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Abstract

We investigate a g-fractional integral equation with supremum and prove an existence theorem
for it. We will prove that our g-integral equation has a solution in C[O,l] which is monotonic on

[0,1]. The monotonicity measures of noncompactness due to Banas and Olszowy and Darbo’s

theorem are the main tools used in the proof of our main result.
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1. Introduction

Jackson in [1] introduced the concept of quantum calculus (g-calculus). This area of research has rich history
and several applications, see [2]-[4] and references therein. There are several developments and applications of
the g-calculus in mathematical physics, especially concerning quantum mechanics, the theory of relativity and
special functions [5] [4]. Recently, several researchers attracted their attention by the concept of g-calculus, and
we could find several new results in [6] [7] and the references therein.

In several papers among them [8]-[11], integral equations with nonsigular kernels have been studied. In [12]-
[14] Darwish et al. introduced and studied the quadratic Volterra equations with supremum. Also, Bana$ et al.
and Darwish [13] [15]-[17] studied quadratic integral equations of arbitrary orders with singular kernels. In [18],
Darwish generalized and extended Banas et al. [15] results to the perturbed quadratic integral equations of arbi-
trary orders with singular kernels.

In this paper, we will study the g-perturbed quadratic integral equation with supremum
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0= fler() 00

where 0< 8,4€(0,1), f:IxR—>R, A,B:C(1)>C(I),and k:IxI >R.
By using Darbo fixed point theorem and the monotonicity measure of noncompactness due to Banas and Ols-
zowy [19], we prove the existence of monotonic solution to Equation (1) in C [0,1] .

[ k(t.5)(t—gs)" ™" (By)(s)d, s, € I =[0.1], (1)

2. g-Calculus and Measure of Noncompactness

First, we collect basic definitions and results of the g-fractional integrals and g-derivatives, for more details, see
[5][6] [20] [21] and references therein.
First, for a real parameter ¢ € (0,1), we define a g-real number [a]q by

[a]q = lliq(: ,aeR, 2)
and a g-analog of the Pochhammer symbol (g-shifted factorial) is defined by
1, n=0,
(a:9), ={ “(1-ag'). meN. (3)
Also, the g-analog of the power (a - b)" is given by
., 1, n=0,
(a—b) :{ Z:l(a—bqk), neN;a,beR. @
Moreover,
(a—b)(") =a"(b/asq), , a#0. (5)

Notice that, lim, , (a;¢) exists and we will denote itby (a;q)_ .

More generally, for S eR,aq” #¢ " (neN), we define
(4:9),

(a:9), = (6)
" (ag”:q),
and
b .
(a—b)(ﬂ) =a’ —(ﬁ/a,q)w (7
(¢"b/asq),
Notice that (a —b)(ﬁ) =a’ (b/a;q)ﬂ . Therefore, if 5=0,then a”) =d”.
The g-gamma function is defined by
G X
r,ﬁ):#, xeR\{0,-1,-2,--}, (8)
(1-q)" G(q
I (1-¢)""
where G(qx)z . Or, equivalently, T, (x)=-—=— andsatisfies T, (x+1)=[x] T, (x).
(a%54), (1-4) !
Next, the g-derivative of a function fis given by
Sf(t)-flqt :
(5,)(r) = L= 1e0) 3_ q,( L (D,f)(©) =tim, o (D,1)(0). ©

and the g-derivative of higher order of a function f'is defined by
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f (t), n=0, 10
D -
( qf)(t) D, (D;”lf)(t), neN. (10)
The g-integral of a function /'defined on the interval [0,5] is defined by
(1,1)(0)=1,7(s) ~0) X' ("), 1<[0.5] (1)
If fis given on the interval [0,6] and @ [0,b] then
[[7(s)d,s=[ £ (s)d,s=[f(5)d,s. (12)
The operator /' is defined by
f(t), n=0.
n _ 13
(1)t0)= { 1,(17)(0), neN, (13

The fundamental theorem of calculus satisfies for D, and [ ,ie., (Dq 1. f )(t) =f (t) , and if f'is continuous
at t=0,then (1,D,f)(t)=f(t)-£(0).

