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Abstract
Accurate tracking of anatomic landmarks is critical for motion management in liver radiation
therapy. Ultrasound (US) is a safe, low-cost technology that is broadly available and offer
real-time imaging capability. This study proposed a deep learning-based tracking method for the
US image-guided radiation therapy. The proposed cascade deep learning model is composed of
an attention network, a mask region-based convolutional neural network (mask R-CNN), and a
long short-term memory (LSTM) network. The attention network learns a mapping from an US
image to a suspected area of landmark motion in order to reduce the search region. The mask
R-CNN then produces multiple region-of-interest proposals in the reduced region and identifies
the proposed landmark via three network heads: bounding box regression, proposal
classification, and landmark segmentation. The LSTM network models the temporal
relationship among the successive image frames for bounding box regression and proposal
classification. To consolidate the final proposal, a selection method is designed according to the
similarities between sequential frames. The proposed method was tested on the liver US
tracking datasets used in the medical image computing and computer assisted interventions
2015 challenges, where the landmarks were annotated by three experienced observers to obtain
their mean positions. Five-fold cross validation on the 24 given US sequences with ground
truths shows that the mean tracking error for all landmarks is 0.65 ± 0.56 mm, and the errors of
all landmarks are within 2 mm. We further tested the proposed model on 69 landmarks from the
testing dataset that have the similar image pattern with the training pattern, resulting in a mean
tracking error of 0.94 ± 0.83 mm. The proposed deep-learning model was implemented on a
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graphics processing unit (GPU), tracking 47–81 frames s−1. Our experimental results have
demonstrated the feasibility and accuracy of our proposed method in tracking liver anatomic
landmarks using US images, providing a potential solution for real-time liver tracking for active
motion management during radiation therapy.

Keywords: motion tracking, convolutional neural network, deep learning, ultrasound image,
long short-term memory network, real-time landmark localization

(Some figures may appear in colour only in the online journal)

1. Introduction

Accurate delivery of radiation dose to the intended treat-
ment target is critical to the safety and efficacy of radiation
therapy, especially in body sites where physiologic motion
(respiration, sneezing etc) may cause significant short-term
variability in anatomic position [1]. Any inaccuracy may lead
to insufficient dose to the tumor target, geographic miss, or
overdose of surrounding normal tissues. Many treatment pro-
tocols have attempted to reduce the impact of respiratory
motion using breath-hold techniques. However, breath-hold
substantially prolongs treatment time and may not be well-
tolerated by all patients [2]. Real-timemotion tracking enables
advanced motion management during treatment delivery to
improve treatment safety and efficacy while benefitting more
patients.

Two-dimensional x-ray imaging is commonly used to assist
motion tracing, but it often requires implanting several fidu-
cial markers into the moving organs to facilitate tracking [3].
Fiducial placement is invasive and carries with it a risk of side
effects similar to those associated with other same-day operat-
ing room procedures. Recently, a few non-invasive tracking
methods have been developed to track anatomic landmarks
within moving organs with promising results [4, 5]. Because it
is non-invasive and low-cost while providing high soft tissue
contrast in real time without additional radiation dose, ultra-
sound (US) imaging is an excellent candidate for real-time
imaging for motion tracking during radiation therapy [6, 7].
The automatic localization of landmarks potentially reduces
the physician’s cognition task and the manual error. However,
US often suffers from low signal-to-noise ratio and imaging
artifacts, making the motion tracking task on US images very
challenging.

This landmark tracking problem is usually addressed by
exploiting the relationship between the current image frame
and the preceding frame in the US image sequence. Nouri and
Rothberg trained a neural network by minimizing the Euclid
distances between image patches containing the same land-
mark in an embedding subspace and then identified the tar-
get image patch with the shortest distance to the prior frame
with a search window on the landmark [8]. Makhinya and
Goksel extended the algorithm for superficial vein tracking
using elliptical and template image sequences of the liver, fol-
lowed by an optic-flow framework [9]. Hallack et al combined
Log-Demons nonlinear registration to estimate motion with a
moving-window tracking method to propagate motion around
the region of interest (ROI) to subsequent frames [10]. Kondo

