601 Colley Avenue, Norfolk, VA 23507-2007, USA. 
 

Authors’ contributions  
 

This work was carried out between all authors. Author DK designed the study, wrote the 
protocol and wrote the first draft of the manuscript, managed the analyses of the study and 

performed the literature searches. The statistical analysis was performed by Dr. Lombard the 
biostatistician for the University of Stellenbosch. The others authors TFK promoter and GS 

co-promoter, SO evaluated the article and made suggestions. All authors read and approved 
the final manuscript.  

 
 
 

Received 5 th December 2013 
Accepted 1 st February 2014 
Published 10 th March 2014  

 
 
ABSTRACT 
 

Identifying “competent embryos” (those with the greatest potential to develop into normal 
concept) for transfer to the uterus has been a matter of the highest priority and the 
subject of both hot debate and ongoing research, since the very inception of human in 
vitro fertilization (IVF). A thorough literature search was performed to evaluate the 
correlation between pronuclear morphology, early embryo cleavage speed, cleavage 
stage embryos, embryo/blastocyst development, “omics”, sHLA-G expression, PGS, and 
implantation/pregnancy-generating potential in ART.  Based on available literature, an 
array/combination of laboratory observations could assist the scientist with embryo 
selection. The pronuclear stage morphology, the early embryo division, cleavage embryo 
stage and quality of the day 3 embryos provides limited guidance.  We conclude that use 
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of (invasive) PGS in specific patient populations is appropriate; however, more data are 
needed to determine its true value for overall impact in ART. Non-invasive selection of 
blastocysts on day 5 with optimal sHLA-G expression provides a very high degree of 
confidence to yield a viable pregnancy and potentially reduce multiple gestations.  
 

 
Keywords:  Morphology; omics; soluble human leu kocyte antigen-G (sHLA-G); blastocyst; 

cytogenetics. 
 
1. INTRODUCTION 
 
Since the inception of Assisted Reproductive Technology (ART) more than three decades 
ago, ovulation induction techniques, embryo culture conditions, and culture media and 
embryo transfer methods have been constantly evolving. However, identifying the embryos 
with optimized implantation competence for transfer, those that have the highest probability 
of developing into a live baby, has been an issue of debate and continuous research. 
Currently embryo selection is predominantly based on morphological appearance. Several 
developmental characteristics have been proposed as helpful criteria by which to best 
identify viable embryos. Earlier studies reported that morphological evaluations will furnish 
clues that enhance the ability to identify the best embryos for transfer [1]. However, all these 
methods have significant limitations when it comes to predicting the likelihood of successful 
implantation and live births. Furthermore, morphological evaluation does not fully reflect the 
developmental potential of a pre-implantation embryo as described by Munne and Cohen [2].  
 
The presence of two pronuclei (2PN) has been the standard for assessing “normal” 
fertilization and has been associated with normal embryo development [3] and early stages 
of RNA-synthesis [4]. It has been postulated that fast cleaving embryos resulted in a higher 
degree of developmental competence than slower ones. Shoukir et al. [1] defined “early 
cleavage” as the timing at which the first mitotic division post fertilization takes place - this 
phenomenon has been extensively studied to be used as additional criteria for embryo 
selection prior to transfer and as a predictor of embryo development potential and improved 
implantation/pregnancy rates. Embryo scoring was initially performed on a single 
microscopic assessment done on day 2 (post-fertilization) embryos.  In 2000 Desai et al. [5] 
introduced the first day 3 embryo score and in  2001, Fisch et al. [6] introduced a graduated 
embryo scoring (GES) system where embryos were individually cultured so as to allow for 
sequential microscopic assessment and scored during  their development stages from day 1 
through day 3 of culture. Each day’s embryo total cumulative score was out of 100 points. 
Those with a GES-score of greater than 70 were shown to have the greatest implantation 
and pregnancy potential. Jurisicova et al. [7,8] reported that pre-implanted human embryos 
express soluble Human Leukocyte Antigen-G (sHLA-G). Fuzzi et al. [9] thereupon 
demonstrated the presence of sHLA-G in the media surrounding grouped embryos and 
suggested that this could be used as a non-invasive biochemical marker by which to identify 
embryos with the highest implantation potential. In 2010, Kotze et al. [10] published the first 
prospective randomized study to conclude that higher ongoing pregnancies were achieved 
when embryos with a GES-score of >70 with optimal sHLA-G expression was transferred. 
(Level II evidence)  Recently, these findings have been confirmed by a retrospective multi-
center data set of 2040 ICSI patients [11].  
 
