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Abstract

Fault identification of electrohydraulic servo valves is crucial to maintain the reliability and
safety of high-precision electrohydraulic servo systems. Because the nonlinear characteristics
and fault characteristics of electrohydraulic servo systems under noise conditions are implicit, it
is difficult to obtain a large number of fault data of electrohydraulic servo valves. Therefore, an
electrohydraulic servo valve fault diagnosis model based on characteristic distillation is
proposed in this paper. First, the original fault data model is obtained based on an
electrohydraulic servo valve fault test platform, the data are standardized, and the data of more
than one cycle are extracted using a combination of down sampling and a sliding window for
data enhancement. Second, a neural network fault diagnosis algorithm based on stack graph
convolution is proposed, which is suitable for detecting different types of states (normal state,
wear state, stuck state and coil short-circuit state) of electrohydraulic servo valves. The accuracy
of the test set fluctuates between 0.7 and 1.0. Then, because there is a certain relationship
between the characteristic smoothing phenomenon of a stack graph convolution model and the
number of layers, a multilayer stack graph convolution model is bound to have problems such as
model degradation. Therefore, a residual model is introduced into the stack model to improve
the convergence speed of the model during the optimization process. The results show that the
average accuracy of this method is 100%.

Keywords: electrohydraulic servo valve, fault diagnosis, characteristic distillation,
stack plot convolution model, residual model

(Some figures may appear in colour only in the online journal)

* Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms

5Y of the Creative Commons Attribution 4.0 licence. Any fur-
ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

1361-6501/23/055302+16$33.00  Printed in the UK 1 © 2023 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1361-6501/acaf93
https://orcid.org/0000-0003-4147-3341
mailto:aichao@ysu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/acaf93&domain=pdf&date_stamp=2023-2-13
https://creativecommons.org/licenses/by/4.0/

Meas. Sci. Technol. 34 (2023) 055302

G Wei et al

1. Introduction

Electrohydraulic control valves are key hydraulic components
in industrial and aerospace applications to control electro-
hydraulic system movement. Electrohydraulic control valves
have become increasingly digital, integrated and intelligent
to meet the requirements of Industry 4.0 and the develop-
ment of automation, digital technology and communication
technology [1]. Because hydraulic valves usually work in
harsh conditions and are severely disturbed by various paths, it
is difficult to detect internal faults in hydraulic valves using tra-
ditional hydraulic testing techniques, such as pressure or flow
sensors [2]. Therefore, research on intelligent fault diagnosis
methods for servo valves is of great significance for improving
the service quality, reducing the operation and maintenance
costs of hydraulic systems and realizing hydraulic intelligence.

Therefore, much work has been done to improve the fault
condition monitoring and diagnosis of hydraulic valves. Shi
et al proposed an internal model based on an eigenmode func-
tion intrinsic mode function (IMF) and weighted densely con-
nected convolutional networks for the wear and leakage of
electrohydraulic directional valves due to oil pollution and fre-
quent commutation. The leakage fault diagnosis method iden-
tifies the internal leakage type and wear location in an elec-
trohydraulic directional valve [3]. Tang Shengnan et al used
Bayesian optimization (BO) algorithm to automatically select
parameters, and built an adaptive model named convolutional
neural network (CNN)-BO based on Gaussian process BO,
which can accurately complete the intelligent fault diagnosis
of hydraulic pumps [4]. Shi et al proposed a two-stage multis-
ensor information fusion method to diagnose the internal fault
of hydraulic changeover valves [2] by using a vibration sig-
nal analysis method instead of the traditional hydraulic test
method to solve problems such as the difficulty in obtain-
ing the fault status of hydraulic valves and the low accur-
acy of the fault diagnosis of hydraulic valves. Guo, FY and
others proposed a fault diagnosis method for reciprocating
compressor valves based on a transfer learning convolutional
neural network, focusing on the problem of the valve fault
status for reciprocating compressors, and the fault recognition
rate reached 98.32% [5]. Huang et al evaluated the working
state of diesel engine valves using vibration response signal
analysis and developed a fault diagnosis. They also proposed
a method to effectively extract valve seat vibration charac-
teristic parameters from the nonstationary vibration signals
of diesel engine surfaces by using local wave decomposition
and reconstruction technology, continuous wavelet transform
time spectrum images, wavelet transforms and wavelet trans-
form technology. Quantitative monitoring of the valve clear-
ance in diesel engines and the fault diagnosis of abnormal
valve clearance are realized [6]. Andrade er al developed a
new methodology that uses fault emulation to obtain paramet-
ers similar to the development and application of methods for
diagnosis of actuators in industrial control systems benchmark
model for fault diagnosis of pneumatic control valves [7]. Ykla
et al proposed a shallow-deep integrated fault diagnosis model
based on DN50 electric valve signal extraction [8]. Yong et al