proposed two extensions to the kernelized correlation filter
using an adaptive window size selection and motion refine-
ment with template matching [11]. Chen et al predicted the
motion of anatomic targets in liver US sequences by a line
regression-based ensemble of six machine learning models
[12]. Ozkan et al proposed a supporter model to capture the
coupling of motion between the image features and target so as
to predict target position [5]. For 3D point-landmark tracking,
Banerjee et al [13] proposed a 4D US tracking method based
on global and local rigid registration schemes, while Royer
et al [14] combined visual motion estimation with a mech-
anical model of the target. Williamson et al utilized a com-
bination of template matching, dense optical flow and image
intensity information for US target tracking in real-time [15].
However, the above methods often suffer from abrupt motions
due to sneezing, coughing, etc. To handle the tracking drift
issues caused by abrupt motions, Teo et al adopted a weighted
optical flow algorithm to reduce the tracking drift of an uncon-
toured tumor [16], while O’shea et al [17] used the α−β fil-
ter/similarity threshold for image-guided radiation therapy. In
addition, Harris et al [18] and Bell et al [19] conducted the
study of in vivo liver tracking using 4D US. Van et al [20,
21] developed deep learning-based methods to automatically
detect and localize the B-lines in lungUS images. Kulhare et al
[22] adopted the convolutional neural networks to detect the
abnormalities in lung US images.

In recent years, deep learning-based methods have become
the benchmark in a wide range of image processing tasks,
such as image segmentation [23, 24], object detection [25],
image classification [26] and image registration [27]. Gomariz
et al proposed a fully convolutional Siamese network to learn
the similarity between image patches related to the same
landmark, where a temporal consistency model was built for
regularization [28]. Huang et al used an attention-aware fully
convolutional neural network to identify a suspect region and
employed a convolutional long short-termmemory (LSTM) to
integrate temporal consistency in 3D US sequences [4]. Then,
Huang et al used a machine-learning based approach to gen-
erate subject-specific motion pattern and updated the template
image using the learned motion pattern to reduce the search
region [29]. Liu et al proposed a one-shot deformable convolu-
tional modal for enhancing the robustness to appearance vari-
ation in a meta-learning manner and combined this modal with
a cascaded Siamese structure to enhance pixel-level tracking
performance [30]. They also adopted an unsupervised training
strategy to reduce the risk of overfitting on a limited sample
of medical images. However, these methods are often lost in
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Figure 1. Two example image frames of the CLUST dataset. The yellow points are the annotated landmarks. The cyan ellipse indicates the
area of an ambiguous image structure that is seemed to be a landmark.

the similar image structures out of interest regions or missing
the temporal features between frames. Dai et al [31] developed
a Markov-like network, which is implemented via generative
adversarial networks, to extract features from sequential US
frames and thereby estimate a set of deformation vector fields
(DVFs) through the registration of the tracked frame and the
untracked frames. Finally, they determined the positions of the
landmarks in the untracked frames by shifting landmarks in the
tracked frame according to the estimated DVFs [32].

Mask region-based convolutional neural network (mask R-
CNN) is a popular deep learning approach [25], which has
achieved state-of-the-art performance in object detection [33,
34]. This study aims to attempt the mask R-CNN framework
on the task of landmark tracking in 3DUS imaging of the liver,
where both advantages in these above methods are considered.
The reasonwhywe chose the popular mask R-CNN formotion
tracking is that there are multiple landmarks with different
image structures in an image frame. Besides, R-CNN has a
capability of handling abrupt motions due to its less depend-
ency of contexts. We set out to address two limitations of mask
R-CNN when applied to this task: (a) incorrect proposals due
to the structural similarity in local US image structures, as the
cyan ellipses in figure 1; (b) limited single-frame scope that
fails to exploit the temporal relationship between successive
frames in a US image sequence. To address these limitations,
an attention network is designed to focus the ROI of landmark,
while a LSTM network is integrated to recognize landmark
motion continuity. In the present study, we evaluate the pro-
posed method on liver anatomic landmarks. Our methods and
dataset are presented in detail in section 2, experimental res-
ults in section 3, followed by discussion and conclusions in
section 4.

