
Measurement Science and
Technology

     

PAPER • OPEN ACCESS

Spirits quality classification based on machine
vision technology and expert knowledge
To cite this article: Mengchi Chen et al 2023 Meas. Sci. Technol. 34 055405

 

View the article online for updates and enhancements.

You may also like
Hubble Space Telescope Imaging of
Luminous Extragalactic Infrared Transients
and Variables from the Spitzer Infrared
Intensive Transients Survey
Howard E. Bond, Jacob E. Jencson,
Patricia A. Whitelock et al.

-

SPIRITS 15c and SPIRITS 14buu: Two
Obscured Supernovae in the Nearby Star-
forming Galaxy IC 2163
Jacob E. Jencson, Mansi M. Kasliwal, Joel
Johansson et al.

-

Dynamic aggregation evolution of
competitive societies of cooperative and
noncooperative agents
Zhen-Quan Lin,  , Gao-Xiang Ye et al.

-

This content was downloaded from IP address 202.8.112.55 on 14/06/2023 at 08:00

https://doi.org/10.1088/1361-6501/acb2e1
/article/10.3847/1538-4357/ac5832
/article/10.3847/1538-4357/ac5832
/article/10.3847/1538-4357/ac5832
/article/10.3847/1538-4357/ac5832
/article/10.3847/1538-4357/aa618f
/article/10.3847/1538-4357/aa618f
/article/10.3847/1538-4357/aa618f
/article/10.1088/1674-1056/22/5/058201
/article/10.1088/1674-1056/22/5/058201
/article/10.1088/1674-1056/22/5/058201


Measurement Science and Technology

Meas. Sci. Technol. 34 (2023) 055405 (14pp) https://doi.org/10.1088/1361-6501/acb2e1

Spirits quality classification based on
machine vision technology and expert
knowledge

Mengchi Chen1, Hao Liu2, Suyi Zhang3, Zhiyong Liu4, Junpeng Mi1, Wenjun Huang1,∗

and Delin Li3

1 College of Control Science and Engineering, Zhejiang University, Hangzhou, People’s Republic of
China
2 State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,
Zhejiang University, Hangzhou, People’s Republic of China
3 Luzhou Laojiao Group Co., Ltd, Luzhou, People’s Republic of China
4 Zhejiang SUPCON Technology Co., Ltd, Hangzhou, People’s Republic of China

E-mail: wjhuang@zju.edu.cn

Received 13 September 2022, revised 26 December 2022
Accepted for publication 13 January 2023
Published 8 February 2023

Abstract
By combining machine vision technology and expert knowledge, this paper proposes an online
intelligent classification solution for Chinese spirits, which effectively improves the
classification accuracy and production efficiency of spirits. Specifically, an intelligent spirits
quality classification system is first designed, including spirits collectors, image sampling
cameras, and computing devices. According to the principle that the size and shape of the
bubbles in the spirits collector will change with the alcohol content in the spirits, a classification
method of spirits quality based on the convolutional neural network (CNN) and bubble region of
interest (ROI) selection is proposed. Furthermore, a post-processing method based on expert
knowledge is proposed to improve the accuracy of the classification algorithm. A spirits quality
classification dataset containing 139 119 images is created, and 15 CNNs are tested. Test results
show that the highest spirits quality classification accuracy is 98.62% after using the bubble ROI
selection method, and the highest classification accuracy reached 99.82% after adopting the
post-processing method. Furthermore, practical application tests show that the solution
proposed in this paper can improve spirits’ production quality and efficiency.

Keywords: spirits classification, machine vision, expert knowledge,
convolutional neural network, region of interest

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, the application of artificial intelligence (AI)
technology in industrial manufacturing has exploded, giving
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birth to industrial AI [1], which has become the technical
core of intelligent manufacturing. AI-driven manufacturing
has significantly improved many aspects of the closed-loop
production chain, from the manufacturing processes to the
final product logistics [2]. In particular, the use of machine
vision technology has greatly benefited the field of production
monitoring [3–5].

Chinese spirits are distilled spirits with a long history, usu-
ally obtained by natural fermentation [6]. It is usually made
from sorghum or a blend of barley, corn, rice, wheat, and
sorghum and is rich in volatile components such as esters
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and organic acids. Traditional solid-state fermentation and
brewing mainly include the following steps: material prepara-
tion, starter preparation, fermentation, distillation, aging, and
blending [7].

During the distillation process, the quality of spirits will
change continuously with the distillation time due to the con-
stantly changing content of ethylene glycol, ethyl butyrate,
acetaldehyde, and other substances. Sorting and collecting
spirits according to their quality is a key link in spirits pro-
duction, directly related to their final quality and production
efficiency. Traditional production lines classify different qual-
ities of spirits by manually observing the characteristics of the
bubbles (shape, size, and quantity) produced by pouring the
spirits. Although this method is simple and easy to implement,
it has the disadvantage of different classification standards and
relies heavily on the personal experience of workers, which
is not conducive to maintaining the stability of spirits quality
and improving production efficiency. Therefore, studying the
intelligent quality classification technology of spirits is very
necessary and valuable.

There are few studies on online spirits quality classific-
ation based on machine vision technology. Existing studies
on spirits quality classification are mainly based on analyt-
ical instruments (such as spectrometers, chromatography, and
mass spectrometers) to analyze the chemical composition of
spirits. Based on Fourier transform analysis and Raman spec-
troscopy, Mandrile et al [8] identified the variety, origin, and
aging time of red wine. The identification accuracy of vari-
etal and origin is 90%, and the identification accuracy of aging
time is 84%. Wu et al [9] measured the fermentation paramet-
ers in rice wine by Raman spectroscopy and classified the fer-
mentation stage of rice wine based on the cars-support vector
machine (Cars-SVM) algorithm, with a classification accuracy
of 94.90%. Pérez-Caballero et al [10] used ultraviolet–visible
spectroscopy to analyze the chemical composition of tequila
and used various machine learning algorithms such as random
forest and support vector machine to classify the category of
tequila. The best classification accuracy is greater than 94%.