Pre-implantation Genetic Diagnosis (PGD) was introduced in 1990 by Handyside et al. [12].  
Genomics using Fluorescent In situ Hybridization (FISH) has been applied to identify 
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aneuploidy and known single-gene disorders in order to prevent their transmission. 
Extended embryo culture to the blastocyst stage has been promoted by Gardner et al. 
[13,14]. The issue of transferring cleaved versus blastocyst stage embryos has been 
controversial at best.  However, a meta-analysis by Papanikolaou et al. [15] compared 
clinical pregnancy rate, multiple pregnancy and live birth rate outcomes where cleaved 
versus blastocyst stage embryos were transferred. They reported both clinical pregnancy 
and live birth rates to be significantly higher in the latter group. (Level I evidence) 
 
The goal of this article was to review a wide array of available evidence in order to determine 
if morphological, biochemical and/or genetic features of an embryo are predictive of its 
implantation and pregnancy potential in ART. Each criterion will be addressed under the 
headings a) non-invasive and b) invasive methods. 
 
2. NON-INVASIVE METHODS 
 
2.1 Pronuclear Morphology 
 
The detection of two pronuclei has been used as the first objective evidence of early stage of 
RNA-synthesis [4] and that fertilization might subsequently lead to orderly embryo 
development [3]. Additional evaluation of pronuclei such as: a) their positioning within the 
ooplasm b) size c) nucleoli distribution d) orientation with respect to the polar bodies and, e) 
the presence of a cytoplasmic halo has also been attributed with prognostic significance. 
Several studies reported on the positive correlation between pronuclear morphology and 
embryo morphology/development [16-27]. Contradicting however, other studies have 
reported no correlation between pronuclear morphology and embryo morphology/ 
development [28,29,30,31,32].  
 
The associations between pronuclear morphology and pregnancy rates were controversial at 
best: the following studies reported a positive correlation between pronuclear morphology 
and implantation/pregnancy outcome in ART, [24,28-36] and was confirmed with a 
prospective study by Montag & Van der Ven [38]. Contradicting however, other studies have 
reported no correlation between pronuclear morphology and implantation/pregnancy 
outcome in ART: [16,25,26,37-42]. 
 
A few studies have reported on the positive correlation between pronuclear morphology and 
embryo ploidy, [20,33,43-48].  However, there was a contradicting report by Arroyo et al. [42] 
which found no association between pronuclear morphology and genetic status of an 
embryo.  
 
2.2 Early Zygote Cleavage Evaluation  
 
Several studies have also been published on the topic of “early cleaving/fast dividing” 
embryos and its subsequent effect on embryo morphology and implantation/pregnancy 
outcome in vitro. Moreover, the effect of early cleaving zygotes on subsequent embryo 
development has been reported. Fenwick et al. [49] associated early cleavage with 
increased developmental potential, Van Montfoort et al. [50], associated early cleavage with 
improved blastocyst development and Fu et al. [51] associated early cleavage with improved 
embryo quality. Furthermore, retrospective studies reported a positive correlation between 
these “fast cleavers” and implantation and pregnancy outcome [1,50-61]. It is important to 
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note that prospective studies  by Isiklar et al. [62] and Brezinová et al. [63], confirmed the 
findings from the above mentioned retrospective studies. (Level III-2 evidence) 
 
On the other hand, contradicting prospective studies by Brezinová et al. [64] and Chen and 
Kattera [38] reported that the transfer of early cleaved embryos did not benefit 
implantation/pregnancy rates. In 2008, Sundström and Saldeen [65] confirmed that the 
transfer of early cleaved embryos did not benefit ART outcomes. As with pronuclear stage 
embryo morphology there is no consensus in the international literature on potential 
advantages/disadvantages of early embryo cleavage. 
 