2. Materials and methods

2.1. Patient dataset

In this study, we used data provided for the medical image
computing and computer assisted interventions 2015 Chal-
lenge on Liver Ultrasound Tracking (CLUST). The CLUST
dataset is composed of 2D US image sequences acquired

from 63 patients under a free-breathing protocol using 5
US scanners and 6 transducers. Based on the scanners used
for acquisition, the US image sequences were divided into
CIL, ETH, ICR, MED1 and MED2 groups, referring to the
institutional image source [35]. The duration of the sequence’s
ranges from 4 s to 10 min. The temporal resolution ranges
from 6 Hz to 30 Hz, and the spatial resolution ranges from
0.27 mm × 0.27 mm to 0.77 mm × 0.77 mm. Anatomic
landmarks were annotated on 10%–13% of image frames per
sequence, the number of landmarks range from one to five
per sequence. These were manually annotated by three exper-
ienced observers; the resulting mean positions are used in this
study. The 63 sequences were randomly divided into a train-
ing set of 24 sequences (40% of the dataset) and a test set of
39 sequences (60% of the dataset), yielding 53 landmarks for
training and 85 landmarks for testing. For the test data, the
annotation of landmarks in the first frame was provided to the
trained network to track their positions in subsequent frames.
Two example image frames are shown in figure 1. The regions
indicated by cyan ellipse have a similar image pattern with the
ground-truth landmark.

2.2. Attention mask R-CNN with LSTM

The proposed deep model for landmark tracking is composed
of three networks: an attention network, a mask R-CNN net-
work and a LSTM network. The attention network learns a
mapping from an US image to the attention area, where the
landmark motion occurs, to reduce the search image region.
The mask R-CNN network produces multiple ROI proposals
for the landmarks in this region and identifies the landmark via
three network heads: a bounding box regression, a proposal
classification, and a mask segmentation. The LSTM network
utilizes the US image sequence to model the temporal relation-
ship between successive frames to assist bounding box regres-
sion and proposal classification. We integrated the three mod-
ules into an end-to-end deep learning architecture, as shown in
figure 2.

2.2.1. Attention network. The attention network aims to
identify an attention ROI where the target landmark appears in
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Figure 2. The proposed deep network architecture, including fully convolutional network (FCN), feature pyramid network (FPN), region
proposal network (RPN) and long short-term memory (LSTM).

order to reduce the search region considered by the subsequent
mask R-CNN. Note that our attention network, whose aim is
to learn a region box, is different from the work of Huang
that adopted a pyramid attention network to learn the atten-
tion features [36]. Since the landmark in the first frame is
provided, we predefine a box that contains all its potential pos-
itions in the subsequent frames of the US sequence. A box of
size 100 × 100 pixels centered on the landmark position in
the first frame was selected as input for the attention network.
To train this network, a box size of H × W pixels centered
at the landmark of the target frame was designated as the
ground truth. We extracted pairs of input and output boxes
to learn the mapping that automatically reduces the search
region. The number of pairs corresponds to all the landmarks
provided in the training dataset. This box regression is made
under the following objective function and the intersection
over union:

Latt = min
∑

i∈{x,y,w,h}

(ti− oi)
2
+

1
N
∥U−V∥22 (1)

where U and V are the input image patch and the output
ground-truth patch, respectively; N is the number of intersec-
tion pixels; ti and oi are the bounding box parameters of the
target and the output, defined by:

tx = (x− xa)/wa, ty = (y− ya)/ha, tw = log(w/wa) ,

th = log(h/ha) ,

ox = (x∗ − xa)/wa, oy = (y∗ − ya)/ha, ow = log(w∗/wa) ,

oh = log(h∗/ha) ,

where x, y, w and h are the coordinates of the box center,
width and height, and x, xa and x∗ are the predicted box, the
anchor box of a sliding window [37] and the ground-truth box.
Each anchor box, centered at the sliding window used in Mask
R-CNN, is used as a reference to yield more region propos-
als. We adopted sliding-windows of different sizes to yield
the proposal anchor boxes that have greater than 0.7 over-
laps with the predefined box. After the attention network, the
regions including irrelevant areas or ambiguous image areas
are removed, as in figure 1, and greatly reducing the search
cost within the target box.

