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ABSTRACT 
 

Recent developments in computer-aided polymer processing have brought along the 
need for accurate description of the behavior of materials under the conjugated effect of 
applied stress and temperature. In order to serve this purpose, in this study, experimental 
data provided by uniaxial tensile technique tests for thermoplastic halter (CTPH) 
comprised of hyperelastic materials when subjected to combined effects of applied stress 
and temperature are coupled with numerical simulations to obtain the required 
parameters for the characterization of such materials. First, stresses and displacements 
the thermoplastic halter are recorded during experiment. Thereafter, Mooney-Rivlin's and 
Ogden theory of hyperelastic is employed to define the constitutive model of 
thermoplastic halter (CTPH) and nonlinear equilibrium equations of the process are 
solved using finite element method with Abaqus software. As a last step, a neuronal 
algorithm (ANN model) is employed to minimize the difference between calculated and 
measured parameters to determine material constants for Mooney-Rivlin and Ogden 
models. Although the developed procedure can be applied to several polymeric materials, 
in this paper, this technique is successfully implemented for acrylonitrile–butadiene–
styrene (ABS). Using these coefficients, the material behavior of ABS with Mooney-Rivlin 
and Ogden constitutive laws is reproduced. The material model obtained in this study for 
ABS can be implemented into industrial and academic softwares for applications and 
design purposes. 
 

 
Keywords:  Uniaxial characterization; artificial neural networks; hyperelasticity; mooney-rivlin; 

Ogden; thermoplastic polymers; ABS. 
 
1. INTRODUCTION  
 
Polymers still occupy a noticeable place in the materials industry, their characterization 
during working process, as well as during their use in diverse industrial fields, impose an 
advanced knowledge of their mechanical and thermal behavior. 
 
In the working level, forming a polymeric sheet into a desired shape is done by means of the 
blow molding or the thermoforming process for example. Generally, the deformation is very 
fast, non-uniform, multiaxial and occurs at a forming temperature above the glass transition 
temperature [1]. The modeling of this phenomenon remains delicate and creates several 
difficulties in the experimental level [2] as much as in the modeling level in terms of important 
computational time, as well the implementation of nonlinear constitutive laws [3]. 
 
On the other hand, designing the polymeric parts of different shape and geometries requires 
a rigorous control of external constraints, and mechanical limits (such as yield point, failure 
stress…). Modeling the mechanical behavior of polymers during this state proves to be 
useful, even crucial in order to improve the working process. 
 
Generally, material constants embedded within the behavior models can be determined by 
using a modified Levenberg–Marquardt algorithm [4,5], or a Powell’s iterative algorithm 
which is a conjugate direction method without gradient calculation [6], to minimize the 
difference between the experimental curves and the theoretical response [7,8]. However, as 
it is underlined in several references [9], the convergence of the solution of the equilibrium 
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equation, which governs the movement of the thermoplastic flat plate, depends on the initial 
choice of the material parameters embedded in the model. 
 
To remedy this problem, in this work, an approach combining experimental and numerical 
tools, based on an artificial neural networks model [10,11], is used to model the behavior of 
thermoplastic flat plats under uniaxial tensile solicitation. The algorithms associated with the 
artificial neural networks can prove to be an interesting alternative for the determination of 
the mechanical parameters. 
 
Recently, neural networks are used in many areas include the classification, pattern 
recognition, speech synthesis, diagnosis, identification and control of dynamic systems, or 
even to improve the quality of produced parts in various industrial processes such as 
injection molding or blow molding [12,13]. 
 
The use of neural networks in the identification processes is justified by the fact that they can 
approximate the nonlinear functions through their capacity, to reproduce rather complex 
behavior. Their performance is improving continuously while relying on a dynamic learning 
[14], which provides a robust neuronal identification vis-à-vis the parametric variations and 
disturbances that can affect the operation of the studied system. 
 
Modeling using neural networks requires a model selection which is a crucial step in 
designing a neural network, as with any non-linear model. Indeed, this phase should lead to 
choose the model that has a complexity that is both sufficient to fit the data and not 
excessive. 
 