To the authors’ knowledge, there are no machine vision
studies specifically focused on classification of spirits bubbles.
Fortunately, several studies have used machine vision tech-
nology to analyze bubbles generated by the gas–liquid two-
phase flow in chemical production processes, which inspired
the research in this paper.

Liu et al [11] proposed an online bubble size distribution
monitoring scheme through a fully convolutional networkwith
multi-scale deblurring and multi-stage jumping feature fusion
to identify the health status of the flotation froth process. Peng
et al [12] proposed a watershed algorithm with an optimized
mark and edge constraint for accurate segmentation of flota-
tion froth images. Haas et al [13] proposed a faster region-
based convolutional neural network (CNN) detector to locate
bubbles and a shape regression CNN to approximate bubble
shapes in gas–liquid multi-phase flows. Qaddoori et al [14]
used the traditional Hough circle detection algorithm to loc-
ate tiny bubbles in water flow and designed a shallow CNN
network for bubble size classification. Cerqueira and Paladino

[15] proposed a method to reconstruct bubble morphology
based on anchor points and boxes, and trained a CNN network
to extract bubbles that approximate ellipses. Wang et al [16]
proposed a fast 3D reconstruction method for dilute bubbly
flow based on DIF-LeNet by combining bubble information in
light field images.Wang et al [17] proposed a framework com-
bining a deep edge-aware network and a marker-controlled
watershed algorithm to extract bubble parameters from hyster-
oscopic images. However, since spirits bubbles are too dense,
it is difficult to extract individual bubbles for processing by
image segmentation or object detection methods. Therefore,
this paper adopts the image classification method to realize
the classification of spirit bubbles.

Based on machine vision technology and expert know-
ledge, this paper proposes a complete solution for the qual-
ity classification of spirits in the actual production process.
For the first time, the use of machine vision technology to
replace artificial spirits quality classification in the actual pro-
duction process has been successfully implemented, thereby
improving the final quality and production efficiency of spirits.
The main contributions of this paper are: (a) a bubble region
of interest (ROI) selection algorithm based on gray-level co-
occurrence matrix (GLCM) and non-maximum suppression
(NMS) is proposed, which can effectively improve the spir-
its quality classification accuracy of the CNN; (b) a post-
processing method based on expert knowledge is proposed
to improve the spirits quality classification accuracy; (c) by
combining machine vision technology and expert knowledge,
a high-precision spirits quality classification method is pro-
posed, and the best classification accuracy reaches 99.82%; (d)
a spirits quality classification solution is proposed and applied
in actual production, which effectively improves the final qual-
ity and production efficiency of spirits.

The rest of this paper is organized as follows. Section 2
introduces the principle of spirit quality classification and the
spirits distillation process. The spirits quality classification
algorithm based on the CNN model and bubble ROI selec-
tion algorithm is proposed in section 3. The preprocessing
and post-processing methods are also proposed in the same
section. In section 4, a spirits quality classification dataset is
established, and different CNN models are tested to verify the
effectiveness of proposed methods. The practical application
tests are also carried out in this section. Finally, the conclu-
sions are provided in section 5.

2. Spirits distillation process and classification
principle

2.1. Spirits distillation processes

Ethanol and water are the main components of distilled spirits,
accounting for about 98%. Spirits also contain more than 1700
trace substances [18], including alcohols (such as isobutanol
and n-pentanol), esters (such as ethyl caproate, ethyl lact-
ate, and ethyl acetate), organic acids (such as acetic acid and
lactic acid), and aldehydes (such as furfural, acetaldehyde, and
acetal), etc.
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Figure 1. Changes in the content of different substances during
distillation. (a) ABV changes with distillation time. (b) The alcohol,
ester, acid, and aldehyde content changes with distillation time.

Take the distillation process of strong-flavor spirits as an
example, which can be divided into five stages from I to
V, namely the initial distillate (stage I), the second distil-
late (stage II), the third distillate (stage III), the last distillate
(stage IV), and the tailwater (stage V). As the distillation time
increases, the alcohol by volume (ABV) decreases, and the
flavor gradually deteriorates, which means that the quality of
spirits decreases. Figure 1 shows the effect of distillation time
on the content of alcohol, ester, acid, and aldehyde in strong-
flavor spirits [19].

The entire distillation lasts about 20 min. Figure 1(a) shows
the division of five stages. In stage I, the ABV in the distillate is
very high and contains more alcohol-soluble esters. The spir-
its taste in stage I is fragrant and miscellaneous. The content
of ABV and ethyl hexanoate in the distillate of stage II is still
relatively high, and the substances such as esters, aldehydes,
and acids are relatively balanced, resulting in the best flavor
and quality of spirits in this stage. As shown in figure 1(b),
ethyl lactate, organic acids, and aldehydes readily soluble in
the water begin to increase in stage III due to the decrease
of ABV in the distillate, resulting in a slightly sour taste and
insufficient flavor of spirits. However, it can still be used as
ordinary spirits after storage and blending. In stage IV, the
ABV in the distillate dropped sharply, resulting in a signific-
ant increase in the content of ethyl lactate, organic acids, alde-
hydes, and some poorly soluble oils. At this stage, the distil-
late begins to settle, becomes sour, and becomes irritating and
greasy. The ABV in the distillate of stage V drops to zero, and
many ethanol-insoluble substances are distilled out.