2.2.2. Improved mask R-CNN (IMask R-CNN). Mask R-
CNN is adopted to detect the bounding box centered at
the target landmark [25], which is achieved by three train-
ing objectives: a bounding box regression Lbox, a proposal
classification Lcls and a pixel classification Lmask [33]:

L= ω1Lcls +ω2Lmask +ω3Lbox (2)

where ω = [ω1,ω2,ω3] was set to [0.2,0.2,0.6] in our studies
to emphasize the bounding box regression.

While standard mask R-CNN utilizes the softmax func-
tion for multi-object classification, object classification is
formulated as a binary classification task by separating boxes
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containing or not containing a landmark. In addition to being
better suited to a binary classification task, the large margin
function proposed by Elsayed et al [38] has shown better per-
formance compared with the softmax function. Therefore, we
employed the large-margin loss function:

Lcls =
N∑
i=1

∑
l

max

{
0,γ+

fo (xi)− ft (xi)
ε+ ∥∇l fo (xi)−∇l ft(xi)∥2

}
, (3)

where l is the lth layer of the classification net, γ indicates
the decision boundary, and a small perturbation ε = 1 × 10−6

avoids the numerical instability. fo (xi) and ft (xi) are the scores
classifying xi into the class o and its ground truth label
t respectively. Equation (3) collects the margin losses at all
layers for deep supervision [33].

Since mask images are composed of binary pixels, pixel
classification is thus a binary problem. To improve pixel clas-
sification performance, we employed a large margin softmax
loss initially proposed for binary pixel classification for needle
localization in brachytherapy applications [39]:

Lmask =

N∑
i=1

−log

 e∥W∥yi 2∥x∥i2φ(θyi)

e∥W∥yi 2∥x∥i2φ(θyi) +
∑

j ̸=yie
∥W∥j2∥x∥i2 cos(θj)


+λ∥W∥F

2, (4)

where yi is the ground truth label of xi, j ∈ {0,1} indicates a
non-landmark pixel or a landmark pixel respectively,W is the
weights of the last fully connected layer, and φ(θ) is defined
as [39]:

φ(θ) = (−1)k cos(mθ)− 2k, θ ∈
[
kπ
m

,
(k+ 1)π

m

]
wherem is an integer that is closely related to the classification
margin, and k ∈ [0,m− 1] is an integer.

For bounding box regression, we used center localization
with a 20 pixels× 20 pixels bounding box [33]. The objective
function is:

Lbox =
N∑
i=1

L
(
tix− oix

)
+

N∑
i=1

L
(
tiy− oiy

)
(5)

where N is the number of samples in a mini-batch and L(u) is
the robust loss function [25] as:

L(u) =

{
0.5u2, if |u|< 1

|u| − 0.5, otherwise
.

2.2.3. LSTM network. In an US image sequence, landmarks
move continuously along successive frames, thus landmark
position information obtained from one frame may improve
localization in subsequent frames [6, 40]. The power of LSTM
networks for encoding context information and capturing tem-
poral dependencies have been previously demonstrated [41].

The key components of the LSTM architecture providing this
representational power are amemory cell thatmaintain its state
over time and non-linear gating units which regulate inform-
ation flow into and out of the cell. For each frame in an US
sequence, each layer of the LSTM network computes ht at
frame t as,

it = σ (Wiixt+ bii+Whiht−1 + bhi)

ft = σ (Wifxt+ bif+Whfht−1 + bhf)

gt = tanh(Wigxt+ big+Whght−1 + bhg)

ot = σ (Wioxt+ bio+Whoht−1 + bho)

ct = ft⊙ ct−1 + it⊙ gt

ht = ot⊙ tanh(ct)

where ht, ct, and xt are the hidden state, cell state and input
at frame t respectively, ht−1 is the hidden state of the layer
at frame t − 1 or the initial hidden state, and it, ft, gt, ot are
the input, forget, cell and output gates respectively. σ is the
sigmoid function and ⊙ is the Hadamard product. The gates
are used to transmit information from image frame to the next.

