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ABSTRACT 
 
An age-old question remains as an open research problem in the field of 
chemoinformatics, which is how much could the proposed approach enhance the 
effectiveness of lead-discovery programmes? Answering that question is a target of any 
new virtual screening approach. The current research tries to contribute in this direction by 
improving the performance of molecular similarity searching process. In this paper, Okapi 
similarity measure, which is effective and widely used in text retrieval, is adapted to 
perform the role of molecular similarity measure in 2D fingerprints. The adapted similarity 
measure calculates the molecular similarity between a reference structure and a database 
structure. The experimental results showed that the proposed method performs well 
compared to Tanimoto coefficient. 
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1. INTRODUCTION 
 
Chemoinformatics is a discipline that exploits computational techniques to deal with 
chemical problems and provides suitable solutions for them [1]. Virtual screening techniques 
are the backbone of most chemical problems. In a virtual screening process, very large 
libraries of compounds are automatically evaluated based on an implementation of a 
computational technique proposed for this purpose. Virtual screening covers a category of 
such computational techniques, which enables chemists to control the size of a massive 
virtual library [2]. The role of the computational techniques is to score each molecule in the 
database of molecules based on its reaction to a specified biological target [3]. The  virtual  
screening  (VS)  is  widely  employed to  boost  the  cost-effectiveness  of  molecular 
database consultation during biological testing, where the database molecules are ranked in 
decreasing order based on their scores. This leads to consider just those few molecules that 
have the highest a priori scores of activity [4,5]. Thus far, its application and its usefulness 
have been realized widely by pharmaceutical industry. 
 
Molecular similarity searching, which is one of the most broadly used virtual screening 
approaches, is a specific class of similarity search problems in which a given molecular 
query is compared against a collection of molecules, in order to retrieve those that most 
closely similar to the molecular query. Molecular similarity searching approaches work based 
on the fact stated by the Similar Property Principle [6], which is, molecules that share similar 
structures can be described by similar properties. Based on this fact, the properties of any 
molecule, unseen before, can be inferred by the properties of the structurally similar 
molecules to it. There are different mechanisms of chemical database searching based on 
matching of the molecular structures. Structure searching imposes an exact-match between 
a reference structure and a database structure. Substructure searching requires a partial-
match of a user-defined   query with a database structure to retrieve all those molecules that 
contain a user-defined query substructure [1,5,7]. 
 
The age-old question remains as an open research problem in the field of chemoinformatics, 
which is how much could the proposed approach enhance the effectiveness of lead-
discovery programmes? Answering that question is a target of any new virtual screening 
approach. The Tanimoto coefficient [1] dominates on the peak of performance hierarchy of 
the existing molecular similarity searching techniques and provides the best performance. 
The current research tries to contribute in this direction by improving the performance of 
molecular similarity searching process. In this paper, Okapi similarity measure [8], which is 
effective and widely used in text retrieval, is adapted to perform the role of molecular 
similarity measure in 2D fingerprints, the adapted similarity measure calculates the similarity 
between a reference structure and a database structure. 
 

2. MOLECULAR SIMILARITY SEARCHING 
 
In modern chemical research, structural storages such as databases have become essential 
tools for storing the amount of information accumulated by chemists and facilitate the 
accessibility to the interested people of chemical data [9]. There are different ways of 
consulting such structural storages for specific information, structure searching and 
substructure searching. The later (substructure searching) is less difficulty than the former 
(structure searching) and more reasonable, but has some limitations such as the user, who 
consults the chemical database for specific query, must already get prior knowledge about 
the output structures returned from the database. The difficulty of this condition is when the 
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information about the particular feature(s), which led to select only one or two active 
structures for the target activity, is absent [5]. To rid of such difficulty and other limitations, 
chemical similarity searching is used as an alternative[10]. Similarity searching involves the 
description information of the whole structure in hand, unlike substructure searching that 
involves only a partial structure. The similarity degree between the target structure (query) 
and each structure in the database is measured by comparing the structural descriptors, 
which are in common between the target structure (query) and each structure in the 
database. The similarity degrees, resulting in the comparison process, are then reranked 
into an order of decreasing similarity with the target.  The top n of the molecules in the 
ranked list will be the most likely relevant to the user’ need, given an appropriate degree of 
intermolecular structural similarity. 
 