Figure 2. (a) Overall spirits bubble images in different distillation
stages. (b) Details of spirits bubble images in different distillation
stages.

2.2. Principles of spirits quality classification

The overall and partial details of distillate bubbles at different
distillation stages are shown in figure 2. The golden bowl is
used to collect the distillate to highlight the bubble morpho-
logy. Among the various substances in the distillate, the con-
tent of ethanol has the greatest influence on the visual morpho-
logy of bubbles. At 30 ◦C, the relationship between the surface
tension of the ethanol solution σ and the ethanol concentration
c is provided [20]:

σ =
0.2243

3.182+ c0.6899
. (1)

As shown in figure 1(a), the alcohol content of the distillate
decreases, and its surface tension increases as the distillation
progress. The continued increase in surface tension leads to a
decrease in bubble stability. Therefore, there are more bubbles
at stages I, II, and III, as shown in figure 2(a). When enter-
ing stages IV and V, the sudden drop in alcohol content leads
to a sharp increase in surface tension and a sharp deteriora-
tion in bubble stability, resulting in a sharp decrease in bubble
number.
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Alcohol also indirectly affects the visual characteristics of
bubbles by affecting the content and solubility of trace sub-
stances in the distillate, as shown in figure 2(b). The distillate
at stage I is high in alcohol content and low in water-soluble
foam substances such as organic acids and ethyl lactate. At this
stage, the amount of adsorbent molecules is sufficient to main-
tain the stability of bubbles only when the bubbles coalesce
to a certain extent and the total surface area of bubbles is
small. Therefore, the bubble diameter at this stage is relat-
ively large and can last for a few seconds. In stage II, the
alcohol content of the distillate begins to decrease, the con-
tent of water-soluble organic acids, ethyl lactate, and other
substances increases, and the foaming effect is pronounced,
resulting in fine and dense bubbles. During the last two distil-
lation stages, the alcohol content suddenly drops, the content
of the foaming substances is too high, and the bubble stabil-
ity is greatly reduced. Moreover, the higher content of alco-
hols, ethyl oleate, and ethyl linoleate in the last two distilla-
tion stages negatively affects the formation of bubbles as esters
and other poorly water-soluble liquids substances will precip-
itate and form droplets, thereby preventing the formation of
bubbles.

In short, the ethanol content in the distillate directly affects
the visual characteristics of bubbles by affecting the surface
tension. The ethanol content also affects the content and solu-
bility of various trace substances in the distillate, and indirectly
affects the visual characteristics of bubbles.

3. The proposed classification method

3.1. Hardware system

An intelligent spirits quality classification system is
developed, and the schematic diagram is shown in figure 3.
The system is mainly composed of the high-speed camera (the
model is HIKVISION DS-2CD7A47FWD-LZS/ZJ, the shut-
ter speed is 1/2000 s, and the frame rate is 25 fps), industrial
Ethernet, AI server (Model: Dell PowerEdge R740, CPU: 1x
Intel Xeon Silver 4114 2.2 GHz 10Core, GPU: 1x NVIDIA
Tesla P4 GPU), distributed control system (DCS) (Model:
SUPCON ECS700), and segment switching devices (valves),
as well as multiple industrial application software (OPC,
Visual Field, etc). The system can obtain real-time images
of spirits bubbles, judge the current spirits quality, and control
valves to collect spirits from different distillation stages.

The working process of the whole distillation system is as
follows: (a) steam first enters the distiller from the bottom,
which drives the alcohol substances to be distilled from the
distiller’s grains in the form of steam, then enters the con-
denser. (b) In the condenser, the steam condenses into liquid
spirits, which then flow out of the bottom of the condenser. (c)
Bubbles are formed after the spirits flow into the golden bowl
collector. The camera captures the bubble image in real-time
and sends it to the server. The server runs the spirits quality
classification algorithm and sends the result to the DCS. DCS
controls the opening and closing of valves according to the
classification result so that liquor of different quality flows to

Figure 3. Schematic diagram of spirits distillation system.

Figure 4. Detailed structure of spirits quality classification system.

the corresponding storage tank. The detailed structure of the
spirits quality classification system is shown in figure 4.

3.2. Classification algorithm

The flowchart of the proposed CNN-based method for spir-
its quality classification is shown in figure 5, which includes
three steps: image preprocessing, image classification, and
post-processing. The image preprocessing algorithm uses
traditional machine vision methods to quickly extract the
foreground region of the collector from the original image
obtained by the camera. The image classification method first
extracts the bubble ROI, and then classifies the image based on
the CNN. The post-processing algorithm detects and corrects
the classification results of CNN based on expert knowledge to
eliminate unreasonable stage switching, and then outputs the
final classification results.

3.2.1. Prior knowledge constraints. The quality classifica-
tion of spirits is closely related to the actual production pro-
cess. Therefore, this section summarizes some prior empir-
ical knowledge as auxiliary information for the classification
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Figure 5. The proposed spirits quality classification algorithm.

Figure 6. The proposed bubble ROI selection algorithm.

algorithm, as follows: (a) the sequence of the distillation pro-
cess must be from stage I to stage V, and there will be no dis-
order; (b) stage I (initial distillate) usually lasts about 2 min,
and the algorithm can identify this stage according to the dis-
tillation time; (c) due to the low quality of stage IV (last distil-
late), the distillation time of this stage is usually determined by
the brewery, which means that the identification of stage V is
also related to distillation time; (d) the classification algorithm
in this study only needs to classify three stages of the distilla-
tion process: stages II, III, and IV.