used the PSO-LeNet model in the CNN model to identify
the five common fault states of the hydraulic piston pump
using the acoustic signal. This model has the best stability
and the highest recognition accuracy [9]. Liu et al used the
limit learning machine method to diagnose faults such as the
wear, jamming, zero deviation and limit of electrohydraulic
servo valves, with an accuracy of more than 99% [10]. Jia
Chunyu and others adopted a method based on a CNN and
long short term memory (LSTM) to realize the fault predic-
tion of electrohydraulic servo valves, and the accuracy of fault
identification, such as valve core wear and throttling blockage,
reached more than 95% [11]. Wang Wenqing used a method
based on a CNN and gate recurrent unit (GRU) to predict the
remaining life of electrohydraulic servo valves, and its accur-
acy reached more than 99% [12]. Chai and Jin used a deep gen-
eralized regression network and an improved fruit fly optim-
ization algorithm-7. The method realized the fault diagnosis
of electrohydraulic servo valves [13]. Chen et al adopted a
stacked self-encoding algorithm and realized the fault dia-
gnosis of electrohydraulic servo valves through layer-by-layer
greedy training [14]. Based on the Dempster—Shafer theory, Ji
et al solved the problem of information source conflicts and
used a CNN, LSTM, random forest (RF) and other methods
to realize the fault diagnosis of electrohydraulic servo valves
[15]. Chao et al proposed a multi-sensor fusion method using a
CNN. The experimental results show that the method improves
the fault diagnosis performance of the plunger pump [16].
Chao et al adopted short-time Fourier transformation to con-
vert the raw vibration data into spectrograms that act as input
images of a modified LeNet-5 convolutional neural network,
and proposed a method to convert 3D spectrograms based on
spectral characteristics. Noise method. The results show that
the method improves the diagnostic performance of the CNN
model in noisy environments [17].

The above methods provide a certain direction for the
research of hydraulic valve fault diagnosis methods. However,
because the fault data of electrohydraulic servo valves are dif-
ficult to obtain and the amount of data is relatively large, the
diagnostic accuracy is low. At the same time, most of the
above algorithm models and methods optimized using labor-
atory high-sample-force equipment may not be applicable to
fault diagnosis equipment. Therefore, to solve the above prob-
lems, this paper takes a MOOG G761-3004 electrohydraulic
servo valve as the research object, obtains the state data of
the electrohydraulic servo valve based on the electrohydraulic
servo valve fault online detection platform, normalizes the
fault data with different data standardization methods, and
solves the problem of multisource data of the electrohydraulic
servo valve. A data enhancement method is used to solve the
problem of limited fault data. Aiming at the diversity and
closeness of the fault states of electrohydraulic servo valves,
taking the normal state, wear state, stuck state and coil short-
circuit state of electrohydraulic servo valves as the research
states, a neural network fault diagnosis algorithm based on a
message mechanism is proposed. The obtained system state
vectors are used as training data, and the adjacency matrix is
used to describe the relationship between vectors in each state.
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A residual model is introduced into the stack diagram classi-
fication model to improve the convergence speed and accuracy
of the fault diagnosis model of electrohydraulic servo valves.

This paper mainly studies the fault diagnosis algorithm of
electrohydraulic servo valves. The first part expounds the fault
mechanism of electrohydraulic servo valves, and the second
part obtains the fault data of electrohydraulic servo valves. The
third part is the fault diagnosis algorithm and model verifica-
tion, and the last part is the conclusion.

2. Model introduction

2.1. Working principle of electrohydraulic servo valves

As shown in figure 1, an electrohydraulic servo valve can be
basically divided into the following structures: a force/torque
motor, hydraulic amplifier (pilot stage and power stage), and
feedback/balance mechanism.

In this paper, a force feedback two-stage electrohydraulic
servo valve is the research object. The hydraulic amplifier
part of this type of valve consists of a double-nozzle bezel
and a four-way spool valve, in which the double-nozzle bezel
valve, which drives the armature iron rotation through a torque
motor, controls the pressure of the two cavities to control the
movement of the four-way spool, and the four-way spool is
connected to the gear-plate assembly through the feedback
rod.

When the input signal is zero, the armature iron is located
in the middle of the upper and lower magnetic conductors,
and the valve core is in the middle due to the restraint of its
structure. When the input signal is not zero, the armature iron
produces an electromagnetic torque. When the armature iron
starts to turn counter clockwise, the bezel leaves the middle,
and the spring tube bends. At this time, the throttle area of the
right nozzle decreases, and the throttle area of the left nozzle
increases, which causes the left-side pressure in the valve core
pressure control cavity to decrease and the right-side pressure
to increase. This causes the valve core to start to move to the
left. At this time, as the spring tube continues to bend, when
the spring tube feedback torque and electromagnetic moment
offset each other, the armature iron bezel forces balance. The
valve core will continue to move to the left, the feedback lever
continues to bend, and the bezel starts time moving toward the
mid-range. The valve core is subjected to an increase in pres-
sure in the left cavity and the pressure in the right cavity is
reduced. When the liquid pressure at both ends, the reaction
force of the spring tube deformation, and the hydraulic power
received by the valve core are balanced with each other, the
valve core stops moving and is in a balanced position. The
schematic is shown figure 2.

