
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Parallel and Distributed Powerset Generation
Using Big Data Processing

Youssef M. Essa, Ahmed El-Mahalawy, Gamal Attiya & Ayman El-Sayed

To cite this article: Youssef M. Essa, Ahmed El-Mahalawy, Gamal Attiya & Ayman El-Sayed
(2019) Parallel and Distributed Powerset Generation Using Big Data Processing, Applied
Artificial Intelligence, 33:13, 1133-1156, DOI: 10.1080/08839514.2019.1665262

To link to this article:  https://doi.org/10.1080/08839514.2019.1665262

Published online: 01 Oct 2019.

Submit your article to this journal 

Article views: 359

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2019.1665262
https://doi.org/10.1080/08839514.2019.1665262
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2019.1665262
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2019.1665262
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2019.1665262&domain=pdf&date_stamp=2019-10-01
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2019.1665262&domain=pdf&date_stamp=2019-10-01
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2019.1665262#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2019.1665262#tabModule


Parallel and Distributed Powerset Generation Using Big
Data Processing
Youssef M. Essaa, Ahmed El-Mahalawyb, Gamal Attiya b, and Ayman El-Sayedb

aSenior BigData Engineer, Idealo, Berlin, Germany; bFaculty of Electronic Engineering, Computer
Science and Engineering Department

ABSTRACT
Data mining algorithms are more important today as it allows stake-
holders to get a 360-degree view of their customers. Recently, powerset
has become the basic core for many algorithms and techniques in
different data mining domains as it provides optimal solutions for
many problems in data mining. Nevertheless, it is challenging to be
used in several instances because the complexity of powerset grows
exponentially with the number of sets. Constructing powerset from
hugedatasets on a singlemachine causes anout-of-memory exception.
So, from a business perspective in mega data projects, the enterprise
companies need to invest a lot of money to build high-performance
system infrastructure of powerset. Also, enterprise companies have to
investmoremoney tobuild a standby system tokeep the systemalive if
the high-performancemachines break down. Furthermore, the existing
powerset techniques are designed for structured data and not useful in
intensiveprocessingusing in-memoryunstructureddata store. Thus, this
paper tacklesmost problems that hinder deploying powerset algorithm
toward Big Data and presents a series of pruning techniques that can
greatly improve construction efficiency of powerset generation. The
approach allows enterprise companies to explore huge data volumes
and gain business insights into near-real-time and save the cost of
infrastructure.

Introduction

Knowledge discovery from data refers to a set of activities designed to extract new
knowledge from complex datasets (Wu et al. 2014). In recent years, large quantities
of data have become increasingly available through many data sources such as
Internet of Things, databases, and social media. In fact, enterprise firms are
investing hundreds of millions of dollars every year in knowledge extraction in
order to support their customers’ decisions in the current fast-changing business
environments (Kiron et al. 2012). However, because of the difficulty of processing
huge data, decision-makers become frustrated to get answers to several questions
and insights into near-real-time. This issue drew the attention of the enterprise
companies toward the emerging and interesting use of parallel or distributed
systems like big data processing platforms or power systems (Essa, Attiya, and

CONTACT Youssef M. Essa yosufessa@gmail.com Berlin, Germany
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaai.

APPLIED ARTIFICIAL INTELLIGENCE
2019, VOL. 33, NO. 13, 1133–1156
https://doi.org/10.1080/08839514.2019.1665262

© 2019 Taylor & Francis

http://orcid.org/0000-0002-4771-9165
http://www.tandfonline.com/UAAI
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2019.1665262&domain=pdf&date_stamp=2019-10-16


El-Sayed 2014;Wang et al. 2016). Big data is a term for datasets that are so large or
complex that traditional data processing applications are inadequate to deal with
them. The 4 V’s (volume, variety, velocity, and veracity) imply that the data is hard
to handle with an acceptable performance and low cost by using a single machine
and traditional algorithms (Essa, Attiya, and El-Sayad 2013). In big data, a large
application is divided into smaller units, called tasks, and those tasks have to be
assigned to appropriate processing elements in the distributed system, to be
concurrently processed. This behavior can dramatically improve performance
because each task will be assigned and executed on the best-suited machine
(Salah, Akbarinia, and Masseglia 2015).

Powerset algorithm is one of the algorithms used to extract features in data
mining (Esfandiari and Babavalian et al. 2014) and generate and select unique
features (Spolaôr and et al. 2013). However, there are many challenges to use
powerset algorithms with huge datasets. The challenges raised by the dataset
volumes, velocity data, and variety of data (Seol and Jeong et al. 2013). The data
volumes cause an out-of-memory exception when running powerset algorithm in
commodity machine because the maximum size of memory (virtual memory
space) is limited to 2–60-GB commodity machines (Vavliakis et al. 2014). In
addition, scalability is another problem when needing to expand hardware infra-
structure for a specific machine while generating powerset. The recent studies of
powerset are using a singlemachine for deploying small dataset or using an existing
or a custom simulator for the big dataset to save cost instead of using a high-
performance machine. Membrane simulator (Ciobanu and Paraschiv 2002) and
distributed software simulators (Ciobanu and Wenyuan 2003) are examples of
simulators which are used to execute big dataset. So, this paper tackles most
problems that hinder deploying powerset algorithm toward big Data distributed
computing system instead of executing powerset on a single machine.

The algorithmmentioned in this paper breaks all dependencies between partial
powerset to execute all of them concurrently and collected all results also in parallel
without any type of dependency. This approach will save industry cost when
deploying big dataset on the distributed cluster instead of a single machine. Also,
this approach provides replications of partial dataset over the machines in the
cluster, and this feature is not valid when deploying on a single machine because
a single machine failure is considered as a breakpoint.

The rest of this paper is organized as follows. Related work presents the
most recent related work to powerset execution algorithms. Problem
Statement presents the problem statement for current powerset generation
algorithms. A Novel Theory of Powerset Generation section introduces novel
theories for powerset generation. then, the next section presents proposed
powerset algorithms. Performance Evaluation section presents a comparative
study of different approaches. After that, Discussion section discusses experi-
mental discussion and several key points. Finally, the paper is concluded in
Conclusion Section.