Since the early works on similarity searches that appeared in the mid-1980s, based on the 
work carried out at Lederle Laboratories [11] and Pfizer [12], the choosing of a similarity 
measure is still purely trial and error process [13]. In the Lederle study, molecules were 
represented by their constituent atom pairs, where an atom pair is a substructural fragment 
comprising two non-hydrogen atoms together with a number of intervening bonds. The 
similarity search allowed users to request either some number of the top-ranked molecules 
or all those that had a similarity with the target structure greater than a minimal value.  In the 
Pfizer system, together with a conventional substructural query, a user can submit a target 
molecule typical of the type of the structure that was required. The conventional screen 
search and atom-by-atom search were used to identify matches in the substructure 
searching, after which a similarity measure based on the screens common to the target and 
the matches was used to rank the substructure search output. The subsequent development 
of a faster, inverted-file-based, nearest neighbour search algorithm allowed the ranking of 
the entire database against the target structure in real time, without the need for the 
specification of the initial substructural query. 
 
Later, similarity searching has undergone further investigation.  An example is Hagadone’s 
work on substructure similarity searching [14]. Substructure similarity searching is used to 
identify molecules containing a substructure similar to a target structure or substructure.  
Another extension of similarity search was described by Fisanick et al. [15] on facilities 
developed for Chemical Abstracts Service (CAS) Registry File. It focuses on different types 
of similarity relationships that can be identified between a structure in the query and a 
database structure. 
 
Most recent works in this direction were done by Chen et al. [3], Abdo and Salim [16] and 
Abdo and Salim [17]. Chen et al. [3] adapted Bayesian inference network for molecular 
similarity searching problem, encouraged by   the performance of such a network in texts 
ranking based on their relevance to a user-defined query. Bayesian inference network is a 
probability based technique. The researcher found that the Bayesian inference network 
could present a virtual screening performance better than the virtual screening performance 
of Tanimoto coefficient; particularly, when the vast majority of the molecules, contained in 
the data set being searched, has homogeneous molecular structures. Nevertheless, when 
the vast majority of those molecules has heterogeneous molecular structures, the virtual 
screening performance of Bayesian inference network is much less. Chen et al., [3] pointed 
out that a similar study to their study was done by Abdo and Salim [16]. The main difference 
between the two studies is only in terms of the size and types of data sets being used for 
evaluation purposes, where the former used a set of 102 K MDDR structures and eleven 
associated activity classes (MDDR-HOM, MDDR-HET and WOMBAT datasets), while the 
later used a small subset of the MDDR database, containing just 40 K structures.  
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As Bayesian inference network is used by both research groups (Chen et al.’s group and 
Abdo and Salim’s group), Abdo and Salim [17] followed the same methodology explained in 
Chen et al.’s study [3] to run an experiment for testing the virtual screening performance of 
the Bayesian inference network using a number of weighting functions, which are mostly 
similar to those used by Chen et al. [3]. 
 
Recent work on similarity searching was proposed by Riniker and Landrum [18], the 
researchers focused on the visualization of both fingerprint similarities between two 
molecules and machine-learning (ML) model predictions. Random forest (RF) and naïve 
Bayes (NB) were, used as machine-learning (ML) methods, trained and employed to predict 
the probability to be active of new molecules. 
 

3. SIMILARITY MEASURES 
 
Different kinds of molecular representations can be used as chemical reference spaces, but 
the main observation which should be kept in mind that nature of relationships between 
molecules is not invariant to the selection of such spaces. Therefore, molecular similarity can 
be evaluated only based on a given molecular representation. Upon that, molecular similarity 
or dissimilarity is calculated by intermolecular distance in the selected reference space [19]. 
Conventional distance metrics such as Euclidean [20,21] or Divergence measure the 
distance between molecules in chemical space, whereas similarity coefficients (e.g., 
Tanimoto, Russell or Cosine coefficient) directly assess intermolecular similarity [22]. The 
adapted measure in this study belongs to similarity coefficient category. 
 