2.2. Mathematical model of an electrohydraulic servo valve

The basic equation for the torque motor circuit is:

do_ dA
2K,y = (Rc+rp)Ai+2Kba+2Lcd—tl (1)

where, K, is the unilateral gain of the amplifier, u, is the amp-
lifier input voltage signal (V), R, is the resistance of each coil
(), rp is the amplifier resistance in each coil loop (©2), Ai is
the current difference between two coils (A), 6 is the arma-
ture iron angle (rad), Ky, is the back electromotive force(EMF)
constant of each coil (Wb), and L. is the self-inductance coef-
ficient of each coil (H).

Formula (1) is a Laplace transform, and the equation of
moment motor motion is sorted as follows:

ZKUUg — ZKbSH

A= (Re+ry) (1+2)

@)

where, w, is the turning frequency of the control coil loop (Hz).
The motion equation for the armature baffle assembly is:

&0 Lde

Tdfja@ +Baa + K0 +T + T 3)
where, Tj is the electromagnetic moment (N X mm), J, is rota-
tional inertia of the armature iron plate assembly (kg x mm?),
B, is the viscous damping coefficient of the armature baffle
assembly (N x s mm™'), K, is the spring tube stiffness
(Nmm™"), T | is the load torque generated by the fluid flow of
the nozzle to the bezel (N x mm), and 77, is the load torque of
the armature baffle assembly caused by feedback rod deform-
ation (N x mm).

After the Laplace transformation of formula (3), the trans-
fer function of the armature baffle assembly is obtained as
follows:

Kl
mf
-

mf Wmf

(KA = Ki(r +b)X, — rAnpLy)  (4)

where, wpy is the inherent frequency of the torque motor (Hz),
Cmr 18 the mechanical damping ratio of the torque motor, K¢
is the combined stiffness of the torque motor (N mm~'), K;
is electromagnetic force coefficient, Ky = B;mDN,. B, is mag-
netic induction intensity in working air gap, D is average dia-
meter of coil, N, is control coil turns. K5 is feedback rod stiff-
ness, r is center distance of thin wall part of spring tube, b is
the distance from the center of the feedback rod ball to the
center of the nozzle, Ay is the nozzle hole area, Py p is the load
pressure difference between the two nozzle cavities.

The relationship between the bezel displacement and bezel
transfer is:

Xf:ré. (5)

The nozzle bezel valve control spool can be thought of as
a valve-controlled hydraulic cylinder model with an inelastic
load, so the transfer function of the spool is:
X, Ky/A
X 52 2Gn
P (rgp + 2t 1)
where, K, is the inherent frequency of the torque motor (Hz),
A, is the spool core area (mm?), wy, is the hydraulic inherent

(6)
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Figure 1. Working principle of an electrohydraulic servo valve.
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Figure 2. Force feedback two-stage electro-fluid servo valve
diagram.

frequency of the spool (Hz), and (y, is the hydraulic damping
ratio of the spool.

Servo valves usually take current A as input parameter and
no-load flow go = Kyx, as output parameter. In this case, the
transfer function of the servo valve can be expressed as:

QO _ st (7)

K[ ) 2 2¢)
(7 1) (o + s 1)

where, Qy and Al are Laplace transforms of gy and Af,
. . - KK,
respectively. K, is flow gain of servo valve, Ky, = Tb)“m,
K¢ is open loop amplification factor of force feedback loop,
Ky = %, K., is the net stiffness of the torque
motor.

The four-sided spool flow equation is:

1 Xy
qL = CqWx, » (Ps - PL) ()

x|

where, g is the spool valve load flow (1 min™ 1), Cqis the spool
valve throttle port flow factor (I (min MPa)~'), and W is the
spool valve throttle port area gradient (mm).

2.3. Analysis of the failure mechanisms

2.3.1. Nozzle bezel valve fault. A nozzle bezel valve fault is
simple, and the common fault modes are partial or total block-
age of the nozzle or throttle hole and filter blockage.

The fault mode and fault characteristics of the nozzle bezel
valve are shown in table 1.

Table 1. Nozzle bezel valve fault mode and fault characteristics.

Fault mode Fault characteristics

Frequency is reduced, the
resolution is reduced, and the
system is seriously unstable
Causes the frequency to drop, and
the resolution decreases causes the
system to seriously oscillate

Nozzle or throttle hole is
partially or completely
blocked

Filter element is blocked

Table 2. Power-stage spool fault modes and fault characteristics.