3.2.2. Image preprocessing. The useful foreground is only
the region where the golden collector is located in the original
image. Finding the foreground region and discarding the irrel-
evant background can speed up the inference speed of the CNN
and reduce the input of noise information. Besides, during the
production process, the camera and collector may shake or
move due to environmental vibration, and foreground posi-
tion in the image will also change accordingly. Therefore, it
is necessary to detect the foreground region of the collector in
the image.

The Gaussian filter is used to remove noise in the original
image. A golden collector is specially designed to enhance
the contrast of the bubble image. Since the golden color of
the collector is different from the background color (as shown
in figure 6), the color space segmentation method is adopted.
Specifically, the original image located in the RGB color space

is converted to the hue, saturation and value (HSV) color space
[21]. Calculate the three color channels of the hue (h), satura-
tion (s), and value (v) of the pixels inside and outside the col-
lector. The conditions of threshold segmentation are

hmin ⩽ h⩽ hmax

smin ⩽ s⩽ smax

vmin ⩽ v⩽ vmax

(2)

where hmin, smin, and vmin are the lower thresholds of three
color channels, and hmax, smax, and vmax are the upper
thresholds. All thresholds are determined based on prior know-
ledge. Keep all pixels that meet the thresholds in equation (2)
while setting other pixels to 0. The last step is to crop out all
the zero value regions used for contour detection. Then input
the foreground region of the collector into the CNN model for
inference.

3.2.3. CNN models for bubble image classification. In this
section, a total of 15 different CNN backbone models with
different structures are utilized for classification, including
five deep models (VGG16 [22], VGG19 [22], ResNet50 [23],
InceptionV3 [24, 25], DenseNet121 [26], Xception [27, 28])
and nine lightweight models (SqueezeNet [29], ShuffleNet
[30], NasNet_Mobile [31], MobileNet [30], NobileNetv2
[32], MobileNetv3_Small [33], MobileNetv3_Large [34],
EfficientNetB0 [35], EfficientNetB3 [35]). All CNNmodels in
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this paper are trained using pre-trained weights to speed up the
training process. The pre-trained weights and architecture of
all CNN models are derived from the CNN backbone models
trained on the ImageNet dataset [36]. In this paper, the number
of neurons in the final output layer is changed to 3, and other
model structures are consistent with corresponding backbone
models. The network structure information and training curves
of each CNN model are also provided on the open source
dataset webpage (https://github.com/MengchiCMC/Chinese-
Spirits-Bubble-Datasets.git).

3.2.4. Bubble ROI selection algorithm. Since more convo-
lution operations can extract deeper semantic features, deeper
and larger CNNmodels can theoretically achieve higher image
classification accuracy and have better generalization. How-
ever, a complex CNN model with many parameters requires
better hardware equipment and more training data, which will
undoubtedly increase the difficulty and cost of the classific-
ation algorithm. A bubble ROI selection algorithm based on
GLCMandNMS is proposed to improve the accuracy and gen-
eralization of the lightweight CNN model. After combining
the bubble ROI selection algorithm, the CNNmodels no longer
need to learn global images but accept local bubble images as
inputs. The proposed bubble ROI selection algorithm is shown
in figure 6, which consists of three steps: Grid division, GLCM
propriety calculation, and NMS. The detailed description of
each step is as follows.

3.2.4.1. Grid division. First, assume that the global image
resolution is W×H, and the resolution of each bubble ROI
is w× h. Then, divide the global image into multiple grids at
equal intervals in the row and column directions. The divi-
sion step is s, and the list of candidate grid boxes is B=
[b1,b2, . . . ,bK]. The element bi (i= 1, . . . ,K) is the mark of
each grid, and K is the total number of grids, which can be
calculated as

K=

(
(W−w)

s
+ 1

)
×
(
(H− h)

s
+ 1

)
. (3)

3.2.4.2. GLCM propriety calculation. The GLCM is a mat-
rix that describes the gray-level relationship between pixels
and can be used for image texture analysis [37]. The calcu-
lation of GLCM needs to set three parameters, namely gray
quantization level l, direction A, and distance D.

First, assume that A= [a1,a2, . . . .,am] and D=
[d1,d2, . . . ,dm]. Each element in A and D is the selected value
of direction and distance, m and n are the elements of A and
D, respectively. Then, calculate the GLCM with size w× h,
and K matrices of size l× l×m× n can be generated, which
are the matrices labeled as glcm1,...,K in figure 6. In this paper,
only one direction and one angle are selected to calculate the
GLCM, and the angular second moment (ASM) is used as the
texture feature index of each matrix. ASM can describe the
uniformity of gray distribution and the thickness of texture. If
the value of each element in the gray matrix fluctuates very
little, then the value of index is small, otherwise it is large.

Therefore, the ASM of the bubble ROI will be larger than
other regions without bubbles. ASM can be calculated as

ASM=
∑
i

∑
j

{P(i, j)}2 (4)

where P(i, j) is the element of GLCM with coordinates
(i, j). Every element in the evaluation parameter set ASM=
[asm1,asm2, . . . ,asmK] corresponds to the elements of B in
figure 6.

3.2.4.3. NMS. The NMS is a type of algorithm utilized to
select an entity (e.g. bounding box) from many overlapping
entities. This paper uses the NMS to select the most suitable
k bubble regions with the K candidate grids and their corres-
ponding ASM indexes. The NMS selects the proposal regions
with the highest index score, and the intersection over union
(IOU) between selections should also be larger than the IOU
threshold. Finally, k bubble ROIs are selected and marked as
R= [r1,r2, . . . ,rk].

The following pseudo-code is the detailed bubble ROI
selection process.