In this study, LSTMs were adopted to capture temporal fea-
tures for each proposal, similar to Huang et al [4]. During
training, several proposals with the greatest overlap with the
anchor box were considered to learn the gates in their corres-
ponding cells. A similar LSTM network was used by Lei et al
[42]. In the testing stage, proposals were fed into the corres-
ponding LSTM to obtain the features, followed by fully con-
nected networks for bounding box regression and object clas-
sification. Besides, we used LSTM for bounding regression
and proposal classification but not for pixel classification to
mitigate these bad effects from abrupt motion, such as cough
and sneezing.

2.3. Similarity-based localization selection

The proposed approach (as shown in figure 2) often deliv-
ers multiple localizations with different scores for each land-
mark. However, the predicted localization with the highest
score may correspond to confounding image structures that is
similar to the target landmark. Since the movement of land-
marks is smooth and continuous across successive frames, the
landmark position at frame t can be inferred using the land-
mark position at frame t − 1, based on the similarity between
sequential frames. To consider both the score from IMask
R-CNN and this prior, we improved our scoring schema by
accounting for the distance of the landmark’s predicted loca-
tion to its location in the previous frame:

xt = argmin
xk

(
γSk+(1− γ)

1

1+ e∥xk−xt−1∥

)
(6)
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where xk is one localization with a score Sk of all predictions
at frame t, and xt−1 is the landmark at frame t − 1. γ is the
trade-off parameter set to 0.5. Equation (6) is composed of
both mask R-CNN scores and the distances to the landmark
at frame t − 1. The combined score ranges from 0 to 1 and
their contributions are controlled by γ, improving localization
in our experiments.

2.4. Model training and evaluation

To train the proposed model, we set the learning rate to
1 × 10−6, five continuous proposals for LSTMs and termin-
ated the training at 1000 epochs where the decrease of the
training error between two epochs is less than 1 × 10−3. To
evaluate ourmethod on the training set of 24US sequences, we
used five-fold cross validation that divides the 24 sequences
into five data subsets, i.e. four subsets with five sequences
per subset and one subset of four sequences. In each fold,
we trained our model using four subsets and then tested on
the remaining subset. To evaluate the model on the test data
of 39 sequences, we trained the model using all 24 training
sequences before submitting the results to CLUST organizer.
Since the targets and the predictions are two landmark points,
we as usual computed the tracking error by using the Euclidean
distance between the prediction landmarks and the ground-
truth landmarks as follows:

erri = ∥ti− oi∥22

where ti is the ground truth position and oi is the predicted pos-
ition for a landmark in the ith frame. The individual errors were
calculated on all frames containing ground truth landmarks.
Then, all errors for a landmark were used to compute the aver-
age error and standard deviation for each landmark. Finally,
the average tracking error, standard deviation and the 95th
error percentile were calculated for each patient. The computa-
tion cost was assessed to show the real-time imaging capability
in US-guided radiation therapy.

3. Results

3.1. Visualizations

Figure 3 shows tracking results on the US image sequences of
five patients. Each was captured with a different scanner and
contains one to five annotated landmarks. The tracking errors
averaged over all frames are 0.79 ± 0.43 mm for patient CIL-
02, 0.67 ± 0.58 mm for CIL-01, 0.71 ± 0.46 mm for ICR-01,
0.52± 0.31mm for CIL-04, and 0.74± 1.14mm forMED-02-
3. As shown, the proposed method identified all landmarks on
the five sequences regardless of the number of landmarks. A
big mean error of 0.74± 1.14 mm is observed on the landmark
within a shadow of patient MED-02-3, because the bound-
ing box suffers from unsteadiness in the shadow. The track-
ing error is potentially caused by the inconsistency between
landmark patterns and manual labels.