1134 Y. M. ESSA ET AL.



Related Work

Several models were developed for powerset generation. The readers may refer to
Amailef and Jie (2013), Bahnasy, Naguib, and Aref (2014), Rashedi, Nezamabadi,
and Saryazdi (2013), and Zhou et al. (2017) for more details on generating power-
set in sequential model. In Bahnasy, Naguib, and Aref (2014), an approach for
indexing large case bases is discussed using powerset tree. First, unique reductions
for each case over all cases are obtained and then another case base of those unique
features with reference to original cases is built. In Rashedi, Nezamabadi, and
Saryazdi (2013), a feature selection and classification approach is presented.
A rough set algorithm based on powerset tree was applied for feature selection
from 20 features based on shape, color, and texture. They have been extracted in
order to obtain a feature vector for each object to identify and classify the tumor
using 2D brain Magnetic Resonance Imaging. In Amailef and Jie (2013), the
authors discussed a novel case base indexing model to improve the performance
of indexing and retrieving in the datawarehousing. A fully customized solution has
been designed and built to find the unique combinations to each case and these
unique combinations are used to build the case base index. From cost and
performance perspective, the sequential finding powerset is the best approach to
generate powerset in small scale. However, the data projects today have a very large
or huge amount of data in datasets. So, the only way to enhance the sequential
process is by replacing old machine with new higher specs regarding the size of
data. Definitely, this approach is not flexible enough in the mega project, and
enterprise companies need to invest a big amount of money to process a big
amount of data. Furthermore, from performance perspective, this approach could
increase the complexity to achieve the business goals to process big dataset in
nearest or in real time. Gil et al. (2008) introduced an active rules application
algorithm based on powerset (P) of active Rules (R). The powerset of R is denoted
by P(R). The elimination of rules is shown inAlgorithm 1. This algorithmdepends
on the number of rules of the membrane. So, it provides powerset in parallel and
execution time is delimited. The Transition P systems perform a computation
between two consecutive configurations through transition or evolution step.
Then, each step is made via two phases. The first phase is performing evolution
rules. The second phase is communication between membranes.

Algorithm 1: Forming P(R) elements.

Ensure: User defined code will be executed for each element of E ∈ P(R).

1. Member of P(R) initialization REPEAT

2. Multiset proposition

3. Selection of P(R) element

4. Checking rules halt UNTIL End

5. end procedure

APPLIED ARTIFICIAL INTELLIGENCE 1135



After F.J.Gil working, the (Zhou et al. 2017), used recursion algorithm
based on masking approaches to obtain more accurate prediction results. The
authors developed the new approach called PHBRB for projection covariance
matrix adaption based on power set to generate the constrained elemental
cardinality powerset P(S) from the given set (S), as shown in Algorithm 2,
forming Pj(S).

Algorithm 2: Forming Pj(S).

Require: j ≥ 0; an array S s.t. length(S) ≤ j; a temporary array E of size j.

Ensure: User defined code will be executed for each element of E ∈ Pj(S).

1. Powersetj (S, j) ⊲ Start the algorithm

2. procedure powersetj (U, s)

3. if s > 0 then ⊲ Recur deeper

4. l ← length(U)

5. for i ← 1, l − s + 1 do

6. E(s) ← U(i)

7. powersetj (U(1 + i: l), s − 1) ⊲ Recursion

8. end for

9. else

10. User defined handling of E representing E ∈ Pj(S).

11. end if

12. end procedure

This approach generates powerset using the parallel idea that is based on
PHBRB’s masking. The algorithm finds Pj(S) which is the largest subset of
P(S) containing all its elements of cardinality equal to j. In this algorithm, the
masking approaches are used to generate the powerset P(S) of a set S. If the
cardinality of the set S is n, then n digits represent each subset of S. Each digit
position in the binary number is assigned to a specific element of S. If the
position contains 1, this means the existence of the element in the corre-
sponding subset; otherwise, the element is not included in the subset.

In Sahakyan (2014), an approach based on lexicographical order is developed to
generate the subset of the powerset masked by binary numbers starting from zero
number 000… 0 and gradually increasing in the number value until reaching the
number 111111 … 1. Using this method for generating the powerset has some
drawbacks. For instance, the element corresponding to themost significant bit will
not appear before half of all of the subsets being generated which is not suitable
when the value of n is large.

The algorithms in Gil et al. (2008), Sahakyan (2014), and Zhang,
Tianrui, and Pan (2012) used a hybrid model between sequential and

1136 Y. M. ESSA ET AL.



parallel models to generate powerset using two phases. The first phase
split dataset into multiple rules running concurrently and the results of
those rules are dependent on each other in the second phase; repeat this
operation until all rules are applied. Indeed, this approach enhanced
performance from the first fully sequential execution. However, hybrid
model didn't solve breakpoint issue and still depends on generating
powerset on a single machine. Also, this approach highly cost in the
big dataset.

This paper presents a novel theory for powerset generation based on big
data processing concepts to improve performance, reliability, and scalability of
generating powerset over a distributed computing system. The main idea is
based on increasing memory and powerful parallel and distributed processing
to crunch large volumes of data extremely quickly, where many machines are
used to solve a problem. The approach allows enterprise companies to explore
huge data volumes and gain business insights into near-real-time and save the
cost to build infrastructure especially for enterprise companies.

Problem Statement

Today, companies, institutions, health-care systems, etc. use piles of data.
This huge data is further used for creating reports in order to ensure
continuity regarding the services that they have to offer. The challenge is
how to manipulate or analyze an impressive huge volume of data to find
commercially valuable insights using feature extraction algorithms.
Powerset algorithm is one of the algorithms that is used to solve feature
selection problem in data mining. However, the main challenge for using
powerset algorithms in big data scale is the complexity of processing
(Zhang, Tianrui, and Pan 2012). Algorithm 2 presents the problem of
complexity of powerset processing and the complexity of the power set
algorithm is O(2n) and needs more hardware resources to increase perfor-
mance. To prove that, we assumed i, j, and w for each iteration of the outer
loop j, given set size with length(s) = n, the following generalized equations
for i, j, and w:

j ¼ n

i ¼ n n� 1ð Þ
2

w ¼
Xn
j¼0

Xj�2

i¼0

2j � 1

 !