Fault mode Fault characteristics

Leaks, fluid noise, large zero
bias, system instability
Leaks increase, zero bias
increases, and gain decreases
‘Waveform distortion, stuck

Edge wear
Radial valve core sleeve wear

Spool valve stuck

2.3.2. Power-stage spool valve fault. ~ Faults of the power-
stage spool valve mainly appear on the valve core and valve
sleeve, which mainly include edge wear, radial filter element
wear and slide valve sticking.

The fault modes and fault characteristics of the power-stage
spool are shown in table 2.

3. Acquisition of the electrohydraulic servo valve
fault data

Because the simulation data and real data are different, it
is particularly important to obtain real fault data of electro-
hydraulic servo valves, and the fault data often contain con-
siderable redundant information; therefore, it is necessary to
solve a series of problems, such as the acquisition of the fault
data of electrohydraulic servo valves and pre-processing.

3.1 Sample of electrohydraulic servo valve faults

3.1.1. Design of the pilot scheme. In this experiment, a com-
mon force feedback two-stage electrohydraulic servo valve is
selected, and its model is Moog G761-3004. This model of
servo valve is shown in figure 3. And the specific paramet-
ers of this type of electrohydraulic servo valve are shown in
table 3.
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Figure 3. Moog G761-3004 electrohydraulic servo valve.

Table 3. Mood-G761-3004 key technical parameters.

Technical parameter Parameter range (value)

Work pressure <31.5 MPa
Rated flow error Ap, = 7MPa +10%
Symmetry <10%
Resolution <0.5%
Hysteresis loop <3.0%

83 8.4
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1-Tank 2-Hydraulic pump 3-Overflow valve 4-Cooler 5-Filter 6-One-way valve 7-Flow meter

8-Pressure sensor 9-Measured electrohydraulic servo valve 10-Variable throttle valve

Figure 4. Principles of the electrohydraulic servo valve test system.

3.1.2. Electrohydraulic servo valve test system.  This paper
mainly relies on an intelligent electrohydraulic servo valve
performance test platform to obtain the fault data of the elec-
trohydraulic servo valve. Its schematic diagram is shown in
figure 4.

The upper test system is the test software. The test software
realizes the static performance test and dynamic performance
test, data storage and playback, report generation and so on.

The data acquisition module includes a data acquisition
card and signal generator. The signal generator sends the com-
mand signal i sent by the data acquisition card or the command
signal i generated by itself to the servo valve and feeds back the
command signal i/ and valve core displacement feedback s to
the data acquisition card. The data acquisition card collects the
servo valve output flow ¢, valve inlet pressure p,, valve outlet

pressure pr, valve load port pressures pa and pg, servo valve
command signal i and servo valve spool displacement feed-
back s during the hydraulic test system and transmits them to
the upper computer.

The main components of the hydraulic test system are the
oil source, which provides the test bench with a constant pres-
sure, constant temperature and clean oil source to ensure that
the servo valve can work properly, and the test bench. The test
bench is equipped with flow sensors and four pressure sensors
to measure system flow and pressure at the P, A, B and T valves
of the electrohydraulic servo valve. The test bench also has
adjustable flow valves to simulate servo valve loads, with dif-
ferent valve blocks compatible with different types of servo
valves, to test the characteristics of the electrohydraulic servo
valve. The test bench is shown in figure 5.

Four common states of the G761 electrohydraulic servo
valve are selected: normal state, wear state, stuck state and coil
short-circuit state.

During the test of the electrohydraulic servo valve, four
pressure sensors and a flowmeter are used to measure the pres-
sure and system flow at ports P, T, A and B. The command
signal controls the servo valve through the servo amplifier and
feeds back the command signal and valve core displacement to
the upper data acquisition system. These data reflect the oper-
ation state of the electrohydraulic servo valve over a period of
time, and some of them can be used as training samples. The
internal leakage and flow characteristic curve of the electro-
hydraulic servo valve is shown in figure 6.

From figure 6 and formulas (7) and (8), the pressure, flow
and other operating data in different states are obtained by test-
ing the internal leakage characteristics and no-load flow char-
acteristics of the servo valve.

3.2. Data pre-processing

To prevent gradient explosion, the data need to be standard-
ized after the test data are obtained, and the commonly used
standardization methods are linear standardization using for-
mula (9) and zero mean standardization using formula (10),

x/ =S Tmin )

(10)

Both methods perform linear scaling of the data. Although
the relative distribution state of the whole batch of data is not
changed, if the data are divided into multiple batches for this
operation, data with different characteristics may exhibit the
same or similar characteristics after standardization. To pre-
serve the data characteristics, different normalization methods
are needed for each sensor’s data.