The following four formulas will be used later in this paper
[a(t_s)](ﬂ) —a* (t—s)(ﬂ)
D, (t=3)" =[B],(t=s)"" (14)
D, (1—s)" = -[#], (t-gs)”
and
jfzsds j D,f(t,s)d,s+ [ (qt.1), (15)

where D, denotes the g-derivative with respect to variable 7.
Notice that, if B>0 and a<b<t, then (t— b)( ' < <(r-a)
Definition 1. [2] Let f'be a function defined on [0,1] . The fractional g-integral of the Riemann-Liouville type

oforder >0 isgivenby

()

f(1), B =0,
(7)) =1 1 = (¢":q) (16)
q ! (ﬂ_l) _ P Vi n > n n
t—gqs f(s)d s=t"(1—-¢q q"—==f(tq" ), p>0,t|0,1].
Notice that, for g =1, the above g-integral reduces to (11).
Definition 2. [2] The fractional g-derivative of the Riemann-Liouville type of order £ >0 is given by
(27 1)) o o (7)
t)= _
q (D{Eﬂ][L[]ﬁ] ﬁf)(l‘), B>0,
where [ ﬂ] denotes the smallest integer greater than or equalto S .
In g-calculus, the derivative rule for the product of two functions and integration by parts formulas are
(D, f2)(1)=(D, 1 )(1)2 (1) + £ (a1)(D,g) (7). %)
t t
[y () (D) (s)dys =[ 1 ()& ()], = [ (D, /) (5) g (45)d,s.
Lemma 1. Let y,>0 andfbe a function defined on [0,1] . Then the following formulas are verified:
D (1717 £)(e) = (177 £)(2),
(121)0)= (17 1)(0) o)

2) (DLIVf)(1)=f(0)
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Lemma 2. [21] For f >0, using g-integration by parts, we have

, 48)
(Iq 1)(1)—m (20)
or
(8)
J.(;(t _qS)(ﬁ_l) qu = t_ (21)

(51,

Second, we recall the basic concepts which we need throughout the paper about measure of noncompactness.

We assume that (E ,||||) is a real Banach space with zero element 6 and we denote by B(x,r) the closed
ball with radius r and centered x, where B, = B(6,r).

Now, let X ¢ E and denote by X and Conv X the closure and convex closure of X, respectively. Also, the
symbols X +Y and AX stands for the usual algebraic operators on sets.

Moreover, the families 91, and 9, are definedby M, ={4 < E: A= D, A is bounded} and
N, ={B <M, : B is relatively compact}, respectively.

Definition 3. [22] Let x: 9, — R,. Ifthe following conditions

1) @;t{XeimE :y(X):O}:kerycmE.

2) XV, then u(X)< pu(Y).

3) u(X)= ,u(X) = u(Convx).

4) p(AX+(1-2)Y)<Au(X)+(1-2)u(Y),0<2<1 and

5) if (X,) is a sequence of closed subsets of 901, with X,

n+l

cX,,n=123,-, and lim X,)=0

n—on (

then X_ = ﬂj:] X, #@ hold. Then, the mapping 4 is said to be a measure of noncompactness in E.

Here, kery is the kernel of the measure of noncompactness .

Our result will establish in C(/) the Banach space of all defined, continuous and real functions on [ = [0,1]
with ||y|| =max,, |y(t)| .

Next, we defined the measure of noncompactness related to monotonicity in C (I ) ,see [19] [22].

We fix a bounded subset ¥ =@ of C(I).For £2>0 and yeY,w(y,&) denotes the modulus of conti-
nuity of the function y given by

o(y.e)=sup{|y(t)-y(s)|:t.s e Lt —s| <&} (22)
Moreover, we let
o(Y,e)=sup{o(y.c): yeY} (23)
and
@, (Y)=lim,_, o(Y,¢). (24)
Define
d(y)=sup,sep.ct (|7 (1) =¥ (s)|=[ (1) =¥ (s)]) (25)
and

d(Y):supyeyd(y). (26)

Notice that, all functions in ¥ are nondecreasing on 7 if and only if d(Y)=0.
Now, we define the map x on DJTC( 5 as

u(Y)=d(Y)+a,(Y). (27)
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Clearly, u verifies all conditions in Definition 3 and, therefore it is a measure of noncompactness in C (I )
[19].

Definition 4.Let J#Qc E. Let P:Q — E be a continuous operator. Suppose that P maps bounded
sets onto bounded ones. If there exists a bounded ¥ < Q with u(PY)<yu(Y),y >0, then P is said to be
satisfies the Darbo condition with respect to a measure of noncompactness /£ .