4. TANIMOTO COEFFICIENT (TC) 
 
Association coefficients are those similarity coefficients that return the similarity degree in 
the range [1], 0 mean complete dissimilarity and 1 self-similarity. A degree of molecular 
similarity is calculated using bit string matching in a case of the molecular representations 
being used in the binary fingerprint format. The association coefficient most widely used in 
chemical applications is theTanimoto coefficient (Tc) [1,22,23], which accumulates the 
number of bits common to two binary fingerprints with respect to the total number of bits that 
are set in each fingerprint. The Tc dominates on the peak of performance hierarchy of the 
existing molecular similarity searching techniques and provides the best performance. This 
is the reason of using Tc as benchmark method to compare the performance of the current 
study with. The Tc for two binary fingerprint representations A and B is calculated as follows. 
 

(1)
A B

A B A B

N
T c(A ,B )=

N +N -N  

 
Where NAB is the number of bits set on in both fingerprints and NA and NB refer to the 
number of bits set on in A and B, respectively. 
 

5. THE PROPOSED METHODS 
 
The role of virtual screening techniques is to score each molecule in the database of 
molecules based on its reaction to a specified biological target. Consequently, the cost-
effectiveness of molecular database consultation during biological testing is boosted, where 
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the database molecules are ranked in decreasing order based on their scores. This leads to 
consider just those few molecules that have the highest a priori scores of activity. 
 
The current research tries to contribute in this direction by improving the performance of 
molecular similarity searching process. In this study, Okapi similarity measure Eq. 2 [8], 
which is effective and widely used in text retrieval, is adapted to be suitable for chemical 
data representation and to perform the role of molecular similarity measure in 2D 
fingerprints, the adapted similarity measure, as in Eq. 5, calculates the similarity between a 
reference structure and a database structure. 
 

( 2 )
d2

1 2 d1dt d d 21 2
d 2

avg

3+tf N-df+0.5
Okapi(d ,d )= *log *tf

df+0.5len
0.5+1.5* +tf

len

∈ ∩

∑
 

 

. ( ) ( 3 )
3 + ff

mO k a p i(q , m )= .f f IM F q
qle nf q m m0 .5 + 1 .5 . + ff

mle n
a v g

∑

∈ ∩  

 

( ) ( 4 )
N - m f + 0 . 5

I M F q l o g
m f + 0 . 5

=  

 

. ( ) ( 5 )
3 + ff

mO k a p i(q , m )= .f f IM F qqle nf f q m m0 .5 + 1 .5 . + ff
mle n

a vg

∑

∈ ∩  

 
Where f is the fragment, q is the query, m is a molecule, ffm is the fragment frequency in a 
molecule, lenm is a molecule length, lenavg is the average length of all molecules in the 
database, ffq is the fragment frequency in the query, IMF(q) is the IMF (inverse molecule 
frequency) weight of a query fragment, N is the number of molecules in the whole database 
and mf is the number of the molecules containing the fragment. 
 
In addition to the adaptation of Okapi similarity measure Eq. 2, a simple modification was 
added, which is a square root of the IMF (inverse molecule frequency) weight of a query 
fragment. 
 

6. EXPERIMENTAL SETUP 
 
We run our experiment on the MDDR database [24], which was formerly explained and used 
by Hert et al. [25]. This database is in two dimensions. First dimension consists of 102516 
compounds and second dimension consists of 1024-element fingerprints produced using the 
Pipeline Pilot software [26]. Each element in the second dimension of the fingerprint holding 
the occurrences of that a particular substructure in a molecule. For fair evaluation of the 
proposed method, three data sets of different content type were used in the conducted 
experiment. The first data set (DS1) is a mixture of structurally homogeneous (MDDR-HOM) 
and structurally heterogeneous (MDDR-HET) classified into 11 activity classes, the second 
data set (DS2) holds 10 homogeneous activity classes, and the third data set (DS3) holds 10 
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heterogeneous activity classes. However, these data sets are similar to those explained in 
Hert et al.’ work [25] with a bit difference concluded in two different activity classes in the 
DS2 data set and the size of activity classes in DS2 and DS3. 
 