The first method is to standardize the electrical signal of
the sensor directly. For most pressure sensors, the feedback
electrical signal is generally 0-10 V, or £10 V. For a gear
flow meter, the feedback signal is often a pulsed signal, and
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d) Hydraulic oil source

Figure 5. Electrohydraulic servo valve test bench.
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Figure 6. Test characteristic curve.

through an isolation conversion module, it can also be conver-
ted to 0-10 V, so the sensor signal can be linearly reduced.
This method is suitable for data generated by the same type
of servo valve, but due to differences in performance of differ-
ent types of servo valves, especially flow control valves such as
the 3001, 3002, 3003, 3004, 3005 in the Moog-G761 series, the
load flows rated at the rated pressure drop Apy = 7MPa are:
41min~', 10 I min~", 19 1 min—!, 38 1 min—!, 63 1 min—!,
respectively. If sensor signal standardization is used, different
scale characteristics will be produced when the flow charac-
teristics of different types of servo valves are characterized.

To make the data more standardized and uniform, the sys-
tem pressure is usually adjusted to the rated pressure drop Ap,
of the servo valve during testing, and the load flow ¢, under
the rated pressure drop can be detected using the model. The
standardization of the pressure and flow data can be expressed
as formulas (11) and (12):

4

= an

g=2 (12)
an
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If the maximum input electrical signal of the servo valve is
rated as the test signal amplitude sy, the standardization of the
command signal is:

13)

If the output maximum electrical signal of the servo valve
displacement feedback sensor is the maximum forward dis-
placement feedback dp,x and the output minimum electrical
signal is the maximum negative displacement feedback dyyn,
then the standardization of the displacement feedback is:

d— dmin

d = .
dmax - dmin

(14)

The standardized formula of the displacement feedback is
slightly similar to the linear standardized formula, but there
are differences. Linear standardization normalizes the data of
a batch, where xp,x and xp;, are the maximum and minimum
values in the batch, respectively, but the displacement feed-
back standardization marks the maximum positive displace-
ment of the valve as 1 and the maximum negative displacement
as 0, and the spool displacement will return to (0, 1) after stand-
ardization. When there is no full-scale spool displacement in
the whole batch, it will be standardized to (0,1), and the same
data in different batches will be standardized to obtain differ-
ent characteristics.

After data standardization, data nodes need to be built, and
each data node represents the characteristics of the system
at a certain moment because servo valves can be expressed
as NO) = (s(i),d(i) ,f(i),plg’),p;(l'),pl()’),pt(l)). In this node vec-
tor, some characteristics of the current servo valve are already
included, the test data can be constructed according to this
method to fully connect them to the state vector collection that
describes the characteristics of the servo valve. The collection
element collapses and transforms to different feature dimen-
sions to obtain different static characteristics of the servo
valve. The data set can contain more characteristics than a
single sensor data set, and through propagation and learn-
ing between nodes higher-order characteristics can be learned
based on the guidance of the data set labels.

3.8. Data enhancement

Due to the limited test conditions, more electrohydraulic servo
valve fault data cannot be obtained, so data enhancement
is required. The results of the normalization of the electro-
hydraulic servo valve sample data are shown in figure 7.

For the electrohydraulic servo valve fault sample data, the
data are enhanced by combining down sampling with a sliding
window to extract data for more than one cycle.

According to the analysis of the data during the operation
of the electrohydraulic servo valve, the clear characteristics of
most of the data do not exist in a high-frequency band, so it can
be down sampled. With the total length of the data unchanged,

a set of data is broken down into sets of data by equidistant
extraction to increase the sample size of the data.

After down sampling, a slide window extraction runs the
data over a period of time, which generalizes the data and
avoids the impact of phases of periodic data on the network
model in post deployment applications. The enhanced results
are shown in figure 8.

4. Neural network fault diagnosis algorithm based
onh a message propagation mechanism

In the traditional neural network algorithm, the input data of
most network neurons is matrix operation in the form of one-
dimensional vector, so the traditional neural network is often
applied to the identification of single dimensional fault data,
but too long data will cause too many training parameters and
reduce the network performance.

The traditional neural network algorithm has a good effect
in dealing with single dimension data, but there are some defi-
ciencies in the face of multisource information system. Convo-
lutional neural network can increase the number of data chan-
nels to extract multisource information, but the increase of the
number of data channels ultimately leads to the increase of the
amount of calculation in the process of data pre-processing and
neural network calculation.

When the system state of a multisource information system
is treated as a state node at every moment in a certain period of
time, there must be some relationship between the nodes that
can reflect the system characteristics.

In static test of electro-hydraulic servo valve, no-load flow
characteristic test, as shown in figure 9, two state vectors S
and S, are selected when flow is equal. The angle between S
and S, is 6. If 6 is not zero, then hysteresis exists in the current
system. If more node characteristics in higher dimensions are
selected, the fundamental failure that causes hysteresis can be
determined by machine learning.

Similarly, for multisource information system, the system
node state is taken as the input of neural network, and the
neural network is trained through supervised learning to com-
plete the fault diagnosis task of the system.

As shown in figure 10, to realize neural network fault
diagnosis based on system state node data, it is necessary
to find a neural network model based on learnable node
characteristics, and the graphical neural network based on
message propagation network (MPNN) can meet the above
requirements.