Algorithm 1. Bubble ROI selection

• Input:B= [b1,b2, . . . ,bK], Nt
B is the list of grid boxes
Nt is the IOU threshold
• Output: Selected bubble ROI R= [r1,r2, . . . ,rk]
• Main loop:
1: Calculate GLCM of each box in B,

GLCM= [glcm1,glcm2, . . . ,glcmK]
2: Calculate ASM index of each GLACM,

ASM= [asm1,asm2, . . . ,asmK]
3: R←∅
4: While B ̸= empty do
5: m← argmaxASM
6: R← R∪ bm
7: B← B− bm
8: For bi in B do
9: If IOU(bm,bi)> Nt then
10: B← B− bi
11: ASM← ASM− asmi

12: End if
13: End for
14: End while
15: Return R
• End loop

3.2.4.4. CNNmodel inputs. Based on the bubble ROI selec-
tion algorithm, sub-images can be selected to maximize the
extraction of bubble features while suppressing background
noise. Unlike the classification method directly inputs the
global image, the classification method combined with bubble
ROI selection takes all the selected bubble sub-images as
input. Due to the full features of the input bubble sub-images,
there is less demand for the depth of the CNN model.

3.2.4.5. Post-processing. As shown in figure 4, the classi-
fication results of the proposed classification method must be
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Figure 7. State machine switching rules for post-processing.

post-processed. When the distillation process and the distillate
flow rate become unstable, the output result of the classifica-
tion algorithm may be unreasonable. To further improve the
performance of the classification algorithm, a post-processing
method based on the state machine switching rule and expert
knowledge is designed to correct the classification results, as
shown in figure 7. In figure 7, there are five switching condi-
tions. When the duration of stage I reaches the threshold based
on expert knowledge (2 min in this paper) and the CNN clas-
sification results show that n (n = 5 in this paper) consecutive
diagnosis results are stage II, it means that the distillation pro-
cess of spirits has entered stage II. The switching rules between
other stages are similar.

The post-processing step has two main functions. The first
function is that the order of the classification results matches
the actual production process. For example, stage III can only
appear after stage II, not before stage II. The second function
is to filter out incorrect classification results and improve the
classification accuracy.

4. Test results and discussions

4.1. Datasets

Twenty-eight sets of spirits classification systems are deployed
in a winery in Sichuan, China, as shown in figure 8. There are
28 spirits production lines in figure 8, including 28 distillation
units, 28 cameras, 7 switches, 7 AI servers, 1 OPC server, and
1DCS. Each production line has a separate distillation unit and
camera. Each server is connected to four production line cam-
eras and deploys four spirits quality classification algorithms,
which operate independently. All servers communicate with
the DCS via the OPC communication protocol.

Figure 8. The deployed spirits classification systems.

Table 1. Image numbers of each distillation stage.

Stages Training set Test set

Stage II 70 471 4176
Stage III 31 199 4264
Stage IV 26 862 2227
Total 128 532 10 667

In this paper, videos of 13 different spirits production lines
are used as datasets and labeled, among which 10 production
lines are used as the training dataset and 3 production lines are
used as the test dataset. Each video covers the complete spir-
its distillation process, which includes bubbles images from
stage I to stage V. The resolution of videos is 2560× 1440,
and the length of each video is about 1 h. The authors sample
a frame from the video every 500 ms and manually label it as a
dataset sample. Finally, a spirits quality classification dataset
containing 139 199 images is established, including a train-
ing dataset of 128 532 images and a test dataset of 10 667
images. The image samples of different stages are shown in
table 1. According to expert knowledge, stage I and stage
V in the spirits production process can be directly identified
and controlled by duration. Therefore, the proposed classi-
fication method is trained to classify stage II, stage III, and
stage IV.

4.2. Preprocessing results

The original frame is an red, green and blue (RGB) image
with a resolution of 2560× 1440, and the size of the fore-
ground region is 900× 900, as shown in figure 9(a). The
entire image is converted from RGB color space to HSV
color space, and the pixel value ranges from 0 to 255. The
entire image and foreground region’s HSV histograms are
shown in figures 9(b) and (c), respectively. Three graphs
from left to right are the histogram distribution of hue chan-
nel, saturation channel, and value channel. The horizontal
axis represents the pixel value of each color channel, and
the longitudinal axis represents the normalized probability
density.

7
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Figure 9. HSV histograms. (a) Entire image and foreground region.
(b) HSV histograms of entire image. (c) HSV histograms of
foreground region.

By comparing figures 9(b) and (c), it can be found that the
hue (H) channel histogram of the entire image is mainly dis-
tributed in the range of [10, 40] and [100, 150], while the hue
channel histogram of the foreground region only distributed
in [15, 40], which means that pixels with values greater than
40 almost all represent the background. Therefore, the hue
channel segmentation thresholds can be set to hmin = 15 and
hmax = 40. The saturation (S) channel of the entire image is dis-
tributed in the range of [0, 200], with the smaller value region
accounting for the most. Unlike the entire image, the middle
pixel value occupies most of the foreground saturation histo-
gram, which is almost equal to the obvious tail of the global
saturation histogram. The saturation histograms of the entire
image and the foreground region overlap from 50 to 200, and
some pixels with smaller values also appear in the saturation
histogram of the foreground region. After ignoring small value
pixels, the saturation channel segmentation threshold can be
roughly set to smin = 70 and smax = 200. Different from the hue
and saturation histogram distribution, the value histogram of
the entire image is distributed within the range of the complete
coordinate axis, and there are four peak points located near
44, 127, 206, and 255. The value histogram of the foreground

Figure 10. Foreground region extraction results. (a) HSV
segmentation mask. (b) Extracted foreground region.

region mainly covers the range from 80 to 255, and there are
three peak points around 130, 200, and 255, which are close to
the peak points of the entire image. Therefore, the value chan-
nel segmentation thresholds can only be set to vmin = 100 and
smax = 255.