Their use in the identification problem in the mechanical field remains a matter of actuality, 
the pioneer works are those proposed by Erchiqui [11] and [15] for identifying the 
hyperelastic behavior of a polymeric sheet in bubble inflation technique. The same approach 
was used in the aim to characterize the viscoelastic behavior of an ABS polymeric sheet in 
bubble inflation technique [16]. 
 
In this work, the power of neural networks is exploited to identify the nonlinear behavior of an 
ABS flat plate under uniaxial tension. Our neural algorithm is coupled with a finite element 
code [17] in order to reproduce the behavior of material, hyperelastic Mooney-Rivlin [18] and 
Ogden [19] models are considered, a multilayer perceptron is used for this application. 
 
In the first approximation, models with first order of the strain energy function are 
considered. However, the obtained results show a need to increase the strain energy 
function order. The strength of the neuronal approach is explored to control the additional 
materials constants. 
 
2. BEHAVIOUR MODEL 
 
In static tensile test, a volume element undergoing a tensile stress in a single direction is 
subject to the Poisson’s effect as showing in Fig 1 below: 
 
This implies that the extensions or stretches in both y and z directions are equivalent: 
 �� = ��                                                                                                                                     (1) 
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Fig. 1. Volume element of the tensile specimen in t he non-deformed and deformed 
state 

 
We can define the principal stretch with respect to the x axis as: 
 

�� = � = 1 + 	


�                                                                                                                    (2) 

 
Assumptions of plane stress and the incompressibility of thermoplastic material are taken 
into account. It follows that the main stretches in the directions of y and z can be written as 
follows: 

�� = �� = �
√                                                                                                                      (3) 

 
The Cauchy stress tensor’s components are: 
 ��� = ��� = ��� = ��� = ��� = ���                                                                                                            (4) 
 
In this work, we consider the hyperelastic materials. They are defined by the existence of 
scalar function, W, called the strain energy function, from which stresses can be derived at 
each point. In order to satisfy the objectivity requirements, the strain energy function must be 
invariant under changes of the observer frame of reference. It is well-known that the 
Cauchy–Green deformation tensor C is invariant under changes of the observer frame of 
reference. Thus, if the strain energy function can be written as a function of C, it 
automatically satisfies the objective principle. The general stress–strain relationship is given 
by the formula: 
 

� = 2 ��
��                                                                                                                                  (5) 

 
Where� is the Piola–Kirchhoff stress tensor. The different models that exist in the literature 
define the strain energy as a function of the strain field. The Rivlin theory [18] for isotropic 
materials describes the energy as a function of the three Cauchy strain invariant I�, I�  and  I�. 
Based on the assumption of the incompressibility of the material, the stress can be obtained 
from the following Mooney–Rivlin [18]: 
 

L0 L 

x 

z 

y 



 
 
 
 

British Journal of Applied Science & Technology, 4(32): 4480-4493, 2014 
 
 

4484 
 

� = ∑ ���(�� − 3)�(�� − 3)� �!�                                                                                           (6) 
 ��� are the material constants. The use of two terms in the series is sufficient to describe the 
elastic modulus in both uniaxial and biaxial deformation modes, but we will see the opposite; 
to describe with more accuracy the behaviour of our material, we have to go beyond the first 
order. 
 
From other side, Ogden [19] proposed to link the strain energy directly with principal 
stretches. 
 

� = ∑ "#
$#

% &� '��$# + ��$# + ��$# − 3(                                                                                   (7) 

 
The real doublets () , * ) &�,% are material constants. 
 
The use of a series of three terms can get very good results to represent the overall 
behaviour of materials. In addition, the simplicity of the mathematical formulation and the 
direct use of extensions make the model widely used in numerical problems of large 
hyperelastic deformations. 
 