2.3 Developmental Stage: Blastocyst versus Cleavage Stage Transfers  
 
Until recently, the vast majority of programs favored the transferring of cleaved embryos.  
However, the development of extended culture systems that allow embryos to grow to 
blastocysts [Gardner et al. [14,66] and Pool [67] promises to change this. Since blastocysts 
tend to have a higher implantation/pregnancy-outcome potential compared to earlier, 
cleaved embryos, more and more IVF practitioners are transferring blastocysts preferentially, 
hoping that this paradigm will permit the transfer of fewer embryos, without negatively 
impacting success rates and at the same time reducing  the risk of IVF multiple pregnancies.  
 
2.3.1 Extended embryo culture has advantages 
 
Extended culture yields blastocysts (a more developmentally advanced embryo) that 
theoretically have an improved implantation potential. Fewer embryos are needed for 
transferred and could potentially reduce multiple pregnancies. It has been reported that 
embryos that fail to reach the blastocyst stage of development are most often aneuploid and 
are thus incapable of developing into a normal conceptus [68].Magli et al. [69] reported that 
many day 3 embryos with a “normal” morphology are actually chromosomally abnormal. 
Alfarawati et al. [70,71] speculated that extended culture of embryos to the blastocyst stage 
could be used to eliminate many chromosomally abnormal, “incompetent” embryos prior to 
transfer. In contrast, Kotze et al. [11], reported that 67% of aneuploid oocytes did progress 
and develop into blastocysts. Therefore, reaching this stage of development by no means 
provides assurance that embryos are euploid and/or “competent”.   
 
Blastocyst grading systems were developed by Cohen et al. [72], Dokras et al. [73], Gardner 
and Schoolcraft [74], Richter et al. [75] and Kovacic et al. [76]. These above mentioned 
grading systems accounts for blastocoel’s expansion, characteristics of the inner cell mass 
(ICM), and the trophectoderm (TE), respectively.  
 
In 2000, Balaban et al. [77] reported that the transfer of morphologically good quality 
blastocysts were associated with improved implantation rates as compared to when 
morphologically “poor quality blastocysts” were transferred. Racowsky et al. [78] suggested 
that keeping at least two, but preferably three good quality eight-cell (day 3) in extended 
culture, would likely yield sufficient blastocysts for transfer and/or cryopreservation.  
Papanikolaou et al. [15] suggested that ideally at least four good quality day 3 embryos 
should remain in  extended culture  in order to be more assured that there will be “good 
morphologic blastocysts” available for transfer and that in so doing  the  chance of achieving 
a live birth would be significantly improved.  
 
Several studies have reported improved implantation/pregnancy rates when transferring 
blastocysts as compared to cleaved embryos: Blake et al. [79] and Mangalraj et al.  [80]. A 
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meta-analysis was performed by Papanikolaou et al. [15] to compare clinical pregnancy rate, 
multiple pregnancy and live birth rate outcomes where cleaved versus blastocyst stage 
embryos were transferred and found both clinical pregnancy and live birth rates to be 
significantly higher in the latter group. (Level I evidence) 
 
Controversially, some studies have shown no difference in ART outcome when comparing 
blastocyst with cleaved embryo transfers [81,82]. (Level II evidence) In a surprisingly 
contradiction, Levron et al. [83] reported a decrease in implantation and pregnancy rate 
associated with the transfer of blastocysts as compared to cleaved embryos and suggested  
that blastocyst transfers had a negative effect on IVF outcome. (Level II evidence) 
 
Criniti et al. [84] and Zech et al. [85], suggested that transferring a single blastocyst at a time 
would virtually eliminate the risk of multiple pregnancies.  Furthermore, they reported that 
cryopreservation of supernumerary blastocysts and transferring them subsequently in 
hormone-prepared frozen/thawed cycles would not compromise the overall live birth rate. 
Similar suggestions were reported at the American Society for Reproductive Medicine’s, 
62nd Annual Meeting [86]. 
 
2.3.2 Genomics, transcriptomics, proteomics and metabolomics and its role in ART 
 
Lately, advances in genomics, transcriptomics, proteomics, and metabolomics suggest a 
potential role for these novel techniques in aiding embryo selection.  
 