Figure 10(a) shows the mask for HSV color space segment-
ation of figure 9(a) using the thresholds set above, where the
white pixels indicate that the thresholds are met and need to be
retained, while the black pixels will be discarded. Due to the
reflection of light, it can be found that some parts of the fore-
ground region are no longer golden and are omitted. There-
fore, some remedial measures are needed. The morphological
opening operations are performed to filter small noise points
outside the foreground region, and the closing operation fills
the holes in the foreground region. Hough circle detection is
used to realize the smallest circumscribed circle. The extrac-
tion result of the foreground region is shown in figure 10(b).
The golden collector is accurately extracted and used as the
input to the CNN model in the following classification step.

4.3. Bubble ROI selection results

For the bubble ROI selection algorithm, two parameters need
to be determined when using the GLCM, namely, the pixel-
pair distance offset and the pixel-pair angle. The grid shrink-
age method is used to select appropriate parameters, and
eight different values of D= [0, 1, 2, 3, 4, 5, 6, 7] and A=
[0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4] are selected to
calculate the GLCM and ASM indexes of randomly selec-
ted foreground images. The calculation results are shown in
figure 11.When the distance is fixed, the ASM index increases
monotonously as the angle increases. When the angle is fixed,
the ASM index fluctuates in a small range as the distance
increases. The ASM index is not a convex function or a con-
cave function about the angle and distance, which means that
the change of ASM with distance and angle can be predicted.
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Figure 11. GLCM parameter selection.

Figure 12. ASM indexes of foreground images at different
distillation stages.

Therefore, it is only necessary to select a pair of distance and
angle values to calculate the ASM index.

The bubble ROI resolution is set as 224× 224 to fit the input
size of the CNNmodel, and the grid division stride is set to s=
20. The number of candidate grid boxes, K, can be calculated
by the formula (3). The distance parameter of GLCM is set as
D= [1], and the angle parameter is set as A= [π/4]. For three
different distillation stages, the ASM index for each grid of the
collector foreground image is shown in figure 12. It is worth
noting that the horizontal and longitudinal axes refer to the
grid number coordinates after division. It is easy to find that
the grid with more bubbles has a higher ASM value. Then,
NMS is applied to select the k most suitable grids as bubble
ROI for CNN model training and testing. In this paper, Nt is
set as Nt = 0.5, and k is set as k= 5.

4.4. Parameter settings

Figure 13 shows the bubble ROI selection corresponding to
different value combinations of Nt and k. When the value of Nt
is too small (Nt ⩽0.3), a large area without bubbles appears in
some ROI images (such as ROI r3 in figures 13(b), (f) and (j)).
When the value of Nt is too large (Nt ⩾0.7), the ROI images
will be severely overlapped, and the significance of selecting
multiple ROI images will be lost (such as figures 13(d), (e), (h)
and (i)). In order to select as many bubble areas as possible and

Figure 13. Different parameter value combinations of Nt and k.

at the same time ensure sufficient feature differences between
different ROI images, Nt = 0.5 is set in this paper.

The setting of parameter k is similar to that of Nt. As shown
in figure 13, when the value of k is too small (k⩽3), the num-
ber of extracted ROI images is small, and the bubble features
may not be rich enough. When the value of k is too large
(k⩾7), there are many repeated areas in ROI images, and it
may also cover bubble-free area. Therefore, k= 5 is set in this
paper.

4.5. Classification results

As mentioned above, only three stages (II, III, and IV) need
to be classified by CNN, while stages I and V are based on
expert knowledge. An NVIDIA TITAN XP GPU is utilized
for training the CNN model, and hyper-parameters are set as:
the input image size is 224× 224× 3, the batch size is 64, the

9
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Table 2. Classification results of different CNN models.

CNN models

Accuracy of
global image
input (1)

Accuracy
of bubble

ROI input (2)

Accuracy
improvement
(2) − (1) Total parameters FLOPs (G)

Model
size
(MB)

Inference
time (ms)

VGG16 89.80% 95.28% 5.47% 134 272 835 30.95 1536.78
VGG19 91.26% 96.59% 5.33% 139 582 531 39.28 1675.17 63.84
Resnet50 88.25% 96.77% 8.52% 23 888 771 7.75 273.96 75.96
InceptionV3 90.61% 96.90% 6.29% 21 956 387 5.69 252.37 88.47
DenseNet121 94.94% 96.70% 1.76% 7188 035 5.7 83.65 98.96
Xception 93.16% 98.15% 4.99% 21 162 539 9.13 242.52 74.26
SqueezeNet 75.25% 83.32% 8.07% 1251 427 1.78 14.57 63.97
ShuffleNet 80.72% 92.80% 12.08% 940 635 1.94 24.33 94.88
NasNet_Mobile 93.13% 96.66% 3.53% 4424 951 1.15 54.09 132.81
MobileNet 91.33% 92.10% 0.77% 3379 395 1.15 38.95 59.22
MobileNetv2 92.81% 93.75% 0.94% 2446 147 0.61 28.58 72.73
MobileNetv3_Small 95.01% 98.62% 3.60% 1533 043 0.12 18.46 69.22
MobileNetv3_Large 95.74% 98.15% 2.41% 4230 275 0.45 49.44 74.2
EfficientNetB0 85.28% 88.31% 3.03% 4237 734 0.79 49.3 76.34
EfficientNetB3 84.41% 86.96% 2.55% 11 244 338 1.97 127.14 97.34

Table 3. Overfitting test results.