The acquired system state vectors are used as training data,
and the adjacency matrix is used to describe the relation-
ship between the vectors in each state. For the multisource
information system of the electro-hydraulic servo valve, the
CNN [18] has advantages in processing multi-dimensional
data. The advantage of graph convolutional networks (GCN)
over CNN is that it can process more complex and irregular
data structures. It can learn node feature information and struc-
ture information end-to-end at the same time. It is the best
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Figure 7. Example of a normalized data sample.

choice for multi-dimensional data learning tasks at present.
Moreover, graph convolution has extremely wide applicability
and is applicable to nodes and graphs with arbitrary topology.

4.1 Model of a troubleshooting algorithm based on stack
diagram convolution

4.1.1. Modelstructure.  The basic unit of the model is a graph
convolution layer connected with a graph pooling layer. Graph
convolution fuses the features of each node through a mes-
sage propagation mechanism and then graph pooling is used to
perform graph feature compression. When the basic unit com-
pletes the stack, a feature vector that can describe the whole
graph is obtained through global pooling. The network struc-
ture is shown in figure 11.

MPNN [19] is a general summary of GNN model. It
explains and explains some GNN models from the perspective
of airspace. According to the paradigm of MPNN, its mathem-
atical model is as follows:

Message function M is expressed as

Mrrc(hY 1Y) = ag Wi h (15)
JEN(v)
where, k indicates the kth message propagation.
Where «; is expressed as:
(WO RS (W k)
ayj = softmax Lt 2 (16)

Vd
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The update function U is expressed as:

— Wk 4

Ugen(m (k+ )

k+l)

a7)

System state vector set

W®E- -6

Figure 10. Principle of neural network fault diagnosis algorithm for
multisource information system.

System fault

Neural network status

The pooling mechanism of TopK [20-22] is a process of
continuously discarding nodes according to the characteristic
data of different scales on the graph. It places the pooling
scope on the full graph node. By setting the pooling rate k,
k € (0,1), then learning to obtain a value z that can character-
ize the node importance and sorting it. Finally, according to the
node importance, down sample N nodes in the whole graph to
KN nodes. The pooling mechanism principle of TopK is shown
in formulas (18)—(20),

i = top — rank(z,KN)

(18)
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X' =Xi (19)

A=A 20)
where, X; means to slice the characteristic matrix according to
vector 7, and A;; means to slice the adjacent matrix according
to vector i at the same time.

The self-attention pooling model (self-attention graph pool-
ing, SAGPooling) [23], which uses a GNN to learn the import-
ance of nodes. Compared with the design mode of global basis
vector, this GNN-based method makes better use of graph
structure information to learn the importance of nodes. For-
mula (21) is changed to obtain formula (22),

Xp
= — 21
e @b
z=GNN(X,A) (22)

where, p is the global basis vector.

In global average pooling, by obtaining the channel level
average value in the node dimension, the batch graph level out-
put is returned. Therefore, for a single graph G, the output is
formula (23):

(23)

In order to better integrate data, the convolution layer can
adopt the GCN based on multihead attention, the pooling layer
can adopt the attention graph pooling based on TopK, the
global pooling adopts the global mean pooling, and the classi-
fication layer adopts the full connection layer.

Since the output of the network model is not normalized,
it is necessary to add normalization to the loss function. First,

Table 4. Training parameters.

Training parameter Parameter value

Rounds 400
Number of training set samples 300
Number of test set samples 130
Number of samples per batch of training set 20
Optimizer Adam
Learning rate 0.01
Gradient attenuation coefficient 0.0005

adjust the network output to (0, 1) through the Softmax nor-
malization layer. The Softmax function can be expressed as
formula (23):

exp(x;)
>oexp(x;)

J

softmax (x); = (24)

Secondly, the result of Softmax is logarithmically calcu-
lated, and then point multiplied with the one-hot code of the
label to obtain the expression of the loss function (24):

Loss = — Zy,- Ing; 25)

where, y; represents our real value and «; represents the value
calculated by softmax function.

Because of the filtering characteristics of the GCN itself,
when the number of layers of the GCN is too large, the char-
acteristics of all nodes will tend to be unified, and the phe-
nomenon of feature smoothing will appear. When the number
of layers of the GCN reaches five layers, its node characterist-
ics will be approximately uniform. Therefore, when stacking
GCN, it should be noted that the number of layers of a GCN
should not exceed 5.

4.1.2. Parameter selection. The data set is randomly
sampled to train the classification of the set on a test set, and
because the sample size of the data set is small, it is divided
into two data sets, an evaluation set is removed, and the accur-
acy on the test set is used instead of the evaluation set.

To prevent the uneven distribution of data in the test set
from affecting the training effect of the neural network, the
above steps can be repeated to separate several times, forming
multiple independent training sets and test set samples. The
average accuracy of the model on these independent test sets
can be considered the true accuracy of the model on this batch
of samples. This experiment uses a total of four data sets gen-
erated from the sample data for training. The specific training
parameters are shown in table 4.