Proteomics - (non-invasive) - describes the changes in all proteins expressed and translated 
from a single genome. Currently little is known about the genome and/or proteome of human 
gametes or the pre-implantation embryo. The dialogue between the developing embryo and 
the maternal endometrial environment needs a much better understanding. Proteomics 
technology might be a futuristic tool to select competent embryos for transfer. Proteomics 
alone involves several sophisticated techniques including imaging, mass spectrometry and 
bio-informatics to identify, quantify and characterize a proteome. Continuous research can 
lead to profiling and understanding the proteome of individual human oocytes and embryos, 
as well as the proteins produced by the embryo into the surrounding medium (the 
secretome) by Katz-Jaffe and McReynolds [87]. Furthermore, the identification of proteins 
that are involved in oocyte maturation, embryo development and implantation could lead to 
further improvements in assisted reproduction techniques as well as the development of new 
diagnostic tests as reported by Nyalwidhe et al.  [88]. Finally, proteomics may contribute in 
the design of a non-invasive viability assay to assist in the selection of embryos for transfer 
in human assisted reproduction. 
 
Transcriptomics - (non-invasive) - studies that evaluate the cumulus mass (surrounding 
oocytes), for the presence of specific messenger ribonucleic acid (mRNA). Katz-Jaffe et al.  
[89] reported that when these embryos were transferred, live births resulted compared with 
those that failed to deliver. Assou et al. [90,91] in a review study reported on the cumulus 
cells (CCs) transcriptomic profiling that predict oocyte and embryo competence. Using 
reverse transcription polymerase chain reaction (RT-PCR) or deoxyribonucleic acid (DNA) 
microarrays, evidence of genes expressed in CCs might present potential biomarkers to 
predict embryo quality and pregnancy outcomes.  
 
Proteomics - (non-invasive) - is the measurement of amino acids or proteins in spent culture 
media. In 2004, Brison et al. [92] found that changes in the levels of some amino acids are 
associated with implantation rates. Sturmey et al. [93] reviewed amino acid profiling as 
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possible predictor early embryo viability. Amino acid supplementation of embryo culture 
media and the role of amino acids in early embryo development were reviewed as well as 
methods to quantify amino acid depletion and production by single embryos. They concluded 
that improved metabolic assay methods could provide great potential to improve the 
selection of single embryos for transfer in vitro.  
 
Metabolomics – (non-invasive) - evaluates how the embryo alters its surrounding 
microenvironment and is evaluated in spent culture medium surrounding embryos. Scott et 
al. [94] used a Raman spectroscope to determine if varying spectral patterns predict ongoing 
pregnancies. Initial studies to measure metabolomic changes in the culture medium of 
embryos and oocytes have demonstrated that different types of spectrophotometric tests, 
including Raman and near-infrared (NIR) techniques, are similarly well capable of detecting 
specific changes of the 'secretome' It has been demonstrated that metabolomic 
measurements correlate well with embryo development and morphology assessment. The 
viability index on oocytes/embryos established by metabolomic tests may be a stronger 
predictor for implantation potential than traditional morphological assessment. In 2010, Seli 
et al. 2011, [95] introduced a metabolomic Viability Score and claimed that this score alone 
or in combination with morphologic grading (rather than only using morphology grading) 
potentially improved pregnancy prediction for single embryos transfer on day 5.  Gardner et 
al. reported that glucose consumption by embryos which resulted in a pregnancy was 
significantly higher at the morula and blastocyst stage compared to those that failed to 
develop into a pregnancy [96]. Interestingly, female embryos consumed 28% more glucose 
compared to male embryos. They concluded that a human embryos glucose metabolism 
could be used as selection criteria and hypothesized that male and female human embryos 
differ in their physiology and glucose consumption. In 2011, McReynolds et al. discovered 
the first protein, lipocalin-1, in the secretome of human blastocysts, that is associated with 
chromosome aneuploidy [97]. If confirmed, this finding could potentially eliminate the use of 
invasive PGS-techniques currently available. 
 