APPLIED ARTIFICIAL INTELLIGENCE 1137



So, from the above equations, the subsets generated from Set of n elements
are equal to

jþ iþ wð Þ ¼
Xn
j¼0

Xj�2

i¼0

2j � 1

 !
þ n n� 1ð Þ

2
þ n ¼ 2n � 1

Thus, it explains the problem of the complexity O(2n) of the power set
algorithm. The challanges to process huge data using powerset algorithm
raised by the data volumes, complexity, and variety. The enterprise compa-
nies are investing a lot in monetary terms to set up high-performance
systems with standby system to address the complexity of constructing
machine learning. Therefore, powerset processing in big data scale needs
new execution strategies, and this article introduces a new theorem to
accelerate the process of powerset generation. The main idea is breaking
dependencies between set elements and construct powerset using big Data
processing platforms such as Hadoop or Spark. Big data processing platforms
drive dramatic increases in performance by solving latency problems as it
processes big data in real time (Hu et al. 2014; Jiang et al. 2015; Khalifa et al.
2016; Philip and Zhang 2014).

A Novel Theory of Powerset Generation

This section provides a novel theory for the powerset generation proposed in
this paper and the proof of this theory as well using a binary representation
model (Bova, Kureichik, and Lezhebokov 2014). This novel theory proposes
a new method to reduce the complexity to O(n). This is achieved by
partitioning the set S into smaller subsets to be able to process these subsets
over parallel or distributed computation models instead of sequential models.
This processing approach utilizes parallel architecture and would save the
cost of powerset implementations by running all subset among commodity
machines instead of high-performance systems. Additionally, this approach
would provide better performance using parallel execution. In the next
section, we prove that the dataset S can be partitioned into subsets and can
be made to run them all in parallel with a complexity O(n) and then collect
the sub-powerset of each one and use it to construct the powerset P(S).

Theorem:

Given A be a set of n elements such that S Að Þ ¼ fa1a2a3 . . . an}. To
find powerset of P(A), the main step is to find all possible combinations
of elements concurrently at the same time regarding distinct elements
by splitting combination process into multiple of the parallel process as
follows:

1138 Y. M. ESSA ET AL.



C a1
� �¼ Combination elements of S a1

� �
based on a1:

C a2
� �¼ Combination elements of S a2

� �
based on a2:

C a3
� �¼ Combination elements of S a3

� �
based on a3:

. . .

C anð Þ¼ Combination elements of S anð Þ based on an:

Then, the powerset of A is given by

P Að Þ ¼ C A1
� � [ C A2

� � [ C A3
� �

. . . [ CðAnÞ [ ;:
For example, given a set S Að Þ ¼ a; b; cf g, then the combinations of

elements regarding to each element are as follows:

C að Þ ¼ af g; a; bf g; a; cf g; a; b; cf gf g:
C bð Þ ¼ bf g; b; cf gf g

C cð Þ ¼ cf g
The powerset of P Að Þ has 23 elements as follows:

P Að Þ ¼ f af g; a; bf g; a; cf g; a; b; cf g; bf g; b; cf g; cf g; ;g
Proof of theorem:

The proof of theorem is done by using the binary representation of the
subsets (Bova, Kureichik, and Lezhebokov 2014). Let A be partitioned into
two subsets B and D, where B ¼ c1; c2; c3; . . . ; cm1f g and D ¼
c2; c3; . . . ; cm1f g with Bj j ¼ m1 and Dj j ¼ m1 � 1. Any subset Bi 2 P Bð Þ :
1 � i � 2m1 can be represented by the binary number c1c2c3 . . . cm1 such

that bi ¼ 1 :
0 :

ci 2 Bi
ci ‚ Bi

�
and Bi ¼ S c1c2c3 . . . cm1

� �
.

If the lexicographical order of binary numbers of length m1is used starting
with 000 . . . 0½ �½ �m1

and ending with 111 . . . 1½ �½ �m1
, all subsets of P Bð Þ will be

generated. The same for the powersets P Dð Þ, all its subsets
Di 2 P Dð Þ : 2 � i � 2m1can be represented using the lexicographical order
of binary numbers c2c3 . . . cm1of length m2 from 000 . . . 1½ �½ �m1

to
111 . . . 1½ �½ �m1

. From the definition of h[i, obtain thecombination Cn based
on n of Bh[iD ¼ fCi Bið Þ [ CjðDjÞ : "i;j : 1 � i � m1and2 � j � m1g.

Since B andD form a partition of A and since c1c2c3 . . . cm1 and c2c3 . . . cm2

are the binary representation of any subset from B and D, respectively, which
means that S(c1c2c3 . . . cm1Þ 2 P Að Þ and S c2c3 . . . cm2

� � 2 PðC), moreover

the binary number of length n defined by the Combination of C(c1c2c3 . . . cm1Þ
Cðc2c3 . . . cm2Þ represents a subset of the powerset P Að Þ such that

APPLIED ARTIFICIAL INTELLIGENCE 1139



S c1c2c3 . . . cm2

� � ¼ C c1c2c3 . . . cm1

� �
UC c2c3 . . . cm1

� �
UC c3 . . . cm1

� �
. . .

UC cm1

� � 2 P Að Þ.
Table 1 proves that P Að Þ ¼ C A1

� �h[iC A2
� �

.
Now, when assuming k ¼ k0, if A is partitioned into k0 subsets

A1; A2; A3; . . . ; Ak0, the powerset P Að Þ of A is given by

P Að Þ ¼ P A1[A2[ . . . [Ak0
� � ¼ P A1

� �h[iP A2
� �h[i . . . h[iP Ak0

� �
So, it is essential to prove that if A is partitioned into k0 þ 1 subsets
A1; A2; Ak3; . . . ; Ak0,Ak0þ1, then the powerset P Að Þ of A is given by

P Að Þ ¼ P A1[A2 [ . . . [Ak0[Ak0þ1
� �

¼ P A1
� �h[iP A2

� �h[i . . . h[iP Ak0
� �h[iP Ak0þ1

� �
(1)

Since A is partitioned as A1; A2; A3; . . . ; Ak0 ; andAk0þ1, then,

Ai�;; "1 � i � k0 þ 1

A ¼ Uk0þ1
i¼1 Ai

Ai \Aj ¼ ;; "i�j; 1 � i � k0 þ 1; 1 � j � k0 þ 1

From which we deduce that if eA ¼ Uk0
i¼1A

i then,.