Initialization Standardization L2 regularization Dropout Random flip Random brightness and contrast Accuracy

Random 89.72%
Pre-trained 98.62%
Pre-trained 3 97.23%
Pre-trained 3 97.03%
Pre-trained 3 96.06%
Pre-trained 3 96.04%
Pre-trained 3 97.70%
Pre-trained 3 3 97.50%
Pre-trained 3 3 3 97.47%
Pre-trained 3 3 3 95.70%
Pre-trained 3 3 3 3 97.89%
Pre-trained 3 3 3 3 97.88%
Pre-trained 3 3 3 3 3 97.20%

epoch is 5, the optimization algorithm is Adadelta [38], the
learning rate is 1 × 10−2, and the decay rate is 1 × 10−6.
The categorical cross-entropy loss function is selected, and test
results are shown in table 2. The bold values in table 2 represnt
the results with the highest accuray in different experiments.

As shown in table 2, the bubble ROI selection method
can improve classification accuracy compared with the global
image input. The deep model Dense121 and the lightweight
model MobileNetv3_Large can achieve better classification
results when using the global image as input. When using
bubble ROI input, the classification accuracy of all CNNmod-
els is improved compared to the global image input. The
deep model Xception and the lightweight model MobileN-
etv3_Small can achieve better classification results. Among
the five deep models, Resnet50 has the lowest classifica-
tion accuracy of 88.25% when using the global image input.
However, the accuracy of the bubble ROI input reached
96.77%, which is an 8.51% improvement over the global
image input. The meaning of 8.51% improvement is the dif-
ference obtained by subtracting the classification accuracy of
the original method from the classification accuracy of the
improved method.

Among the nine lightweight models, SqueezeNet has the
lowest classification accuracy of 75.25% when using the
global image input. Similarly, the accuracy of the bubble ROI
input reaches 83.32%, which is an 8.07% improvement. Gen-
erally, the bubble ROI selection method can greatly improve
the classification accuracy of the CNN model when the accur-
acy obtained by global image input is poor. Using bubble
ROI input for CNN models with higher accuracy obtained
by global image input can still improve the accuracy, but the
improvement will be reduced. At the same time, the Mobi-
leNetv3_Small model also has advantages in terms of total
parameters, floating point operations (FLOPs), model size, and
inference time.

In addition, the overfitting problem of CNN training is also
tested by using ablation experiments. The data augmentation
(including normalization, random flipping, random brightness
and contrast adjustment), regularization (L2 regularization),
and dropout methods are performed while training the Mobi-
leNetv3_Small model with the bubble ROI input, as shown
in table 3. It can be found that the classification accuracy
of the MobileNetv3_Small model using pre-trained weights
(transfer learning) is 8.9% higher than that of the model using
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Table 4. Post-processing results of different CNN models.

CNN models

Accuracy of
global image
input without

post-processing (1)

Accuracy of global
image input with
post-processing (2)

Accuracy
improvement
(2) − (1)

Accuracy of
bubble ROI
input without

post-processing (3)

Accuracy of
bubble ROI
input with

post-processing (4)

Accuracy
improvement
(4) − (3)

VGG16 89.80% 95.20% 5.40% 95.28% 99.61% 4.33%
VGG19 91.26% 96.35% 5.09% 96.59% 99.71% 3.12%
Resnet50 88.25% 93.18% 4.93% 96.77% 99.66% 2.90%
InceptionV3 90.61% 96.82% 6.22% 96.90% 99.73% 2.83%
DenseNet121 94.94% 99.18% 4.24% 96.70% 99.78% 3.08%
Xception 93.16% 99.12% 5.96% 98.15% 99.78% 1.64%
SqueezeNet 75.25% 87.72% 12.47% 83.32% 99.45% 16.12%
ShuffleNet 80.72% 90.68% 9.96% 92.80% 99.63% 6.83%
NasNet_Mobile 93.13% 97.69% 4.57% 96.66% 99.75% 3.09%
MobileNet 91.33% 96.05% 4.72% 92.10% 99.79% 7.69%
MobileNetv2 92.81% 96.96% 4.16% 93.75% 99.80% 6.06%
MobileNetv3_Small 95.01% 97.86% 2.85% 98.62% 99.82% 1.20%
MobileNetv3_Large 95.74% 97.93% 2.18% 98.15% 99.82% 1.67%
EfficientNetB0 85.28% 94.24% 8.96% 88.31% 99.59% 11.27%
EfficientNetB3 84.41% 92.84% 8.43% 86.96% 99.54% 12.58%

the random weights (random initialization). Data augmenta-
tion, regularization, and dropout methods slightly reduce clas-
sification accuracy. The lowest accuracy (95.7%) is obtained
by combining L2 regularization, dropout and random flipping
methods. After combining L2 regularization, dropout, random
flipping, and random brightness and contrast adjustment meth-
ods, theMobileNetv3_Small model has the least drop in accur-
acy (only 0.72%). The results of the ablation experiments in
table 3 show that the accuracy of the MobileNetv3_Small
model is not greatly reduced after using various methods to
prevent overfitting, which verifies that there is no serious over-
fitting problem.

4.6. Post-processing results

The post-processing results of different CNN models are
shown in table 4. The bold values in table 4 represnt the results
with the highest accuray in different experiments. The compar-
ison results show that the classification accuracy of CNNmod-
els can be effectively improved by using the post-processing
method. After using post-processing, the classification accur-
acy obtained by CNN models with bubble ROI input is gen-
erally higher than CNN models with global image input. The
smaller the classification accuracy of the CNN model before
using post-processing, the more significant the improvement
of accuracy after post-processing is used. After using post-
processing, the classification accuracy of CNN models with
Bubble ROI input exceeded 99%.