2.3.3 Biochemical evaluation non invasive 
 
Soluble HLA-G 
 

• While still poorly understood, the embryo implantation mechanism represents a 
highly complex dialog (cross-talk) between the embryo and the endometrium 
[98,99]. For Implantation to succeed, the local uterine maternal immune system 
must undergo profound adaptations. The human body can identify and discriminate 
against foreign tissue by way of the major histocompatability complex (MHC), 
human leukocyte antigen (HLA) located on the short arm of chromosome six [6].  
When confronted with non-self antigens expressed by the contribution made by a 
different member of the same species MHC evokes T-cell intervention (allo-immune 
response), The embryo is comprised cells made up (in part) by the contribution of 
paternal MHC antigens (in sperm) Once reaching the uterine environment it is 
immediately targeted as being non-self-tissue. Ordinarily one would anticipate that 
this would evoke an MHC-T-cell response that would reject the embryo.  However, 
during pregnancy the immune system develops fetal tolerance [100]. HLA-G 
produced by the extra-villous cyto-trophoblast (the only fetal contact made with 
maternal endometrial cells), confers immuno-tolerance through interaction with 
maternal uterine membrane lymphocytes. This scenario would suggest that HLA-G 
helps protect the developing conceptus from maternal immune response attack. 
HLA-G is expressed by the trophoblast and then by the placenta throughout 
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gestation. It is also present in amniotic fluid.  Soluble HLA-G (a spliced iso-form of 
membrane bound HLA-G) is released into the medium surrounding the early embryo 
in culture where it can be detected and measured sHLA-G, a non-classic type I 
human leukocyte antigen, was first identified in the media surrounding groups of 
embryos and blastocysts in culture by Jurisicova et al. [7,8] and Menicucci et al. 
[101], first identified, sHLA-G (a non-classic type I human leukocyte antigen), in the 
culture media surrounding a group of day 3 embryos. Fuzzi et al. [9] demonstrated 
the presence of sHLA-G in the culture media harboring groups of three day old 
cleaved embryos, correlated both with their cleavage rate and with their overall 
subsequent implantation potential [9]. In 2004, Sher et al.  were able to detect sHLA-
G in the media surrounding day 2 embryos [102].  Hviid et al. [103] postulated that 
the presence of sHLA-G protected the conceptus from destruction by the maternal 
immune response.   

 
As of yet, no consensus has been reached with regard to the best manner by which to 
express sHLA-G in the culture media. In fact some criticism has been leveled regarding 
expressing sHLA-G in terms of optical density (OD) [104-108]. 
 
The detection of soluble HLA-G in culture medium surrounding embryos has been reported 
[8,9,101]. Several studies regarding sHLA-G and its effect on pregnancy outcome have been 
reported since [10,105-107,109,110,111]. A prospective randomized trial by Kotze et al. [10] 
conducted on more than 200 patients, showed a significant benefit in selecting embryos on 
the basis of their early sHLA-G expression while in culture. (Level II Evidence) In a 
multicentre study Kotze et al. [109] confirmed the value of using sHLA-G in the media 
surrounding early embryos in culture to predict embryo implantation and pregnancy-
generating potential following ET. (Level III-2) Sargent et al.  [107] and Vercammen et al.  
[108] performed a retrospective analysis of prior studies that assessed sHLA-G and ART 
outcome.  In a meta-analysis Vercammen et al. [108] reported that embryo selection for 
transfer based upon advance assessment of sHLA-G expression can indeed augment the 
ability to predict IVF outcome, especially if the embryos so tested had a high morphologic 
grade. (Level I) Finally, Rebmann et al. [110] addressed specific issues associated with the 
use of sHLA-G, ELISA protocols.  
 
The expression of SHLA-G by early embryo is a potentially valuable, non-invasive method 
by which to in selecting the most “competent embryos for transfer with the objective of 
limiting the number of embryos transferred while improving implantation and pregnancy rates 
and reducing multiple pregnancies. This potential could be augmented through selective 
transferring a single blastocyst derived from early embryos that expressed optimal sHLA-G 
adequately. 
 
2.3.4 Morphokinetics 
 
Cinematography using different devises: Hoffman Modulation optics Cohen et al.  [111], 
digital imaging system Wright et al.  [112], PolScope real time,  Shen et al.  [21], time lapse 
video cinematography by Payne et al. [113] and more recent, cinematography (time-lapse 
imaging) by Lemmen et al. [114], and scanning electron microscopy (SEM) [115] have been 
reported.  
 
Meseguer et al. [116] and Rubio et al. [117] reported that the continuous monitor of embryo 
development, applying a noninvasive method, increase the precision and sensitivity of 
information obtained. An associations has been established between specific morphokinetic 
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events (during the early cleavage stages of the embryo), and embryo viability and 
implantation potential. They concluded that predictive morphokinetic markers could improve 
embryo selection of a single embryo for transfer. (The above two authors hold a financial 
interest in the “Embryoscope™” deeming this a potential bias group of researchers). 
 