Ai�;; "1 � i � k0

~A ¼ Uk0
i¼1A

i

Ai \Aj ¼ ;; "i�j; 1 � i � k0; 1 � j � k0:

Table 1. Combination of two subsets.
Element representations of subset
Ai 2 P Að Þ

Element representations of
subset Bi 2 P Bð Þ

Element representations of
subset Ci 2 P Dð Þ

S c1c2c3 . . . cm2

� �
S b1b2b3 . . . bm1

� �
S c2c3 . . . cm1

� �
{;} {;} {;}
cm2f g {;} cm2f g
cm2�1f g {;} cm2�1f g
cm2�1 ; cm2f g {;} cm2�1 ; cm2f g
fcm2�2 ; cm2�1 ; cm2 } {;} fcm2�2 ; cm2�1 ; cm2 }
… … …
fc1; c2; c3; . . . ; cm2�2 ; cm2�1 ; cm2g {;} c1; c2; c3; . . . ; cm2f g
bm1f g bm1f g {;}
bm1 ; cm2f g bm1f g cm2f g
… … …
fb1; b2; b3; . . . ; bm1 ; c1; c2; c3; . . . cm2�2g b1; b2; b3; . . . ; bm1f g c1; c2; c3; . . . cm2�2f g
fb1; b2; b3; . . . ; bm1 ; c1; c2; c3; . . . cm2�2 ; cm2g fb1; b2; b3; . . . ; bm1g c1; c2; c3; . . . cm2�2 ; cm2f g
fb1; b2; b3; . . . ; bm1 ; c1; c2; c3; . . . ; cm2�1g fb1; b2; b3; . . . ; bm1g c1; c2; c3; . . . ; cm2�1f g
fb1; b2; b3; . . . ; bm1 ; c1; c2; c3; . . . ; cm2g fb1; b2; b3; . . . ; bm1g c1; c2; c3; . . . ; cm2f g

1140 Y. M. ESSA ET AL.



Therefore, ~A is partitioned by the k0 subsets A1; A2; A3; . . . ; Ak0. Using
the hypothesis, we conclude that.

Pð~AÞ ¼ P A1[A2[ . . . [Ak0
� � ¼ P A1

� �h[iP A2
� �h[i . . . h[iP Ak0

� �
:

Now, since ~A ¼ A1[A2[ . . . [Ak0 and Ak0þ1satisfy the partitioning condi-
tions with respect to the set A:

~A � ; and Ak0þ1�;
A ¼ ~A[Ak0þ1

~A\Ak0þ1 ¼ ;
Then using Equation (1), it is directly concluded that

P Að Þ ¼ P eA [ Ak0þ1
� �

¼ P eA� �
h[iP Ak0þ1

� �
But, ~A ¼ A1 [ A2 [ . . . [Ak0, then

P Að Þ ¼ P A1 [A2 [ . . . [Ak0 Þ h[iPðAk0þ1
� �

¼ P A1
� � [h iP A2

� � [h i . . . [h i P Ak0
� �

: [h i P Ak0þ1
� �

Hence, the ability of this theorem is to produce p(S) from a sub-powerset
using content Union operation. Additionally, this approach of execution
reduces the complexity to O(n) and provides better performance than
sequential execution approach.

Proposed Powerset Algorithms

In this section, the theorem presented in Section III is used to generate the
powerset of a given set S that contains n elements considering three different
models of computation.

The first model is parallel computation based on high-performance
computing (Pronk et al. 2015). Algorithm 3 shows how to use theorem
for generating the powerset by partitioning the given Set S into S[m]
subsets. The number of subsets represented by m. So, after computing
the powerset for each subset, the set contents Union operation h[i used
to generate the final powerset of the set S.

Algorithm 3: Forming powersets using parallel processing.

APPLIED ARTIFICIAL INTELLIGENCE 1141



Require: input set (S), a temporary array E of size j.

Ensure: User defined code will be executed for each element of E ∈ Pj(S)
to find P(S).

1. Partitioning S into subsets S[m]

2. for i ¼ 0 to size of m do

3. if (0< Smj j � m)S i½ � ¼ d//d is number of elements in subset

4. END if

5. END for

6. parallel loop j ¼ 0 toddo

7. load balancer to utilize h/w resources between subsets

8. E[S i] = all possible combination of basic element for S[m j].

9. END for

10. Combine results from all tasks to find powerset using
Union operation

Algorithm 4: Forming powersets using MapReduce processing.

Require: input set (S), a temporary array E of size j on each mapper.

Ensure: User defined code will be executed for each element of E
∈ Pj(S) to find P(S).

1. Partitioning S into subsets S[m]

2. for i ¼ 0 to size of m do

3. if (0< Smj j � m)S i½ � ¼ d//d is number of elements in subset

4. END if

5. END for

6. Mapping S[m] to Mapper Machines

7. Mapper (Input S[i], output P(Si))

8. E[S] = all possible combination of basic element for S[m]

9. END mapper

10. Reducers receive sub-powerset

11. Reducer (Input E[Sj], output P(S))

12. Combine results from all tasks to find powerset using
Union operation

13. END Reducer

The second model is distributed computation model based on big data proces-
sing platform using Hadoop. Algorithm 4 generates the powerset by portioning
a given set into subsets and mapping subsets among different mappers in the

1142 Y. M. ESSA ET AL.



cluster. The mappers’machines compute the powerset for each subset. Then, the
reducer combines sub-powersets using the set contents Union operation h[i to
generate the final powerset of the set S.

The third model is a distributed computation model based on the big data
stream processing platform. Spark is the most popular platforms used in stream
processing (Cristian et al. 2016). These platforms allow running stream processing
code across distributed machines. Stream processing model is designed to gen-
erate powerset on real-time streaming data, as shown in Algorithm 5. The main
idea is that portioning powerset to subsets using powerset theorem and sending
each portion as an event to stream processing platform. Each subset uses all
machines in the cluster to compute the value of the subset. At the same time,
the value of subset is used to update final powerset of the set S using the set
contents Union operation h[i.

Algorithm 5: Forming powersets based on streaming processing.