The Adam algorithm was chosen for this experiment. The
Adam algorithm is an advanced version of the random gradi-
ent method, its learning rate can be adapted to the cur-
rent gradient during optimization and the diagonal scaling of
the gradient is invariable, making it ideal for solving prob-
lems with large-scale data or parameters. The algorithm also
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Table 5. Structure and parameters of the graph classification model
based on stack graph convolution.

Number of Enter the

layers Layer dimensions  Output size
1 Transformer GCN 5 32
2 SAGPooling 32 32
3 Transformer GCN 32 64
4 SAGPooling 64 64
5 Transformer GCN 64 32
6 SAGPooling 32 32
7 Transformer GCN 32 16
8 Global mean pooling 16 16
9 Linear 16 4

has certain advantages in solving the problem of nonconvex
optimization.

The network structure of the graph classification model
based on stack chart convolution is shown in table 5. The head
parameter in a Transformer GCN [24] model represents the
number of cells it can count in parallel, and the model is set to
1. The dropout parameter represents the node drop rate, which
improves the generalization of the network to prevent the phe-
nomenon of overfitting during training, and the model is set
to 0.2. The pooling rate of the SAGPooling layer is set to 0.5,
representing the number of nodes that collapse in half of each
pooling.

4.1.3. Training and analysis. ~ The loss and training curves
of the four data set batches that the stack classification model
trains on are shown in figure 12.

The stack classification model has a double decline phe-
nomenon on the four data set batches. This phenomenon
describes the continuous decline and increase in the train-
ing loss and test loss in the neural network process with the
increase in the number of rounds. It can be avoided by termin-
ating training early.

The model has a slow convergence speed after the double
decline phenomenon, and the accuracy fluctuation of the test
set is clear. When the model is trending near convergence, the
accuracy of the test set fluctuates between 0.7 and 1.0, which is
closely related to its special pooling mechanism and network
structure.

When using graph pooling, its essence is to discard the
nodes on the whole graph based on some rules. At this time,
some nodes will be directly discarded, and the discarded nodes
will not participate in the error back propagation of the current
operation. After performing graph pooling many times, some
discarded nodes may be in progress, resulting in the need for
the network to optimize the network through the nodes that
appear here. This causes the error and accuracy to jitter. How-
ever, with optimization, this jitter phenomenon will gradually
decrease. Its principle is shown in figure 13.

The stack classification model’s training results on the four
data sets batches are shown in table 6. It is clear that the

minimum error of the stack model converges above 1072,
and the accuracy of the minimum error is distributed between
0.892 and 0.985, but the highest accuracy of the first three
data set batches is 1.000, while the highest accuracy of the
fourth data set batch is 0.938, combining the training curves
of the four data set batches with the consideration of the train-
ing results. The training results of the model did not achieve
the desired results.

To address some of the disadvantages of stack classification
networks, a residual classification model is trained on the same
data set.

4.2. Optimization of a fault diagnosis algorithm model

4.2.1. Model structure.  Because the characteristic smooth-
ing phenomenon of a stack graph convolution model has a
certain relationship with the number of layers, a multilayer
stack graph convolution model is bound to have problems
such as model degradation. To prevent model degradation and
improve the convergence speed of a model in the optimiza-
tion process, a residual model can be introduced into the stack
model.

A residual model first appeared in residual network [25],
and its purpose is to solve the problems of gradient disap-
pearance and gradient explosion of deep networks. In the
process of deep network training, the backpropagation of
the gradient propagates backward in the form of layer-by-
layer multiplication, which will lead to the continuous mul-
tiplication of smaller gradients close to zero, thus affect-
ing the gradient update speed of the previous layers of the
network.

A schematic diagram of a residual model is shown in
figure 14. The layer input and output are directly connected
by identity mapping, and a residual model can be directly
described by formula (26):

g(x) =f(x) +x. (26)

A residual model changes the learning goal of the model.
When the overall model reaches an optimal state at a certain
depth, model degradation will occur if the depth continues to
increase. In this case, it will be more troublesome to update the
network weight again. After a residual model is introduced, to
ensure that the next layer can continue to optimize after the
model reaches an optimal state at one layer, it is only necessary
to make the output of the next layer approach x, that is, the
learning goal f(x) will approach zero.

Introducing a residual model into a graph convolution net-
work can effectively avoid the feature smoothing phenomenon
of a graph convolution network during the forward propaga-
tion process. The network structure of a residual classification
model is shown in figure 15.

Because a residual model itself is an identity map, that is,
the dimensions of the input and output are the same, a residual
model cannot be directly used after graph pooling. To solve
the above problems, a unified number of hidden layer node
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Figure 12. Loss and accuracy curves of the stack classification model on the four data set batches.