3. INVASIVE METHODS 
 
3.1 Embryo Pre-implantation Genetic Screening (PGS) 
 
Genomics - (invasive) - was used as early as 1990 by Handyside et al. [12] when pre-
implantation diagnosis (PGD) was introduced. Fluorescence in situ hybridization (FISH) has 
been applied to identify aneuploidy and known single-gene disorders and using genomics to 
prevent the transmission genetic disorders. However, the latter did not improve pregnancy 
rates among infertile couples as reported by Mastenbroek et al. [118]. A few years later 
Kallioniemi et al. [119] developed comparative genome hybridization (CGH) to screen the 
whole genome’s DNA in tumors. This technique was modified to study the DNA of single 
cells (like blastomeres) by Voullaire et al.  [120] and Wells et al. [121]. Lately, a more rapid 
technology has been developed, allowing a more rapid and more detailed analysis of PB-I, 
PB-II, day 3 blastomeres and trophectoderm cells, namely array-CGH [122-126].  
 
More recently Treff et al. [127,128] introduced real-time qPCR. 
 
The first successful clinical application of preimplantation genetic diagnosis (PGD) was 
reported by Handyside [12]. Pre-implantation genetic screening (PGS) of embryos has been 
selectively used in  patients with  advanced maternal age (AMA), recurrent pregnancy loss, 
repeat IVF failure, polycystic ovarian syndrome (PCOS)  or in cases of severe male factor 
infertility [129].  In the past, the most common PGS technique used was fluorescence in situ-
hybridization (FISH). FISH is a relatively rapid and easy procedure to perform. However, the 
validity of FISH-PGS as a method by which to select the “best” embryos for transfer has 
recently come under criticism. Staessen et al. [130] found that FISH-based embryo selection 
did not improve IVF embryo implantation and baby rates in women less than 36 years of 
age. Hardarson et al. [131] reported that PGS-based embryo selection was in fact 
associated with a decrease in IVF plantation/birth rates in women with advanced maternal 
age (AMA). In 2005, Li et al. [132] suggested that this finding could be attributable to the 
cleavage stage of such embryos and the influence of mitotic aneuploidy (mosaicism) which 
is more prevalent in embryos derived through the fertilization of the eggs from older 
women.). Another reason why the transfer of FISH-selected embryos does not appear to 
improve IVF pregnancy/implantation rates is that FISH cannot evaluate all 23 chromosome 
pairs. At best it can evaluate 12 pairs reliably. However, “FISH-euploid embryos” might still 
be aneuploid.  The opposite scenario has been reported by Northrop et al. [133].  They used 
a single nucleotide polymorphism (SNP) microarray-based 24 chromosome aneuploidy 
screening technology to re-evaluate morphologically normal blastocysts that were diagnosed 
as “FISH-aneuploid embryos” at the cleavage stage, which could result in the erroneous 
disposal of reproductively competent blastocysts. Bases on the above findings it is strongly 
recommended that retesting be performed of morphologically normal blastocysts that 
develop despite an “FISH-aneuploid status”. 
 
Kallioniemi et al. [119] developed comparative genome hybridization (CGH) to screen the 
whole genome’s DNA in certain tumors. This technique was subsequently modified to study 
the DNA in single cells (e.g., blastomeres) by Voullaire et al. [120] and Wells et al. [121].  
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CGH screens the whole genome and is thus superior to FISH when it comes to embryo 
selection. The procedure detects anomalies such as chromosome imbalances due to 
aberrant segregation and structural imbalances (gains/losses) larger than 10-20 Mb as 
reported by and Malmgren et al. [134]. One disadvantage of CGH is that it is very time/labor 
intensive – requiring  up to  four days to obtain results following hybridization and 
amplification of the DNA and comparing the test DNA to that of a normal template of 
chromosomes.   
 