Require: input set (S), a temporary array E of size i on each
machine regarding to event.

Ensure: User defined code will be executed for each element of E ∈ Pj(S)
to find P(S).

1. Partitioning S into subsets S[m] and send each subset
after reading

2. for i ¼ 0 to size of m do

3. if (0< Smj j � m)S i½ � ¼ d//d is number of elements in subset

4. END if

5. END for

6. Start stream processing program to process events
subset E[Si]

7. Distributed subset into distributed cluster

8. Each machine generates list of possible elements

9. Combine results from all executed tasks to find
sub-powerset using Union operation

10. Update final powerset P(s)using value of current events

11. END Stream Processing.

Performance Evaluation

This section presents the results of the practical experiments that are done to
evaluate the proposed algorithms for parallel and distributed computations of
powerset generation. The implementation using different sizes of dataset and

APPLIED ARTIFICIAL INTELLIGENCE 1143



each element of the set is a text value between 100 and 256 characters and set
size in all figures represents the number of elements in each dataset.

Implementation Environment

The implementation environment consists of hardware and software compo-
nents with specifications shown in Table 2.

(1) Hardware Components:

High-performance system and Hadoop cluster are used in the practical
implementation. The high-performance computing (HPC) of IBM power
system E850 is used to implement the parallel algorithm. On the other
hand, the Hadoop cluster runs over homogenous machines that have differ-
ent hardware and software specifications. Hadoop cluster consists of 50
machines connected with each other through a Local Area Network. The
Hadoop cluster is a homogenous cluster, this means all machines have equal
hardware specifications and workload distributed equally among all
machines. Also, the all process executed in-memory in spark as well as HPC.

(2) Software Components:

Message Passing Interface (MacArthur et al. 2017) is used to develop F.J.Gil
parallel computation algorithm of powerset, as shown in Figure 1. Furthermore,
the Hadoop platform used to develop distributed computation is shown in
Figure 2. In addition, Hadoop is a basic platform to run Spark streaming to
develop streaming distributed computation as shown in Figure 3.

The powerset application is being applied to each platform. It is a simple
program that creates a dataset of size given by the user. Then, it divides the
set into subsets that are processed on parallel and distributed environments.

In parallel processing, the high-performance machine first creates a number of
tasks for each subset equivalent to the number of basic elements and runs all tasks
concurrently. The next step is to combine all results executed from different tasks

Table 2. Software and hardware equipments.
IBM power system Hadoop cluster (homogenous cluster)

Model IBM E850 Hadoop and spark
Number of machines 1 30
CPU 50 cores, 3.02 GHz 50 cores, 3.02 GHz
FPGA components 12 N/A
RAM 320 GB 300 GB
Operating system Linux Linux.
Network transfer rate 192 GB/s s10 GB/

1144 Y. M. ESSA ET AL.



using Union operation. The final step is using Union operation to combine sub-
powerset to find final P(S).

In a distributed system approach, MapReduce is used to run across
a distributed system and Spark is used to run complex event processing across
Hadoop distributed system. MapReduce uses the Map function to distribute

Figure 1. Powerset generation using high-performance computing.

Figure 2. Powerset generation using MapReduce.

APPLIED ARTIFICIAL INTELLIGENCE 1145



portioning subset to different mapper’s machines in Hadoop cluster. Mapper’s
machine reads the input subset as <key,value> pairs and emits key-value pair,
while the output from each mapper is key-value pairs where one subset is the
key and the power subset is the value. Then, the Reducer’s machine reads the
outputs generated by the different mappers as <subset, power_subset> pairs
and emits key-value pairs. The final output from Reducer is key-value pairs,
where set (S) is the key and the final powerset P(S) is the value.

On the contrary, the Spark platform distributes each subset as an event among
distributed clusters over the Hadoop distributed file system. Apache Spark
receives each subset when created in the master machine. Each subset represents
an event in Apache Spark for processing inHadoop cluster. Themain step is using
Theorem in Section III to distribute tasks of subset among cluster to find the
power of subset. In addition, during the processing of all events, the final powerset
is updated by using the power subset of each subset as explain in our theorem.

Real Implementation Results

In this section, performance evaluation is carried out by measuring the elapsed
time for powerset generation by PHBRB (Zhou et al. 2017) and proposed
approach considering different sizes of datasets. At a dataset size, the elapsed
time is measured after applying the algorithm to generate powerset on a big
data processing platform. Three different platforms are used in this evaluation.

Figure 3. Powerset generation using spark streaming.

1146 Y. M. ESSA ET AL.



The platforms include distributed computing using Hadoop cluster and par-
allel computing using the high-performance machine IBM power system E850.

Figures 4 and 5 show the elapsed time for powerset generation by the
PHBRB and the proposed approach, respectively, at different dataset sizes.
The PHBRB algorithm supports parallel processing for subsets. It provides
parallel processing for each subset and moves sequentially between them. On
another hand, the proposed algorithm is responsible for processing datasets
with a parallel and distributed computing on a cluster. Briefly, big data
processing platform based on MapReduce contains two important tasks:
Map and Reduce. The Map takes a subset of data and converts it into tuples
(key-value pairs) and this operation is repeated sequentially based on
a number of subsets. Then, the reduce stage takes the output from a map
as an input and combines the data tuples into the smaller set of tuples.

As shown in Figures 4 and 5, the elapsed time by both the algorithms when
using the HPC is less than that of using distributed computing based on
MapReduce or Spark Hadoop cluster. This is because both the MapReduce
and Spark spend additional time in the initialization process of cluster and
mapping different tasks onto different machines on the cluster.

(a) Small size dataset.

(b) Big size dataset.

0

20

40

60

80

100

120

2 4 8 16 24 27 32

P
e

r
f
o

r
m

a
n

c
e

 i
n

 S
e

c
o

n
d

Set Size

PHBRB HPC

PHBRB MapReduce

PHBRB Spark

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

40 45 50 55 60 65

P
e

r
f
o

r
m

a
n

c
e

 i
n

 S
e

c
o

n
d

Set Size

PHBRB HPC

PHBRB MapReduce

PHBRB Spark

Figure 4. PHBRB performance for powerset generation. (a) Small size dataset. (b) Big size
dataset.