Stress difference for incompressible hyperelastic material is given by: 
 

��� − ��� = ��
+�
+�� − ��

+�
+��                                                                                                      

(8) 

��� − ��� = ��
+�
+�� − ��

+�
+��                                                                                                       

 
We can write generally for Mooney type material, for the first order development: 
 

�� ��
�, = 2����� + 2�� - �

.. + �
/.0                                                                                                       

�� ��
�. = 2����� + 2�� - �

,. + �
/.0                                                                                           (9) 

         �� ��
�/ = 2����� + 2�� - �

.. + �
,.0                                                                               

 
And for Ogden type material, we can write for the first order approximation: 
 

��
+�
+�� = )��                  $                                                                                            

�� ��
�. = )��                                                                                                                                                            $                  (10) 

��
+�
+�� = )��$                                                                                                         

 
The equation (8) can be rewritten as follows, for Mooney material: 
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��� − ��� = 2��(��� − ���) − 2�� 1 1
���

− 1
���

2                                      
(11) 

��� − ��� = 2��(��� − ���) − 2�� 1 1
���

− 1
���

2                                    
 
And then for Ogden material: 
 ��� − ��� = )(��$ − ��$)                                                                 

(12) ��� − ��� = )(��$ − ��$)                                                               
 
By considering equations (1), (2) and (3), both expressions (11) and (12) can be written 
respectively as: 
 

��� − ��� = 2�� -�� − �
0 − 2�� - �

. − �0                                                               (13) 

��� − ��� = 0                                                                                                                          
 
And 

��� − ��� = ) -�$ − �45
.0                                                           

(14) ��� − ��� = 0                                                                                 
 
By substituting in our case, which is a simple uniaxial tension, it follows that: 
 ��� = ��� = 0                                                                                                              (15) 
 
Then the Cauchy principal stress in the x direction takes the following form, for Mooney and 
Ogden material respectively: 
 

��� = -2�� + ��.
 0 -�� − �

0                                                                                        (16) 

 

��� = ) -�$ − �45
.0                                                                                                      (17) 

 
3. EXPERIMENTAL 
 
The gripping faces were covered with an elastomeric film to prevent slippage during loading, 
were mounted on a Zwick-Roell Z005 displacement controlled tensile testing machine. Dog-
bone ABS (Acrylonitrile-Butadiene-Styrene) specimens were tested, according to the 
guidelines prescribed by the ASTM D 638-03 norm [20], Fig. 2 shows the specimen 
dimension according to this norm. 
 
Preconditioning of the samples was carried out with a preload of 0.5 MPa with a load speed 
of 1 mm/min. The stress was determined by dividing the instantaneous load by the original 
cross-sectional area. The stretch was obtained by dividing the instantaneous gauge length 
by the original length. The original length of each specimen was taken as the gauge length 
after test specimen preconditioning and at a load of 0.5 MPa. The gauge length was the 
vertical distance between the clamps gripping the test specimen. 
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The experiment of tension was fulfilled until the specimen’s failure, the stress versus strain’s 
evolution are recorded simultaneously, using a data acquisition system. Note that all tests 
were carried out at controlled ambient temperature, which is 25ºC. 
 

  
 

Fig. 2. Dimensions of the dog-bone test specimen in  mm 
 

4. IDENTIFICATION ALGORITHM 
 
Neural networks have been studied since the 40's with the notion of formal neuron of 
McCulloch and Pitts [21] who first developed a mathematical model of biological neuron. 
Hence a neural network is a mathematical model of treatment consists of several basic 
interconnected neurons via weights that play the role of synapses. 
 
These weights assume values that define the behavior of the whole structure. The 
adaptation of the latter through a suitable learning algorithm, allows the network to learn, 
memorize and generalize information. 
 
4.1 Architecture 
 
In general, a multilayer network is composed of an input layer, an output layer and a number 
of hidden layers [22]. Each neuron is connected to all neurons of the next layer via 
connections whose weights are real. Usually, the neuron used in the hidden layers or in the 
output layer, performs a weighted summation of its inputs and a nonlinear transformation 
which is often the sigmoid function. While the neuron used in the input layer, simply passes 
its input to output. 
 
4.2 Learning Process 
 
During a learning process, neural network changes its behavior to allow it to move towards a 
clearly defined purpose. In other words, learning is adjusting the connection weights so that 
the outputs of the network are as close as possible to the desired outputs for all the used 
examples. 
 