Tables 1-3 show descriptions of these three data sets.  Each row of a table holds the activity 
class, the number of molecules under the class, and the diversity of the class, which was 
computed as the mean pairwise Tanimoto similarity calculated across all pairs of molecules 
in the class using ECFP6. The pairwise similarity calculations for all data sets were 
conducted using Pipeline Pilot software [26]. The experiment was conducted with 10 
reference structures selected randomly from each activity class. The recall, which is the 
percentage of the active molecules retrieved at both top1% and top-5% cut-off points in the 
ranking, was calculated as averaged over each set of active molecules. 
 

Table 1. MDDR activity classes for DS1 
 

Activity class                                      Active molecules Pairwise similarity (mean) 

Renin inhibitors 1130 0.290 

HIV protease inhibitors  750 0.198 

Thrombin inhibitors  803 0.180 

Angiotensin II AT1 antagonists  943 0.229 

Substance P antagonists  1246 0.149 

5HT3 antagonists  752 0.140 

5HT reuptake inhibitors  359 0.122 

D2 antagonists  395 0.138 

5HT1A agonists  827 0.133 

Protein kinase C inhibitors  453 0.120 

Cyclooxygenase inhibitors 636 0.108 

 
Table 2. MDDR activity classes for DS2 

 

Activity class                                Active molecules            Pairwise similarity (mean) 

Adenosine (A1) agonists  207 0.229 

Adenosine (A2) agonists  156 0.305 

Renin inhibitors  1130 0.290 

Monocyclic β-lactam 111 0.361 

Cephalosporins 1346 0.336 

Carbacephems 113 0.322 

Carbapenems 1051 0.269 

Penicillin  126 0.260 

Antibiotic, macrolide 388 0.305 

Vitamin D analogous 455 0.386 
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Table 3. MDDR activity classes for DS3 
 

Activity class                               Active  molecules                       Pairwise similarity (mean)   

Muscarinic (M1) agonists 900 0.111 
NMDA receptor antagonists  1400 0.098 
Nitric oxide synthase inhibitors  505 0.102 
Dopamine-hydroxylase inhibitors 106 0.125 
Aldose reductase inhibitors  957 0.119 
Reverse transcriptase inhibitors 700 0.103 
Aromatase inhibitors 636 0.110 
Cyclooxygenase inhibitors  636 0.108 
Phospholipase A2 inhibitors 617 0.123 
Lipoxygenase inhibitors  2111 0.113 

 

7. EXPERIMENTAL RESULTS AND DISCUSSION 
 
Although similarity searching has undergone further investigation, the choosing of a similarity 
measure is still purely trial and error process. Therefore, the main objective of this 
experiment is to try and investigate the screening performance of adaptive similarity 
measure in chemical reference space.  However, molecular similarity or dissimilarity is 
calculated by intermolecular distance in the selected reference space. The current study is 
dedicated to examine the ability of okapi similarity measure for boosting the cost-
effectiveness of molecular database consultation during biological testing and to show how 
the okapi similarity measure could be a competitive virtual screening approach. To this end, 
the introduced method is evaluated using three data sets: DS1, DS2 and DS3 with different 
content types of a mixture of structurally homogeneous (MDDR-HOM) and structurally 
heterogeneous (MDDR-HET) activity classes, homogeneous activity classes, and 
heterogeneous activity classes, respectively. For fair comparison, Tanimoto coefficient (Tc) 
was tested based on the same data sets. 
 
Tables 5-6 present the screening performance of the presented method on DS1-DS3, 
respectively. The reported results in each row in those tables, which have been taken as 
both top1% and top-5% cut-off points in the ranking, were calculated as averaged over 10 
reference structures for each activity class. Tables 5-6 also show the screening performance 
of Tanimoto coefficient (Tc) on the same data sets for the purposes of the comparison. The 
mean row shows the final average recall, which is calculated as an average of all recall 
results of all activity classes  over the total number of the activity classes in the current data 
set. As shown in Tables 5-6, Okapi similarity measure noticeably effective and highly 
outperforms Tanimoto coefficient (Tc) across the 10 activity classes for the three datasets 
(DS1-DS3).  The bold and highlighted cells in Tables 4-7 mean the value contained in any 
cell of those cells is the best. 
 