APPLIED ARTIFICIAL INTELLIGENCE 1147



Furthermore, more time is required to map tasks onto machines through
the network infrastructure. By contrast, the HPC acts as a single machine and
does not need to do initialization process but can run any task directly on the
available resources. In addition, all tasks run inside a single machine without
needing to move through the network. However, the cost of Hadoop cluster
is cheaper than HPC as it uses commodity hardware. In addition, Hadoop
cluster is more flexible to expand hardware resources easily without the need
for hard administration efforts.

Figure 6 shows the elapsed time for powerset generation by the PHBRB and
the proposed approach, respectively, at different dataset sizes. From Figure 6,
at small dataset size, less than 24 elements, there is no difference in processing
time between PHBRB and proposed algorithm. However, at large dataset size,
more than 24 elements, it is clear that the processing time of the proposed
algorithm is less than that elapsed by the PHBRB algorithm. This is because the
PHBRB algorithm cannot provide parallelism in the job execution. For this
reason, the sequential moving between subsets spends more time when apply-
ing PHBRB in distributed platform with Spark or MapReduce because PHBRB

(a) Small size dataset.

0

5

10

15

20

25

30

35

40

2 4 8 1 6 2 4 2 7 3 2

P
R

O
C

E
S

S
IN

G
 T

IM
E

 (
S

E
C

)

SET SIZE

Proposed algorithm HPC

Proposed algorithm MapReduce

Proposed algorithm Spark

(b) big size dataset.

20

2020

4020

6020

8020

10020

4 0 4 5 5 0 5 5 6 0 6 5

P
R

O
C

E
S

S
IN

G
  

T
IM

E
 (

S
E

C
)

SET SIZE

 Proposed algorithm HPC

Proposed algorithm MapReduce

Proposed algorithm Spark

Figure 5. Proposed algorithm for powerset generation (a) Small size dataset. (b) Big size dataset.

1148 Y. M. ESSA ET AL.



0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
6

0
0

0

1
8

0
0

0

2
4

8
1

6
2

4
2

7
3

2
4

0
4

5
5

0
5

5
6

0
6

5

) CES( E MI T GNI SSEC ORP

S
E

T
 S

IZ
E

Fi
gu

re
6.

El
ap
se
d
tim

e
fo
r
po

w
er
se
t
ge
ne
ra
tio

n
by

PH
BR

B
an
d
pr
op

os
ed

al
go

rit
hm

.

APPLIED ARTIFICIAL INTELLIGENCE 1149



doesn't support parallel processing. By contrast, the proposed algorithms
improved the overall processing time of powerset generation. This enhance-
ment is caused by two reasons. The first reason is that the proposed algorithms
provide parallel execution in all phases from splitting the dataset into subsets
to collecting results from different machines. This behavior is compatible with
both the MapReduce and Spark platforms execution strategy. The second
reason is that the proposed algorithms break all dependencies between subsets.
This means that Reducer can combine total powerset with any result generated
from any mapper without waiting for another task. In addition, from Figure 6,
it is observed that the processing time spent by Spark is less than that elapsed
by theMapReduce because of theMapReduce portions a dataset into subsets in
Map phase and saves the result in the local hard disk. This approach makes
MapReduce requires a lot of time and increased latency to perform input/
output operations on the disk. While spark performs in-memory processing of
data like HPC, it is faster than MapReduce as there is no time required in
moving the data in and out of the disk.

In Figure 6, it is observed that the overall Spark processing time is the
nearest to HPC when applying the proposed algorithm. This is because Spark
run all tasks concurrently in-memory among different machines in Hadoop
cluster. In addition, the information retrieval in Spark in Hadoop cluster is
faster than that with HPC. This is because the memory used by every
machine in Hadoop cluster is smaller than the shared memory used by
HPC. In fact, the time spent to retrieve big Data from huge shared memory
is larger than the retrieving time of the same data from distributed memory
over Hadoop cluster. However, Spark still spent the time to manage all
machines in the cluster and in the network connection.

Discussion

In the previous section, the performance of the proposed algorithm is evaluated
and compared with the PHBRB algorithm, considering different platforms. From
the experimental results, several key points influence the overall performance of
different approaches.

Data Transfer

MapReduce consumes time in mapping phase to send tasks and data into
mappers’ machines through the network. Similarly, Spark spends time to dis-
tribute A Resilient Distributed Dataset over cluster nodes. Therefore, the time
spent in transferring data by both MapReduce and Spark influences the overall
performance of MapReduce and Spark against HPC. HPC on the other hands
runs all tasks immediately and uses internal bus speed for data transfer between
CPU and memory. Figure 7 shows the amount of data transferred through the

1150 Y. M. ESSA ET AL.



network among different machines in the cluster corresponding to different
dataset sizes. In HPC, an optimized methodology is used to keep data moving
inside a single machine and avoid data transfer through the network. The
maximum data needed to be moved inside the HPC is 150 MB when the dataset
contains 65 elements. On the other hand, the data transferring rate for big data
over the network is a clear problem in Spark and MapReduce platforms. This
huge amount of data would affect the overall performance because data com-
munication between cluster nodes causes communication time delay.

Memory Usage

In the Spark system, the memory cluster should be at least equal to the large
amount of data you need to process. Therefore, to process big data, the
MapReduce will definitely be the cheaper option since hard disk space comes at
a much lower rate than memory space. So, using disk storage as a main storage
impacted the total performance of data processing because disk I/O is one of the
slowest data transfer rate and hadoop mainly use it as a main storage in its
operations. So, the Spark’s benchmarks are more cost-effective since less hardware
can perform the same tasks much faster. Indeed, Spark tries to load as much
information as possible into memory to speed up calculations and can achieve
better memory and CPU utilization. Spark dedicated all CPUs to be working on
the actual computations rather than read/write operations on the disk.

On the other hand, one of the key goals of the HPC architecture is to
deliver performance improvements and innovative functionality faster than
competing technologies over the long run. Meanwhile, the use of open,
blade-based components allows the HPC architecture to incorporate tech-
nology enhancements very quickly and tightly coupled intelligent software
programs combine to deliver overall performance gains far greater than those
of individual elements. A dedicated high-speed interconnection from the
storage array delivers data to memory as quickly as each disk can stream.
Compressed data is cached in-memory using a smart algorithm that keeps
commonly accessed data in the memory instead of requiring a disk access.