3.2. Quantitative evaluation

Figure 4 shows the mean error and standard deviation of track-
ing errors obtained on all image frames for each of the 24 train-
ing sequences, using five-fold cross validation. As shown, the
mean tracking errors of all sequences are within 1 mm. For the
sequences of ETH-01-1, ETH-02-1, ETH-02-2 and MED-02-
3, large standard deviations are observed due to shadows sur-
rounding these landmarks in the US images. Because a large
shadow causes a freedom for the bounding box localization.
The tracking errors on all landmarks is less than 2 mm, within
acceptable clinical range [4, 43]. The minimum tracking error
of 0.37 ± 0.19 mm was observed for ETH-01-1, while the
maximum of 0.88 ± 0.75 mm was observed for MED-04-1.
Besides, the confidence intervals with the level of 0.99 are
also calculated on each US sequence, plotted along with the
mean tracing errors in figure 4. The results illustrate the pro-
posed model delivers small swings with a high confidence
level, showing its robustness in most cases.

Table 1 summarizes the evaluation results summarized on
all 24 US sequences in terms of the mean, standard deviation,
and 95th error percentile. The best performance was achieved
in ICR sequences relative to other sources. On this training
dataset, composite error of 0.65 ± 0.56 mm is reported for all
sequence sources across all landmarks.

To validate the effectiveness of the proposed net compon-
ents, we removed the LSTM net from the proposed model,
called WAN (with attention) for short, and removed the atten-
tion net from the proposed model, called WLSTM (with
LSTM) for short, respectively. Table 2 summarizes the results
on the training data with the proposed net components. From
the results, the proposed model achieves better results in com-
parison with both WAN and WLSTM. Therefore, our method
benefits from the attention mechanism and the LSTM net, and
therefore yields effective tracking results.

3.3. Evaluation on test landmarks

We evaluated the proposed model on 69 test landmarks from
the test dataset provided by this challenge organizer6. These
test landmarks all have the similar image structure with the
landmarks used for model training, where the image struc-
ture is shown in figure 3. Table 3 lists the evaluation results of
these related methods. From the results, the proposed method
achieves the better performance than other detection-based
models, i.e. Nouri’s model [8] and Gomariz’s Model [28].

Figure 5 shows the error distribution of the 69 test land-
marks. There are 47 landmarks whose tracking errors are
within 1 mm, and 15 landmarks whose tracking errors are in
the range of [1 mm, 2 mm).

Figure 6 shows the results of landmark localizations on
an image sequence from the test data. The five frames show
that the proposed method achieved a good performance on the
left landmark, while obtained a weak localization on the right

6 www.clust.ethz.ch/results.html.

6
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Figure 3. The tracking results on five frames of five patients’ US image sequence with one to five landmarks. The rows are the image
sequences of five patients, where each set of patient sequences was captured with a different scanner. The patient identifiers are shown at
left, while the five frames in a sequence are organized in columns. The red points are ground truth landmarks, and the cyan boxes are their
predicted positions.

Figure 4. Evaluation results of tracking errors obtained on the 24 US sequences in training dataset.
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Table 1. Summarized tracking errors per scanner source, including mean, standard deviation, and 95th error percentile. N denotes the
number of landmarks in each scanner source. The last row summarizes the tracking errors averaged over all 53 landmarks in this study.

Source N Mean (mm) Std (mm) 95% (mm) AVE.MaxError (mm)

CIL 3 0.73 0.51 1.66 1.82
ETH 16 0.59 0.60 1.52 1.64
ICR 12 0.59 0.36 1.39 1.52
MED 22 0.73 0.62 1.71 1.88
ALL 53 0.65 0.56 1.57 1.69

Table 2. The comparisons between the three added components.

Source Mean (mm) Std (mm) 95% (mm)

WAN 1.27 1.13 5.16
WLSTM 0.94 0.77 3.21
Proposed 0.65 0.56 1.57

Bold represents better performance.

Table 3. Evaluation comparison of the related models on the test dataset.

Mean (mm) Std (mm) 95% (mm)

Proposed 0.94 0.83 2.43
Nouri et al 3.35 5.21 14.19
Gomariz et al 1.34 2.57 2.95

Bold represents better performance.

Figure 5. The error distribution of the test evaluation using the proposed model.

Figure 6. An example of failed landmark tracking in the test data. Red points are manual ground truth, while cyan boxes are utilized to
label the white points that is the predicted results.
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Figure 7. The three landmark patterns observed in test sequences.

landmark. From observations, the left landmark has the same
image structure with these landmarks used for model training,
shown in figure 3. The right landmark has a greater shadow so
that the localization is instable and inaccuracy.