Initially, the learning process of a multilayer network was determined by the gradient method. 
Then, all optimization methods have been applied to this problem as the conjugate gradient 
method, the Levenberg-Marquardt [4] or Kalman filters [23]. 
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Thus, the literature of learning of a multilayer neural network is very rich. However, we limit 
our study on the back-propagation algorithm combined with a Levenberg-Marquardt [24] 
optimization algorithm, which is a modified version of the gradient method and remains the 
most used and most responded. It is an optimization algorithm that seeks to minimize a cost 
function which covers the gap between the desired output and that delivered by the network 
[25]. 
 
The back-propagation algorithm can be described using two phases, first, a propagation 
phase or relaxation: initially, the input values are provided to the network’s input layer, and 
then the network propagates the information from one layer to another to the output layer, 
and which gives the response of the network. Second, the back-propagation phase: that is to 
calculate the difference between the outputs of the network and the desired resulting 
changes in weight of the output neurons. Then, retro propagating the error to the input layer 
which allows the adaptation of the hidden layers weights. 
 
In our network, we used a learning algorithm by back-propagation associated with a 
Levenberg-Marquardt optimization algorithm [26], with a transfer function of sigmoid type. In 
our architecture, the error in the presentation of an example, denoted by E, can be given by 
the following expression: 
 

6 = �
� ∑ '78 − 78	(�98&�                                                                                                  (18) 

 78	  represents the :;9 component of the desired output vector. The overall error to minimize 
is the sum of all errors on the database. The inputs and outputs of the neurons < and = 
explicit from the following expressions: 
 6� = ∑ >�?�� !��&�         ;    A� = B(6�)                                                                             (19) 

 68 = ∑ A�?�8C!��&�         ;    78 = B(68)                                                                          (20) 
 6� = ∑ >�?�� !��&�         ;    A� = B(6�)                                                                              (19) 
 68 = ∑ A�?�8C!��&�         ;    78 = B(68)                                                                           (20) 

 
Where B is the sigmoid activation function defined by: 
 

B(>) = �
�!DEF                                                                                                                    (21) 

 
The adjustment of the network weights by the back-propagation algorithm is ensured 
through the following iterative equation: 
 

?GH(I) = ?GH(I − 1) − J �K
�LMN                                                                                           (22) 

 
With J and I denote the step and the iteration number. 
 
The derivative of 6 with the weight depends on its position, in fact if the weight connects the 
hidden layer to the output layer, so: 
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�K
�LOP = BQ(68)'78 − 78	(A�                                                                                                                              (23) 

 
If the weight connects the input layer to the hidden layer, then: 
 �K

�LOP = BQ'6�(R∑ BQ(68)98)� (78 − 78	)S>�                                                                 (24) 

 
It should be emphasized that the convergence of the back-propagation algorithm depends 
on a variety of parameters, namely: 
 

• The complexity of the database and the order of the presentation of examples. 
Indeed, various studies have shown that a random sample presentation allows 
faster learning [25]. 

• The structure of the considered neural network and especially the number of 
neurons in the hidden layers, which must be not very important to ensure the 
generalization ability of the network, nor very small for the learning network 
capability. 

• The initial setting of the algorithm parameters, essentially the initial values of weight 
and iteration step must be chosen in a manner allowing having a fast convergence. 

 
The multilayer neural network that we propose has the following architecture as showing in 
the Fig 3 below: 
 
Where T� and T� denoted C1 and C2 for the Mooney material, and ) and * for Ogden type 
material. 
 
The used network consists of an input layer, hidden layers and an output layer. The number 
of neurons in the output layer depends on the response contemplated by the network. For 
the first approximation identification program, two neurons are required in the output layer to 
give the response of the excitation. The two neurons outputs represent the materials 
parameters embedded in the Mooney-Rivlin and Ogden models, while the input of the 
network is the variance of the corresponding stresses. Whereas for the second or third 
approximation model, the output layer takes more than two neurons depending on the 
behavior model presentation. 
 
The simulation data are used for network learning, also, the error back-propagation 
algorithm is used for the perceptron learning. Thus, the optimization algorithm of Levenberg-
Marquardt is used also in view of minimizing the error during the operation of back 
propagation. Generally, the use of a maximum of three hidden layers gives satisfying results, 
this optimization technique is more powerful than other optimization algorithms, but it 
requires more CPU memory. 
 