Table 3 illustrates the memory usage for different platforms: MapReduce,
Spark, and HPC. The total amount of memory allocated in HPC to process
dataset size of 55 is 128 GB. This means the sub-powerset generated is stored
in memory. So, when needed to find the complete powerset from huge
memory, the retrieval data from huge memory will need complex operation
from HPC and time is wasted to find target data. Spark uses a different
methodology by storing sub-powersets in memory among different cluster
nodes. This approach makes the retrieval sub-powerset easy and faster
because the maximum memory size in each machine is 2.5 GB that is needed
to store the result of the dataset that contains 55 operation elements. So,
when Spark driver needs to collect sub-powersets from different nodes, the

APPLIED ARTIFICIAL INTELLIGENCE 1151



0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

4
0

0
0

0

4
5

0
0

0

5
0

0
0

0

5
5

0
0

0

6
0

0
0

0

6
5

0
0

0

7
0

0
0

0

2
4

8
1

6
2

4
2

7
3

2
4

0
4

5
5

0
5

5
6

0
6

5

B MNI DE MROFS NART ATAD

D
A

T
A

S
E

T
 S

IZ
E

H
P

C
M

a
p

R
e

d
u

c
e

S
p

a
r
k

Fi
gu

re
7.

Vo
lu
m
e
of

da
ta

du
rin

g
ge
ne
ra
tio

n,
da
ta

tr
an
sf
er
re
d
am

on
g
m
ac
hi
ne
s
in

th
e
cl
us
te
r
co
rr
es
po

nd
in
g
to

ea
ch

te
st
in
g
da
ta

si
ze
.

1152 Y. M. ESSA ET AL.



worker nodes retrieve result quickly and master node uses hard disks to write
result only.

Reliability

Reliability of distributed systems based on big data platforms is extremely
important as it measures the system’s ability to process data despite the
continuous increase in the system load, data volume, query volume, and
complexity. For example, to reliably execute long-running jobs on Hadoop
clusters, the system needs to be fault-tolerant and be able to recover from
failures (mainly due to machine reboots that can occur due to normal
maintenance or software errors). Although Hadoop is designed to tolerate
machine reboots, it uses replication task technique to avoid data node crash
and big data infrastructure can process another copy (Mustafa, Ghadiri, and
Tajaddini 2015; Sakr, Liu, and Fayoumi 2013). Also, it provides high avail-
ability for Name node to save the whole infrastructure in cases when name
node goes faulty (Wang et al. 2016)

On the other hand, the reliability of HPC is an ability of processes to
continue operating well or with minimal harm. However, unlike big data
technology, the data warehouse may be represented by a single machine or
rack. This means, there is a single point of failure and HPC architect should
implement standby HPC to solve this issue.

Ease of Administration

Parallel and distributed system models are capable of supporting complex and
difficult administration processing. In Hadoop cluster, an investment inHadoop
requires an investment in infrastructure in addition to the team responsible for
managing this cluster (Naghshineh et al. 2009). The management process of
Hadoop cluster is very difficult because there are a lot of management tasks
more than just managing Hadoop. The management team should manage

Table 3. Memory usage by different platforms.
Dataset size HPC Spark per machine

2 2 KB 128 MB
4 16 KB 128 MB
8 128 KB 128 MB
16 4 MB 128 MB
24 512 MB 128 MB
27 1.5 GB 128 MB
32 3 GB 128 MB
40 8 GB 256 MB
45 24 GB 512 MB
50 46 GB 1 GB
55 128 GB 2.25 GB

APPLIED ARTIFICIAL INTELLIGENCE 1153



provisioning to enable install Hadoop over cluster after OS provisioned onto the
cluster nodes. Then, it is responsible to monitor overall cluster to do health
checks, notifications, and automatic corrective actions. So, any fault value for
any property in Hadoop, MapReduce, and Spark would cause performance
issue. By contrast, the deployment parallel and distributed tasks on a HPC are
very easy because they limit the management tasks needed from the manage-
ment team to handle hardware or platform failure since all components are
managed by single software. Definitely, all steps are optimized for infrastructure
and high performance to data processing.

Conclusion

This paper presents a parallel and distributed powerset generation using big data
processing platforms. A new theory is introduced to improve the performance of
powerset generation in different environments. It minimizes the processing time
spent to generate powerset due to parallel execution in different phases of power-
set generation. From the result, it is seen that the HPC provides a real-time data
processing and generates powerset for large size dataset. Also, inHPC,monitoring
and management software makes troubleshooting easy when any error occurs.
However, when using HPC model, there is a problem concerned with scalability
because it uses scale-up approach methodology. This problem is solved by scaling
the cluster horizontally using big data processing concepts. This means the owner
can upgrade a size of memory and increase number of CPUs using commodity
machines without needing to replace any machine inside the Hadoop cluster.

Acknowledgments

This research was supported by Idealo GmbH. We thank our colleagues from Idealo who
provided insight and expertise that greatly assisted the research.

ORCID

Gamal Attiya http://orcid.org/0000-0002-4771-9165

References

Amailef, K., and L. Jie. 2013. Ontology-supported case-based reasoning approach for intel-
ligent m-government emergency response services. Decision Support Systems 55 (1):79–97.
Elsevier. doi:10.1016/j.dss.2012.12.034.

Bahnasy, K., K. M. Naguib, and M. Aref. 2014. A novel case base indexing model based on
power set tree. International Journal of Computer Applications 97 (7): 1-8.

Bova, V. V., V. V. Kureichik, and A. A. Lezhebokov. 2014. The integrated model of
representation of problem-oriented knowledge in information systems. 8th International

1154 Y. M. ESSA ET AL.

http://dx.doi.org/10.1016/j.dss.2012.12.034


Conference on Application of Information and Communication Technologies (AICT)
IEEE, 1–4, Astana, Kazakhstan, IEEE.

Ciobanu, G., and D. Paraschiv. 2002. P system software simulator. Fundamenta Informaticae
49 (1):61–66.

Ciobanu, G., and G. Wenyuan. 2003. A parallel implementation of the transition P systems.
Proceedings of the MolCoNet Workshop on Membrane Computing (WMC2003) 28
(03):169–169. Report.