Table 7, which consists of two main parts, gives a quick glance for all results shown in 
Tables 4-6. The first part is the highlighted cells part, which shows the number of the 
highlighted cells of Okapi similarity measure and Tanimoto coefficient (Tc) for both top1% 
and top-5% cut-off points in the ranking in each data set (Ds1-Ds3). The second part is the 
means part, which presents the means of Okapi similarity measure and Tanimoto coefficient 
(Tc) for both top1% and top-5% cut-off points in the ranking in each data set (Ds1-Ds3). The 
bottom raw in Table 7 contains the summations of the number of the highlighted cells and 
the summations of the means of both similarity measures (Okapi and Tanimoto) for both 
top1% and top-5% cut-off points in the ranking in all data sets (Ds1-Ds3).
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The results drawn in Table 4 show that the proposed method obtained, a mean value of 
2.1663 for recall of actives in the top-1% and a mean value of 2.9573 for recall of actives in 
the top-5%, higher than Tanimoto coefficient. For the number of active classes, it can be 
seen that the proposed method performs well with 7 active classes, while Tanimoto 
coefficient performs well with only 4 active classes (in the top-1%). Also, the proposed 
method performs well with 6 active classes, while Tanimoto coefficient performs well with 
only 5 active classes (in the top-5%). Therefore, it can be reported that the proposed method 
(using Okapi similarity measure) outperforms Tanimoto coefficient. 

 
Table 4. Recall of actives in the top-1% and the top-5% of the ranked MDDR database 

(DS1) using the Okapi similarity measure and Tanimoto coefficient 
 

Activity class Tan Okapi 

1% 5% 1% 5% 

Renin inhibitors 69.69 83.49 71.79 86.94 
HIV protease inhibitors  25.94 48.92 27.13 53.72 
Thrombin inhibitors  9.63 21.01 23.53 47.46 
Angiotensin II AT1 antagonists  35.82 74.29 40.15 78.49 
Substance P antagonists  17.77 29.68 18.73 26.93 
5HT3 antagonists  13.87 27.68 13.4 23.69 
5HT reuptake inhibitors  6.51 16.54 6.34 15.28 
D2 antagonists  8.63 24.09 11.5 26.93 
5HT1A agonists 9.71 20.06 10.91 24.13 
Protein kinase C inhibitors  13.69 20.51 12.48 19.29 
Cyclooxygenase inhibitors 7.17 16.2 6.3 12.14 
Mean 19.8573 34.77 22.0236 37.7273 
No. of highlighted cells 4 5 7 6 

 
Table 5. Recall of actives in the top-1% and the top-5% of the ranked MDDR database 

(DS2) using the Okapi similarity measure and Tanimoto coefficient 
 
Activity class Tan Okapi 

1% 5% 1% 5% 

Adenosine (A1) agonists  61.84 70.39 71.94 75.24 
Adenosine (A2) agonists  47.03 56.58 97.23 100 
Renin inhibitors  65.1 88.19 74.9 94.2 
Monocyclic β-lactam 81.27 88.09 81 91.82 
Cephalosporins 80.31 93.75 89.57 99.39 
Carbacephems 53.84 77.68 70.27 98.75 
Carbapenems 38.64 52.19 68.28 90.9 
Penicillin  30.56 44.8 79.04 93.92 
Antibiotic, macrolide 80.18 91.71 82.07 90.7 
Vitamin D analogous 87.56 94.82 98.02 98.26 
Mean 62.633 75.82 81.232 93.318 
No. of highlighted cells 2 1 8 9 

 
From the results shown in Table 5, it can be noticed that the proposed method achieved, a 
mean value of 18.599 for recall of actives in the top-1% and a mean value of 17.498for recall 
of actives in the top-5%, higher than Tanimoto coefficient. For the number of active classes, 
it can be realized that the proposed method does well with 8 active classes, while Tanimoto 
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coefficient does well with only 2 active classes (in the top-1%). Also, the proposed method 
does well with 9 active classes, while Tanimoto coefficient does well with only 1 active 
classes (in the top-5%). Therefore, it can be stated that the proposed method (using Okapi 
similarity measure) outperforms Tanimoto coefficient. 
 