If y<1,then P is called a contraction operator with respect to .

Theorem 1. [23] Let Q=< be a bounded, convex and closed subset of E. If P:0Q — Q is a Contraction
operator with respectto 4. Then P has at least one fixed point belongs to Q.

3. Existence Theorem

Let us consider the following suggestions:
a;) f:IxR—R iscontinuous and

EIO£c<1s.t.|f(t,y)—f(t,x)|Sc|y—x| Vteland x,yeR

Moreover, f:IxR, >R and f =max,, f(1,0).

a,) The superposition operator F generated by the function f'satisfies for any nonnegative function y the con-
dition d(Fy)<cd(y), where c is the same constant as in a;).

as) A:C (1 ) - C(] ) is a continuous operator which satisfies the Darbo condition for the measure of non-
compactness 4 with aconstant 7. Also, Ay>0 if y>0.

a;) Ja,b>0,st. |(Ay)(t)| <a+|y|vyeC(l),tel.
as) The function k:IxI— R, is continuous on [x/ and nondecreasing V¢ and s separately. Moreo-
k(t,s).

as) B:C(I)—> C(I) is a continuous operator and there is a nondecreasing function ¢:R, — R, such
that ||By|| < ¢( | y") for any y e C(I). Moreover, for every function y e C(7) which is nonnegative on 7, the

function By is nonnegative and nondecreasing on /.
a;) Ir, >0 such that

*
ver, k =SUD e

. (a+br)k*¢(r) <

f +er+ (28)
L, (B+1)
and c+ M <1
L, (B+1)
Before, we state and prove our main theorem, we define the two operators K and 7 on C(I ) as fol-
lows
1 _
(Ky)(1)= - (ﬂ)_[(:k(t,s)(t—qs)(ﬂ Y (By)(s)ds (29)
q

and

(T)(1)= 1 (:(2)+ (AV) (1) (Ky)(¢) (30)
respectively. Finding a fixed point of the operator 7 defined on the space C(l ) is equivalent to solving Eq-
uation (1).

Theorem 2. Assume the suggestions (a;)-(a;) be verified, then Equation (1) has at least one solution
y € C(I) which is nondecreasing on /.

Proof. We divide the proof into seven steps for better readability.

Step 1: We will show that the operator 7 maps C(7) into itself.

For this, it is sufficient to show that Ky e C(7) if yeC(I).Fix >0 andlet yeC(/) and
ht,el(t <t,) with |r,—1|<e.Wehave
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rim ’2“’ S’“z—qsf“<By><s>dqs—fzk<t.,s><rl—qs><”*'><8y><s>dqs
% Zk(tzﬂs)(tz _qs)(ﬂ_l) (By)(s)qu—I:k(ll,S)(tz —qs)(ﬂ_l) (By)(s)dqs
e =) (B 5)a, 5= [k aos) e ) (85,
o) =) () (50,5~ k)0 (B)s)as
- -
b ) R =00 (B0
L —gs)? s)d s
gy ol e e, N
rqzﬂ)jﬂk(tl (6 -as)" (6 -as) " J(By)(s)]d, s
Al e () pi
_W‘[O (tz—qs)( )dqs
Ko(b s - . g
rq((y)){I [(h=09)"" (1, ~a5) )qu“f,l (5] 5]
_¢("y|)“’k PN k¢(||y") )4 %)
(B ) - (ﬂ+l)[ 2(6=1)"
bl te 6D o
o OT(B+1) 7T (B )
el 2w6(b)
- T (B+1) T (B+1)
Notice that, we have used
oy (&.. sup{|kts k(r,s)|:t,s,re]and|t—r|£g}. (32)

Notice that, since the function £ is uniformly continuous on 7 x 7, then when & — 0 we have that o, (5, ) —0.
Thus Ky e C(I),and therefore, 7y e C([).

Step 2: 7 applies B, into itself.