The post-processing results of the MobileNetv3_Small
model with the bubble ROI input are shown in figure 14. It can
be found that the misclassification results in the original stage
III and stage IV are corrected after using post-processing.

As shown in table 2, compared with VGG16, VGG19
achieves 1.46% and 1.32% higher accuracy on global
image input without post-processing and bubble ROI input
without post-processing, respectively. Similarly, VGG19

Figure 14. The post-processing results of the MobileNetv3 small
model with the bubble ROI input.

has higher classification accuracy than VGG16 after using
post-processing, as shown in table 4. VGG19 improves the
accuracy of global image input with post-processing and
bubble ROI input with post-processing by 1.15% and 0.10%,
respectively. Although the classification accuracy of VGG19
is better than that of VGG16, its performance does not out-
perform CNN models such as Xception, NasNet Mobile and
MobileNetv3_Small. Therefore, in this manuscript, VGG19 is
not the preferred model for practical application deployment.

In general, the deeper the classification model based on the
CNN architecture, the higher the image classification accur-
acy. However, there does not appear to be a similar relationship
between model computational complexity (operations), model
complexity (number of parameters), and image classification
accuracy. Bianco et al [39] summarizes the relationship
between image classification accuracy, model computational
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Table 5. Resources consumed by the server to run the classification algorithm.

Time consumption CPU usage GPU usage Memory usage GPU memory usage Network usage

110 ms 11% 4% 700 MB 279 MB 16 Mbps

Table 6. Resources consumed by the server to run the classification algorithm.

Samples Stage I to stage II Stage II to stage III Stage III to stage IV Stage IV to stage V

1 79.7 63.2 46.6 11.9
2 78.5 63.8 46.9 12.2
3 79.2 64.4 45.8 15.0
4 78.3 62.3 46.0 12.1
5 79.8 64.8 44.7 13.8
6 79.5 64.1 46.5 13.4
7 78.0 62.5 46.1 13.4
8 79.8 63.9 46.7 14.6
9 79.4 64.7 45.4 14.0
10 78.8 63.7 46.6 12.7
Mean 79.1 63.7 46.1 13.3
Standard deviation 0.6 0.8 0.6 1.0

complexity, and model complexity. The comparison results in
[39] show that the model computational complexity, the num-
ber of model parameters, and the image classification accur-
acy are not simply proportional. For example, in [39], VGG-
13 and ResNet-18 have similar accuracy but differ greatly in
computational complexity and number of parameters. There is
a similar comparison between SENet-154 and SE-ResNeXt-
101 (32 × 4d) in [39].

The main reason for a large number of parameters in
the VGG model is that the last three cascaded fully con-
nected layers (FC-4096/FC-4096/FC-1000) [22] bring a huge
amount of parameters. For example, the parameters of the
first fully connected layer (FC-4096) in VGG16 account for
about 83% of the entire model parameters. Unlike VGG mod-
els, other models usually only have a small fully connected
layer (FC-1000). Deeper convolutional layers improve image
classification accuracy rather than more fully connected lay-
ers. Therefore, among all the models compared in this paper,
although theVGG16model has the largest number of paramet-
ers, it is not the model with the best accuracy, which is consist-
ent with the conclusions of other literature. At the same time,
the main reason for the shortest inference time of VGG16 is
that the convolution layer is not deep, and the computational
complexity is low. In conclusion, the fewer convolutional lay-
ers, the shorter the inference time and the lower the image clas-
sification accuracy. Themore fully connected layers, the larger
the number of parameters.

4.7. Practical application test results

In practical application tests, the MobileNetv3_Small model
with bubble ROI selection and post-processing methods is
deployed in spirits production lines. The running period of
the classification algorithm is 500 ms. The parameters of the
bubble ROI selection method are s= 20, D= [1], A= [π/4],
Nt = 0.5,k= 5. For the post-processing method, the duration

of stage I and stage VI are 2 min and 30 min, respectively.
Based on the above parameter settings, resources consumed
by the server to run the classification algorithm are shown in
table 5.

Ten spirits samples from different production lines are ran-
domly selected for alcohol content test when the distillation
stage is switched. Test results are shown in table 6. After apply-
ing the classification solution proposed in this paper, spirits
switched from stage II to stage III has an average alcohol con-
tent of 63.7% VOL with a standard deviation of 0.8% VOL,
and has an average alcohol content of 46.1% VOL with a
standard deviation of 0.6% VOLwhen switching from stage II
to stage III. Test results in TABLE VI verify that the proposed
solution is accurate and stable in practical spirits production
applications. One month after the deployment and operation
of the spirits quality classification system, the output increased
by 7.7%, and the production efficiency increased by 29.0%.

5. Conclusions

This paper proposes a spirits quality classification solution that
combines machine vision technology and expert experience,
which can classify spirits at different distillation stages by ana-
lyzing the bubble morphology. A spirits quality classification
dataset is established and labeled based on the self-designed
classification system and actual spirits production videos. A
complete spirits quality classification algorithm from prepro-
cessing to post-processing is proposed, and 15 different CNN
models are trained and tested. Test results show that the pro-
posed bubble ROI selection and post-processing method can
effectively improve the classification accuracy of spirits qual-
ity. After using the bubble ROI selection method, the highest
spirits quality classification accuracy can reach 98.62%. After
adopting the post-processing method, the highest classific-
ation accuracy reached 99.82%. Furthermore, the practical
application tests show that the solution proposed in this paper
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can significantly improve spirits’ final quality and production
efficiency.
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