Figure 13. Forward propagation and error inverse transmission during the pooling process.

features can be determined according to the number of node 4.2.2. Parameter selection. = The network structure of the
features and classification, and then a readout layer is added graph classification model based on residual graph convo-
after graph pooling; that is, global pooling is used to realize lution is shown in table 7. The model is connected by a
identity mapping. residual jump, and the feature number of hidden layer nodes
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Table 6. Stack classification model training results.

Data set 1 Data set 2 Data set 3 Data set 4
Minimum loss round 180 203 107 355
Minimum loss 2.501 x 107 3.741 x 107 3.258 x 1072 1.227 x 107
Minimum loss round accuracy 0.973 0.985 0.977 0.892
Maximum accuracy 1.000 1.000 1.000 0.938

g(x) =f(x)+x

Residual Block

= NN H Sum
Figure 14. Residual model principle.
* Table 7. Structure and parameters of the graph classification model
) based on residual graph convolution.
{ MPNN_Pooling l Residual Net
T — Number of
v . layers Layer Enter size Output size
{ MPNN_Pooling
} 1 Transformer GCN 6 64
2 SAGPooling 64 64
RTRLIResiE ‘ 3 Global mean pooling 64 64
/ \ 4 ) \ 4 4 Global max pooling 64 64
{ Readout ‘ ‘ Readout J ‘ Readout ‘ 5 Transformer GCN 64 64
* * + 6 SAGPooling 64 64
7 Global mean pooling 64 64
[ Sum ‘ 8 Global max pooling 64 64
* 9 Transformer GCN 64 64
10 SAGPooling 64 64
{ Dense ‘ 11 Global mean pooling 64 64
i 12 Global max pooling 64 64
13 Dense 128 64
Figure 15. Residual classification model. 14 Dense 64 32
15 Dense 32 4

must be equal. Here, the feature number of hidden layer
nodes is 64. The full connection layer has three layers.
The first two layers reduce the dimension of features, and
the output size of the last layer is equal to the number of
classifications.

4.2.3. Training and analysis.  The loss and training curves
obtained using training the residual classification model on the
four data set batches are shown in figure 16.

The residual classification model also exhibited double
drops on the four data set batches. Compared with the stack
classification model, the residual classification model has
much smaller training errors each time a double drop occurs,
and its convergence speed is also faster.

As shown in figure 16, the residual classification model
overcomes the disadvantage of the large fluctuations in
the accuracy of the stack classification model during
training.

When it approaches a convergence state, the accuracy of
the test set is stable above 0.9 and maintained at 1.0 for a long
time.

The training results of the residual classification model on
the four data set batches are shown in table 8. It is clear
that the minimum error of the residual model converges to
approximately 1073, the accuracy at the minimum error is
1.000, and the highest accuracy of the four data set batches is
1.000. The training results of the model achieves the expected
results.
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Figure 16. Loss and accuracy curves of the residual classification model on the four data set batches.

Table 8. Residual classification model training results.

Data set 1 Data set 2 Data set 3 Data set 4
Minimum loss round 204 155 256 234
Minimum loss 0.874 x 107 2.099 x 107 0.946 x 107 1.241 x 107
Minimum loss round accuracy 1.000 1.000 1.000 1.000
Maximum accuracy 1.000 1.000 1.000 1.000

5. Summary

First, a mathematical model of a force feedback two-stage
electrohydraulic servo valve is established, and the fault char-
acteristics of the electrohydraulic servo valve under typical

fault modes are explored. Then, the fault data of the electro-
hydraulic servo valve are obtained and normalized. Finally, a
fault diagnosis algorithm based on a MPNN is proposed.
According to the experimental results, the stack
classification model has a slower convergence due to its
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special pooling mechanism and network structure, and the
accuracy fluctuates more severely during the convergence
process. To address this, a residual model is added to the
stack classification model, which overcomes the loss of node
information caused by the stack classification model due to
the pooling mechanism. After many experiments, the residual
classification model converges faster than the stack classific-
ation model. The characteristics of a small convergence error
and high accuracy after convergence prove that a graph neural
network has certain advantages in the application to fault dia-
gnosis of electrohydraulic servo valves. This can help realize
the healthy operation and maintenance of an electrohydraulic
servo system.

However, there are some shortcomings in this article.
Because the common faults of the test object are relatively
single, all failure modes cannot be reproduced. The experi-
mental object is single, and the data set cannot contain fault
samples of multiple models of electrohydraulic servo valves.
Therefore, in follow-up research, the focus should also be
placed on the construction of the data set. A data-driven fault
diagnosis algorithm has higher requirements for the data, so
it is necessary to construct complete electrohydraulic servo
valve fault data set. Due to the limitation of the data, this paper
did not test data of different lengths. Subsequent researchers
can study the application of a graph neural network model
based on data of different lengths to the fault diagnosis of elec-
trohydraulic servo valves.
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