Now, Vtel, wehave

()0 < f(r,y<r>>+(;“MJ;k<ns><r—qs)w‘><By><s>dqs

<|7(ty(0)= £ (£,0)]+] £ (£,0)|+ | |j lk(1,5)|(r=5) " |(By)(s) d, 8
(o DDA 0 9
Sc||y||+f + (,B) Io(t—qs) d,s
it e el DE()
el + TR

()
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Hence

(a+ol)E B(1A)
r,(8+1)

Therefore, if || y|| <r, we get from assumption a;) the following

(a4 b0)800)

L, (B+1)

| Dl <cllyf+ 1"+ (34)

D <cry+ £+ (35)
Therefore, 7 maps B, into itself.
We define the subset B, of B, by

B::{yeBr :y(t)ZO,fortel} (36)

It is clear that B* #(J is closed, convex and bounded.

Step3: T apphes the set B+ into itself.

By this facts and suggestions al) as) and ag), we obtain 7 transforms B into itself.

Step 4: The operator 7 is continuous on B

To prove this, we fix ( yn) to be a sequence 1n B with y — y.We will show that 7y, - 7y .
Thus, we have Viel,

(7)) =(B)(0)] <[ (6.2, (0)) =1 (1.7(1))

: (ﬁf?_i(f)fik(f’sﬂf—qs)‘”')<Byn><s>dqs-%ﬁkw)(rw”'><By><s>dqs

v, (1) =y(0)+

<c

(Av,)(2) .[;k(t,S)(f - qs)(/H) (By,)(s)

r,(8) —as)"" (By, )(s)d,s

k
& (ﬂ) J.

) (B (5}, e

+ (éy()ﬁ(i).[;k(t,s)(f—qs)(ﬂ1)(6)’") e F (ﬁ) '[ i

v, (t)—y(t)|+ |(Ayn

|Jlk - (B ) o

<c

A
| |.[ (e, (r - |(By,,)( )-(By)(s)|d,s.

Consequently,

¢ (1) Ay, — A . (a+bry)k
L, (8+1) r,(B+1)

As A and B are continuous operators, In, € N such that

el (B+1)
3k¢(n) -

-By|

175, -

v, = |+ (38)

Ay, - Ay| < Vn>n,. (39)

Also, Jn, e N such that

ﬂw

3 (asbn) (40)

I\
S
~

1By, - By| <

Furthermore, 3n, € N such that

—y"S%, Vn 2 n,. (41)

()
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Now, take max {n,n,,ny} <n, then (38) gives us that
|7, -D|<e. (42)

This shows that 7 is continuous in B; .

Step 5: In recognition of 7 with respect to the quantity a), .

Now, we take D#Y B+ Let us fix an arbitrarily number &>0 and choose yeY and ¢,7, €/ with
|t —t | & . We will be supposed that 7 <z, because no generality will be loss. Then, by using our suggestions
and inequality (31), we get

(T)(2) () (1)

<7 (2 (82)) = (82 (1)) #[(AV) (22) (ow) (22) = (Av) (1) (v (1)
+(Ay) (1) (Ky ) (1) = (Av) (1) (K ) (1)
<|7(ty(n))- (1,y | £ (5,0(5,))- f(tpy( )|
+[(Av) (8 )] [(K)( ) ()] +|(Av) (e (@ll(r) (@)
<7, (f,g)+ca)(y,5)+| Ay ||(/Cy)(t2 t1)|
+[(Ar) () = (A) (0| () (1)
(43)
(f e)+co(y.e —(a+b||(y£)+1()||y||)[a)k (8,.)+2k*8ﬁ]
o(Ay,e)
oo
Sy/ro(f,e)+ca)(y,5)+(a;b(’:°‘f)ﬁ;))[a)k(g,,)+2k*gﬁJ
+a)(.Ay,g) “a(r
T (g 200)
The last estimate implies
o(Ty,e)<y, (f.&)+co(y.€)
@) e QA (44)
m () L (&) [ K e()
and, consequently,
a)(TY,g)S;/,,O (f.e)+co(Y,)
+(a+br0)¢(r0) o (6 2k" P +w(AY,5) 4l (45)
Tl [ (&) +2k"e" ] —rq(ﬂ+1)k¢(o)'

Since the function £ is uniformly continuous on /x/ and the function f'is continuous on [ x [0, ro] , then the
last inequality gives us that

kK¢(r)
L, (B+1)

Step 6: In recognition of 7 with respect to the quantity d.
Here, we fix an arbitrary y €Y and f,t, e/ with ¢, >t . Then, by our assumption, we obtain our sugges-

tions, we have

o, (TY) < cary (Y)+ @, (AY). (46)
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(79)(22) | [TV )=(T)(1)]
=|f(tz,y Ik 2 qs (By)(s)dqs
—f(t2(1 Ik )(6,=as)”" (By)(s)d,s