In 2007, Sher et al. [68] became the first to report pregnancies through the transfer of 
blastocysts derived from fresh metaphase-CGH (mCGH) tested, karyotypically normal 
human oocytes. The same researches went on to report a high pregnancy rate following the 
transfer of blastocysts derived from day 3, CGH-normal embryos [135,136]. Handyside et al. 
(2010) [36] reported on the use of single nucleotide polymorphism (SNP)-array to detect 
chromosome imbalances and genome-wide linkage analysis. (Level IV evidence) 
 
CGH karyotyping of the oocyte’s first polar body (PB-I) allows evaluation of the oocyte’s 
genome, the main determinant of an embryo’s karyotype and allows for the selection of the 
most “competent” (euploid) embryos for transfer [11,68,137,138]. However, in order to 
consider/account for the paternal (sperm) chromosomal contribution to the embryo’s 
genome, Wilton et al. [139], Sher et al. [68], Sher et al.  [135] and Kotze et al. [11] started to 
perform CGH on the embryo, rather than the oocyte. 
 
Sher et al. [135], reported a strong correlation, between the chromosomal status of PB-I 
(oocyte), PB-II (zygote), day 3 blastomeres and subsequent blastocyst formation. Kotze et 
al. [11] also reported such correlation with a Kappa of >0.7. Both groups were able to show a 
high live birth outcome when sequential CGH screening was applied and euploid embryos 
that developed into blastocysts were transferred. 
 
More recently, Fragouli et al. [138] and Schoolcraft et al. [140] reported on the value of 
performing CGH on the collective DNA derived through the removal of several blastocyst 
trophectoderm (TE) cells. However, the time taken to perform CGH required that biopsied 
blastocysts be cryopreserved and held until the results of CGH testing are available. The 
process of cryopreserving, storing and then delaying transferring warmed CGH-normal 
(euploid) embryos in a  future frozen embryo transfer (FET) cycle is referred to as  
“staggered IVF”.  
 
Potentially detrimental effects of cryopreserving-PGS/D-tested embryos have been 
suggested by Zheng et al. [141].  Researchers reported a 30-40% reduction in their 
implantation potential. However, the recent the introduction of blastocyst verification (ultra-
rapid freezing) by Mukaida et al. [142] and Zhang et al. [143] has significantly improved the 
gamete/embryo cryopreservation process and with it, the survival of warmed embryos.  Sher 
et al. [68] and Kotze et al. [11] reported more than a 50% live birth rates after the transfer of 
PGS vitrified/warmed blastocysts.  
 
It was recently suggested that a more rapid form of CGH testing known as array CGH 
(aCGH) [124,126,144,145], by permitting rapid analysis of PB-I, PB-II, Day 3 blastomeres 
and trophectoderm cells, subsequently avoiding/limiting the need for both embryo 
cryopreservation and “staggered IVF [146]. 
 
Screening the whole genome has shown that anomalies could be present in any of an 
embryo’s chromosomes. Kotze et al. [11] and Traversa et al. [147] showed that some 
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aneuploid embryos do have the potential to develop to a blastocyst. These findings 
contradict the belief that embryos exhibiting aneuploidy of the larger chromosomes [1-12] 
are incapable of developing into blastocysts.  While FISH indentifies a single point on a 
chromosome, CGH-probes cover the entire length of a chromosome, allowing for the 
detection of structural anomalies such as partial duplications and deletions. Translocation 
errors can likewise be detected through the ability of CGH to determine a loss or gain of 
parts of chromosomes. Interestingly, Traversa et al. [148] has shown that FISH suffers from 
high false positive rates.  Furthermore, Traversa et al. [148] reported superior PCR 
technologies to improve translocation screening.  CGH can also detect translocation in 
cases where the fragments are large enough. Balanced translocation can thus be 
determined as well as the ploidy status of all other chromosomes. FISH analyzes/targets 
each cell individually for the specific probe(s) that are applied. 
 
In 2010 Traversa et al. [148] also demonstrated the ability of aCGH to reliably detect 
aneuploidy in blastocysts.  Sher et al. [135] and Kotze et al. [11] used mCGH screening to 
identify aneuploid embryos, subsequent blastocysts were vitrified.  Blastocysts that were 
classified as euploid were warmed and transferred, resulting in excellent implantation and 
pregnancy outcomes. 
 
Currently the two full karyotyping techniques that are still under investigation are: 
 

1. SNP-array: Common polymorphic DNA sequences found throughout the genome is 
used to detect any chromosome imbalances and genome wide linkage analysis 
[136,149-151]. 