4. Discussion and conclusion

Landmark tracking is one of several common non-invasive
motion tracking strategies, which can be used for advanced
motion management during radiation therapy. This study pro-
poses a deep learning-based approach composed of an atten-
tion network, an IMask R-CNN, and an LSTM network to
track landmarks on US image sequences.With the inclusion of
an attention network, the search region can be greatly reduced.
In the focused region, our method yields ROI proposals which
are then conditioned by box regression, pixel classification and
object identification. To improve the performance of mask R-
CNN for this binary classification, we implemented a large
margin loss function with a deep supervision strategy for pixel
classification and a large-margin softmax function for object
identification. To exploit the temporal relationship between
successive US frames, we also integrated an LSTM network
into the mask R-CNN.

Our experiments were conducted on the CLUST 2015 data-
set, which was divided into a training set of 24 US image
sequences and a test set of 39 sequences. Five-fold cross
validation on the training dataset shows that our proposed
method achieves an average error of 0.65 ± 0.56 mm with
a 95% percentile tracking error of 1.57 mm. On the test set,
evaluation results from the CLUST organizer shows that our
method achieved 0.94 ± 0.83 mm on 69 test landmarks of
the same with the training image structure. Besides, our pro-
posed method could handle 47–81 frames s−1, depending on
the number of landmarks in the US image sequences. Compar-
ingwith other segmentation-basedmodels, ourmethod obtains
the better performance on localization accuracy.

However, the proposed model has a limitation on track-
ing the landmarks with an unseen image structure, like other
segmentation-based models [28]. Figure 7 shows different
landmark structures in the test dataset, where structure (a) is
same with these structures in the training dataset shown in
figure 3. Image structures (b), (c) are out of the learned model.
There are nine images and seven images on structure (b) and

structure (c), where our model achieves 4.53 ± 2.16 mm and
8.81 ± 5.37 mm respectively. Thirteen 13 images of these 16
images were given a more than 3 mm localization errors.

On the other hand, the registration-based method has
reached a tracking result of 0.69mmon theCLUST test dataset
[30]. While our model is less accurate than the current best
method, our model has already acceptable performance on the
localization accuracy and the tracking speed for a real-time
clinical treatment system [4, 44]. Compared with the convolu-
tional LSTM model [4], our method has a filter component in
the backbone of mask R-CNN so as to remove those localiz-
ations that lie in the similar image structures to target land-
marks. Besides, our method is potential to be improved by
training on more data and various landmark image structures.
That is, the deep learning-based model is data hungry.

To have more evaluations, we conducted the extra experi-
ments on the public dataset of cardiac acquisitions for multi-
structure ultrasound segmentation (CAMUS) that was used
in our previous study [31]. The CAMUS dataset includes 2D
US images from 450 patients and meanwhile contains expert
annotations in the left atrium. With the same evaluation set-
tings to our previous study, the proposed method achieves a
comparable mean tracking error of 0.52 ± 1.33 mm while is
more suitable for real-time landmark tracing than the previous
generative adversarial network (GAN) model-based method.

In summary, this study makes an attempt on deep learning-
based method for real-time landmark tracking, resulting in a
high accuracy with a small standard deviation on the land-
marks known by the model. The evaluation accuracy is less
accurate than the best method in the field of US landmark
tracking, but our method is based on the latest deep-learning
techniques and leaves a lot of space to improve. Besides, the
proposed method allows whole image input so that tracking
becomes a simple mapping operation, while the performance
is acceptable for real-time clinical applications.

In future works, a U-Net could be integrated in the output
head for pixel classification to exploit coarse and fine image
feature scales. In addition to exploiting 3D features, U-Net
might enhance the stability of localization results across image
frames. One might also incorporate a registration network to
further improve performance [45]. Another consideration is
integrating the model of B-model and the US priors [21] of
physical property to deal with the spurious landmarks that
are shown in figure 7. Overall, this study presents a potential
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method to address the problem of motion tracking for imple-
mentation in a real-time clinical system, suggesting advant-
ages and disadvantages on the use of mask R-CNN.
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