{f(t2,y<tz))+(;i‘y( ()~ 9) " (B9)(5)d

q

Ay)(
r,(8)

() -2
<A (o) 7 (o ()] =L (1 3(8)) = £ 13 (8) ]

_f k(1,,s)(t,— qs) (By)(s)dqs}

U )0 (8615 T o)) ()0
L, g 47)
R b)) (59061~ N ok0) 1) ()5
{(ﬁy;j;;) () ma0) ! ()0) = D ke ><rz—qs><’“><8y><s)dqs}
{( (())fok(t,s)(tz—qs) ) (By)(5) rsz(; [ % (15) (1~ a5) (By)(s)dqs:l}
S{|f tzytz) f(tl’y(tl))| |:f(2 y( (tl :|}
(A () = (A) ()| ~[(AV) (1) - (Av } ! j ) (5, —gs)"™" (By)(s)d, s
r,(8)
+(“1f‘y()ﬂ { 5)(ts = a5) " (B)(5)d,5 - [ K (05) (1 — )" (By)(5)d,
[ Je(tes) (e =05) ™ (BY) (), [k 15 1 =) (B9)(5)d s
Now, we will prove that
Ikt s (t qs) (By)(s)ds Ikt s (l qs) 1)(B’y)(s)quZO. (48)

We find that
I ()t =) (B) (5), = [ (15) 1 —5) " (B) ()4,
= K (5) (0~ a) ™ (B (5), 5~ [ k(1) (1, ~a5) " (B (),
Ik (5) (0~ a) ™ (B (), 5~ [ K (15) (6 —a)” " (B) ()4, -
+Jm<r )" (B (5)d, 5~ [ K (15) (1 ~5) " (By)(s)d, s

(
= 1 ) ) 029 (89)5)y 5+ [ ) 02 9) " (8)(5)d,
+j;lk(tl,s)[(t2—qs)( (6, —gs)” ](By)( )d,s.
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But, k(#,s)<k(t,,s) because k(t,s) isincreasing with respect to ¢ then

[ (k(to5) =k (1,.9)) (1, —q5)" " (By)(s)d,s 2 0, (50)

and, since (t2 —gs )(ﬂ_l) _( —gs )(ﬂ_l)

i k() [ (1 =a) " (1 =as)" " | (By)(s)d s+ [k (15) (1 = as) " (BY) (5)d,
> [k (00)| (1 =)™ = (0 =) |(B) (1) ds o+ Rt ) (1 =)™ (BY)(8)d, s
- k(tl,t1 )(By)(l‘1 )U: (tz —qs) (1) dqs—J‘;1 (t1 —qs)(ﬂfl) dqs] G

k(1,1 )t(ﬂ) i (By)(1,)2 0.

[A],
Inequalities (50) and (51) imply that
[k (t.5) (6, —a5)" ™" (By)(s)d,s = [\ k(t.5) (5, = q5)"" (BY) (5)d,s 2 0.

This inequality and (47) gives us

(T) (1) =(%)(a)] - [( [Ty )-(T)(1)]

is negative for s€[0,7) then

</ (Ly()-f ( (1)) [f(z ()= (6-2(1))])
HI(A) (1) = (Ar) (@) -[(Ar) (&)~ (Av) (1) ]} (52)
- }ﬁ) :k(tz,s)(tQ—qs) ) (By)(s)d, s
dB) )
The above estimate implies that
< kK¢(n)
d(’]j/)_cd(y)Jrrq (ﬁH)d(.Ay). (53)
Therefore,
<c +—k*¢(r0)
d(TY)<cd(Y) rq(ﬂ+1)d(AY). (54)

Step 7: T is contraction with respect to the measure of noncompactness .
Inequalities (46) and (54) give us that

< kK¢(n)
a)o(TY)+d(TY)_c(a)o(Y)+d(Y))+Fq(ﬁ+l)(a)0(AY)+d(.AY)) (55)
_ Ko(n) [ ke(n)
77k*¢(r0)
But C+Fq (,B+1) <1, then
w(TY) < p(Y). (57)
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Inequality (57) enables us to use Theorem 1, then there are solutions to Equation (1) in C(] ) .
This finishes our proof.
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