 
 
 
 

British Journal of Applied Science & Technology, 4(32): 4480-4493, 2014 
 
 

4489 
 

 
Fig. 3. Structure of the used multilayer neural net work 

 
5. VALIDATION  
 
Both Mooney-Rivlin and Ogden behavior models are implemented in a finite element method 
code. First the two symmetry plans are exploited in order to reduce the calculations 
complexities during modeling. One-fourth of the dog-bone specimen was modeled as 
presented in Figs. 4 and 5. Then, the use of a 2D model proves to be satisfying given the 
specimen thickness which remains negligible as compared with other dimensions. 
 

 
 

Fig. 4. Meshed geometry used for the finite element  modeling 
 

Generally, the specimen reaches the failure point at a strain around 4%, which justifies the 
choice of this value for the hyperelastic models. Both Mooney-Rivlin and Ogden models 
present the mechanical behavior of the material. The relative error remains important and its 
maximum value reaches up to 30% in some measurement points Fig. 6. This error is more 
or less acceptable and justifies our choice to proceed with the second order for both models, 
in order to achieve more accuracy in the mechanical behavior of the ABS flat plate. 
 
Theoretical material constants for Mooney–Rivlin and Ogden models are obtained byusing 
the neural networks approach for ABS. The material constants are given in Table 1 for 
Mooney–Rivlin and Ogden models respectively. 
 
Going beyond the first order for both hyperelastic Mooney-Rivlin and Ogden models seems 
to be delicate, in terms of non-stability of materials constants and the identification neural 
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network algorithm becomes heavy and time consuming. However, the obtained results show 
the reliability of the used approach. 
 

 
 

Fig. 5. Deformed geometry and von mises stresses di stribution in the last step 
 
Table 2 presents the hyperelastic material constants for the second order Mooney-Rivlin and 
Ogden models, while Fig. 7 shows the concordance between both Mooney-Rivlin an Ogden 
Models. It is observed that the relative error barely exceeds 9%and the behavior can be 
reproduced more accurately. 

 

 
 

Fig. 6. Stress-strain curve of experimental data ve rsus mooney-rivlin and ogden 
hyperelastic model 
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Table 1. Material constants for the ABS material fo r first order mooney–rivlin and 
ogden models 

 
Mooney -rivlin  Ogden  

C10 C01 X Y 
3224883.72 26436887.2 35005279 1.04 

 
Table 2. Material constants for the ABS material fo r second order mooney–rivlinand 

ogden models 
 

                            Mooney -rivlin                           Ogden  
C10  

156837906 
C01  

215808417 
µ� α� 

C20                   C11                                 C02 
730499.919     -5833980.30       53638970.1 

-116983818         -3.16 
µ� α� 
247944226 6.25 

 

 
 

Fig. 7.  Stress-Strain curve of experimental data versus sec ond order  mooney-rivlin 
and ogden hyperelastic model 

 
6. CONCLUSION 
 
In this study, uniaxial tensile technique tests have been exploited, in the aim to obtain the 
required parameters for the characterization of a hyperelastic material. First, stresses and 
displacements are recorded during experiment. Thereafter, Mooney-Rivlin’s and Ogden’s 
theory of hyperelastic are utilized to define the constitutive model of halter thermoplastic 
membranes (HTPM), nonlinear equilibrium equations governing the stretching are solved 
employing finite element method using Abaqus software. 
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The numerical model for ABS, fits much better to the experimental data. In order to minimize 
the difference between the calculated and measured parameters to determine material 
constants of Mooney-Rivlin and Ogden models, a neuronal algorithm (ANN model) is applied 
as a last step. The developed technique is successfully implemented with two constitutive 
models for ABS material.  
 
The obtained error in the first order development of both Mooney-Rivlin and Ogden’s models 
is around 30%, the passage to the second order of the hyperelastic models seems to be 
more feasible, and the error between the calculated stress and the experimental results has 
reduced to 4%. However, this choice is much expansive in term of CPU calculation time. The 
material data obtained in this work can be implemented into industrial and academic 
software for applications and design purposes. 
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