2. CGH-array: test and reference DNA is hybridized to DNA probes fixed to a slide. 
Several reports on the successful use of array-CGH [124,144]. Furthermore, some 
clinical applications have been reported by Hellani et al.  [152], Fishel et al. [153] 
and Rius et al. [154]. 

 
There are emerging developments that hold promise with regard to improving the 
efficiency/accuracy of PGS and involve the use of BAC microarrays [155,156]. This 
approach could also be used to determine specific segmental errors during chromosomal 
rearrangement as reported by Alfarawati et al. [71] and Fiorentino et al. [157]. In an 
interesting study in 2013 by Mertzanidou et al. [158] (analyzing the whole genome) evidence 
was presented that around 70% of good-quality embryos carry chromosomal abnormalities, 
including structural aberrations. In this study they analyzed the majority of the blastomeres 
from top-quality embryos that originated from a cohort of embryos showing normal 
developmental rates and high implantation potential.  
 
Several studies have claimed the benefits in recent advances made in the area of the PGS, 
more specifically, array comparative genomic hybridization technique (aCGH) that is 
considered an advance in preimplantation genetic testing. A study by Scriven et al. [159], 
using polar body aCGH indicates that the test accuracy compares favorably with the 
fluorescence in situ hybridization technique although a substantial number of euploid 
zygotes are still likely to be excluded incorrectly. A sound argument against selection in 
principle has recently been published by Mastenbroek et al. [160] and Wikland et al. [161], 
based on accumulating evidence that potentially all embryos can now be cryopreserved and 
transferred in subsequent frozen replacement cycles without impairing pregnancy rates. We 
suggest that vitrification and serial transfer without testing are likely to give patients the best 
chance for a successful pregnancy, and avoid the use of an expensive technology. Treff et 
al. [127] and Scott et al. [162], provided evidence of accuracy, safety, clinical predictive 
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value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time 
polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) 
and suggested this technique as useful to improve IVF success. Forman et al. [163] reported 
that transferring of a single blastocyst that underwent trophectoderm biopsy followed by 
rapid PCR-based comprehensive chromosome screening (CCS) increases ongoing 
pregnancy rates (OPR) and reduces the miscarriage rate. They furthermore suggested that 
effective single embryo transfer (SET) will laminate multi-zygotic multiple gestations without 
compromising clinical outcomes. While extremely encouraging, it is too early to comment or 
make a judgment on the true value/benefit of CGH. More data (Level I or II evidence) is 
needed before a final conclusion can be reached. This having been said, this technology 
(despite being invasive and costly) offers great promise for the future. 
 
4. CONCLUSIONS AND STATE OF THE ART  
 
4.1 Non-Invasive Approach 
  
Non-invasive approach suggests using all available tools for embryo selection. However, a 
combination of assessment of the pronuclear stage morphology, early zygote cleaving and 
cleavage-stage embryo morphology/quality on day-3 appears to be inferior. Currently, 
ultimately choosing a day 5 blastocyst with optimal sHLA-G expression of its predecessor 
cleaved embryo (for transfer or cryopreservation). The above mentioned criteria should be 
very beneficial in assisting the technician in making the final decision to select the most 
competent embryo/s for transfer. This, approach should improve pregnancy outcome and 
reduce the incidence of multiple pregnancy. 
 
4.2 Invasive Approach 
 
Invasive approach current evidence of accuracy, safety, clinical predictive value, and clinical 
efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain 
reaction (qPCR)-based comprehensive chromosome screening (CCS), suggested this 
technique as useful in a specific patient population to identify competent euploid embryos for 
single embryo transfer without compromising IVF success. 
 
CONSENT  
 
Since the treatments were standard operating procedures to all patients undergoing IVF 
treatment legally they had to sign the appropriate consent.    
 
ETHICAL APPROVAL  
 
RESEARCH PROJECT : "TO DETERMINE THE DEVELOPMENT POTENTIAL OF A 

HUMAN EMBRYO IN VITRO " 
PROJECT NUMBER : N06/07/119 
 
At a meeting of the Committee for Human Research that was held on 2 August 2006 the 
above project was approved and therefore been performed in accordance with the ethical 
standards laid down in the 1964 Declaration of Helsinki.” 
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