The results presented in Table 6 indicate that the proposed method got, a mean value of 
18.599for recall of actives in the top-1% and a mean value of 17.498for recall of actives in 
the top-5%, higher than Tanimoto coefficient. For the number of active classes, it can be 
noticed that the proposed method executes well with 8 active classes, while Tanimoto 
coefficient executes well with only 2 active classes (in the top-1%). Also, the proposed 
method executes well with 9 active classes, while Tanimoto coefficient executes well with 
only 1 active classes (in the top-5%). Therefore, it can be said that the proposed method 
(using Okapi similarity measure) outperforms Tanimoto coefficient. 
 
Table 6. Recall of actives in the top-1% and the top-5% of the ranked MDDR database 

(DS3) using the Okapi similarity measure and Tanimoto coefficient 
 

Activity Class Tan Okapi 

1% 5% 1% 5% 

Muscarinic (M1) agonists 14.73 30.67 16.38 26.64 
NMDA receptor antagonists  7.65 12.53 9.23 12.44 
Nitric oxide synthase inhibitors  6.94 14.92 9.19 17.4 
Dopamine -hydroxylase inhibitors 19.9 30.67 20.95 31.05 
Aldose reductase inhibitors  7.69 16.89 8.83 15.23 
Reverse transcriptase inhibitors 2.89 7.41 5.58 10.16 
Aromatase inhibitors 25.92 32.36 25.24 35.84 
Cyclooxygenase inhibitors  11.06 18.61 9.8 16.17 
Phospholipase A2 inhibitors 10.6 27.32 8.62 21.4 
Lipoxygenase inhibitors  9.84 13.01 13.86 16.18 
Mean 11.722 20.439 12.768 20.251 
No. of highlighted cells 2 5 7 5 

 
Table 7. Overall results 

 

Data  
Sets 

No. of highlighted cells Means 

1% 5% 1% 5% 

Tan Okapi Tan Okapi Tan Okapi Tan Okapi 

DS1 4 7 5 6 19.8573 22.0236 34.77 37.7273 
DS2 2 8 1 9 62.633 81.232 75.82 93.318 
DS3 2 7 5 5 11.722 12.768 20.439 20.251 
Sum 8 22 11 20 94.2123 116.0236 131.029 151.2963 

 
Table 7 presents the overall performance of the proposed method and Tanimoto coefficient 
with each data set. The proposed method performs well with 22 active classes of the three 
data sets, while Tanimoto coefficient performs well with only 8 active classes (in the top-1%). 
Also, the proposed method performs well with 20 active classes of the three data sets, while 
Tanimoto coefficient executes well with only 11 active classes (in the top-5%). For the sum 
of recall means of actives of the three data sets, the proposed method achieved a value of 
21.8113 in the top-1% and a mean value of 20.2673 in the top-5%, higher than Tanimoto 
coefficient. Therefore, it can be concluded that the overall performance of the proposed 
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method (using Okapi similarity measure) better than the overall performance of Tanimoto 
coefficient. 
 
The reported screening performance of the introduced method in Tables 5-7 enables us to 
draw two main conclusions. First, that Okapi similarity measure is a greatly promising 
technique for molecular similarity searching. Second, the proposed method performs well on 
structurally homogeneous (MDDR-HOM) data set (DS2). It is not clear why there is such a 
noticeable difference in the screening performances of Okapi similarity measure when 
different types of dataset are screened. 
 

8. CONCLUSION 
 
In this paper, we have examined the use of Okapi similarity measure for molecular similarity 
searching, which was the main objective of this experiment. Our experiment with three data 
sets of the MDDR database showed that the proposed method presents an effective tool for 
similarity-based virtual screening in terms of the calculation of the intermolecular similarity in 
a selected reference space. Specifically, our experiment has demonstrated a significant 
superiority of the proposed method for screening the activity class types when compared to 
a conventional screening system based on the Tanimoto coefficient. However, this study 
broke the basis saying that Tanimoto coefficient dominates on the peak of performance 
hierarchy of the existing molecular similarity searching techniques and provides the best 
performance. We look forward to improving and enhancing of the proposed method in 
different ways such as feature weighting or selection. 
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