Cristian, M. O., A. Costan, G. Antoniu, and M. S. P. Hernández. 2016. Spark versus flink:
Understanding performance in big data analytics frameworks. IEEE International
Conference on Cluster Computing (CLUSTER), 433–42, Taipei, Taiwan, IEEE.

Esfandiari, M., R. Babavalian, et al. 2014. Knowledge discovery in medicine: Current issue
and future trend. Expert Systems with Applications. 41 (9):4434–63. doi:10.1016/j.
eswa.2014.01.011.

Essa, Y. M., G. Attiya, and A. El-Sayed. March 2014. New framework for improving big data
analysis using mobile agent. The International Journal of Advanced Computer Science and
Applications (IJACSA) 05 (03):25–32.

Essa, Y. M., G. Attiya, and A. El-Sayed. 2013. Mobile agent based new framework for
improving Big Data analysis. IEEE International Conference on Cloud Computing and
Big Data (CloudCom-Asia 2013). FuZhou, China, December.

Gil, F. J., L. Fernández, F. Arroyo, and J. Alberto. 2008. Parallel algorithm for P systems
implementation in multiprocessors. The Thirteenth International Symposium on Artificial
Life and Robotics, Beppu, Japan, 2008.

Hu, H., Y. Wen, T. Chua, and X. Li. 2014. Toward scalable systems for big data analytics:
A technology tutorial. IEEE Access 2:652–87. doi:10.1109/ACCESS.2014.2332453.

Jiang, H., Y. Chen, Z. Qiao, T. H. Weng, and K. C. Li. 2015. Scaling up Mapreduce-based big
data processing on multi-GPU systems. Cluster Computing 18 (1):369–83. doi:10.1007/
s10586-014-0400-1.

Khalifa, S., Y. Elshater, K. Sundaravarathan, A. Bhat, P. Martin, F. Imam, D. Rope,
M. Mcroberts, and C. Statchuk. 2016. The six pillars for building big data analytics
ecosystems. ACM Computing Surveys (CSUR) 49 (2):33. doi:10.1145/2966278.

Kiron, D., R. Shockley, N. Kruschwitz, G. Finch, and Haydock. 2012. Analytics: The widening
divide. MIT Sloan Management Review 53 (2):1.

MacArthur, P., Q. Liu, R. D. Russell, F. Mizero, M. Veeraraghavan, and J. M. Dennis. 2017.
An integrated tutorial on infiniband, verbs, and MPI. IEEE Communications Surveys &
Tutorials 19 (4):2894–926. doi:10.1109/COMST.2017.2746083.

Mustafa, A., M. Ghadiri, and A. Tajaddini. 2015. Relationship between efficiency in the
traditional data envelopment analysis and possibility sets. Computers and Industrial
Engineering 81:140–46. doi:10.1016/j.cie.2015.01.001.

Naghshineh, M., R. Ratnaparkhi, D. Dillenberger, J. R. Doran, C. Dorai, L. Anderson,
G. Pacifici, J. L. Snowdon, A. Azagury, M. VanderWiele, et al. 2009. IBM research division
cloud computing initiative. IBM Journal of Research and Development 53 (4):1.
doi:10.1147/JRD.2009.5429055.

Philip, C., and C. Y. Zhang, PHBRB. 2014. Data-intensive applications, challenges, techniques
and technologies: A survey on big data. Information Sciences 275:314–47. doi: 10.1016/j.
ins.2014.01.015.

Pronk, S., I. Pouya, M. Lundborg, G. Rotskoff, B. Wesén, P. M. Kasson, and E. Lindahl. 2015.
Molecular simulation workflows as parallel algorithms: The execution engine of coperni-
cus, a distributed high-performance computing platform. Journal of Chemical Theory and
Computation 11 (6):2600–08. doi:10.1021/acs.jctc.5b00234.

APPLIED ARTIFICIAL INTELLIGENCE 1155

http://dx.doi.org/10.1016/j.eswa.2014.01.011
http://dx.doi.org/10.1016/j.eswa.2014.01.011
http://dx.doi.org/10.1109/ACCESS.2014.2332453
http://dx.doi.org/10.1007/s10586-014-0400-1
http://dx.doi.org/10.1007/s10586-014-0400-1
http://dx.doi.org/10.1145/2966278
http://dx.doi.org/10.1109/COMST.2017.2746083
http://dx.doi.org/10.1016/j.cie.2015.01.001
http://dx.doi.org/10.1147/JRD.2009.5429055
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1021/acs.jctc.5b00234


Rashedi, E., H. Nezamabadi, and S. Saryazdi. 2013. A simultaneous feature adaptation and
feature selection method for content-based image retrieval systems. Knowledge-Based
Systems 39:85–94. Elsevier. doi:10.1016/j.knosys.2012.10.011.

Sahakyan, H. 2014. Essential points of the n-cube subset partitioning characterization.
Discrete Applied Mathematics 163:205–13. Elsevier. doi:10.1016/j.dam.2013.07.015.

Sakr, S., A. Liu, and A. G. Fayoumi. 2013. The family of MapReduce and large-scale data
processing systems. ACM Computing Surveys (CSUR) 46 (1):11–37. doi:10.1145/
2522968.2522979.

Salah, S., R. Akbarinia, and F. Masseglia. 2015. Optimizing the data-process relationship for
fast mining of frequent itemsets in mapreduce. International Workshop on Machine
Learning and Data Mining in Pattern Recognition, 217–31. doi:10.3348/kjr.2015.16.1.217,
Hamburg, Germany.

Seol, H., W.Jeong, and et al. 2013. Reduction of association rules for big datasets in
socially-aware computing. IEEE 16th International Conference on Computational
Science and Engineering (CSE), 949–56, Sydney, NSW, Australia, IEEE.

Spolaôr, E.A.Cherman, and et al. 2013. ReliefF for multi-label feature selection. Brazilian
Conference on Intelligent Systems, 6–11. IEEE. doi:10.1177/1753193413492914, Fortaleza,
Brazil, IEEE.

Vavliakis K. N., A. L. Symeonidis, and P. A. Mitkas. 2014. Event identification in web social
media through named entity recognition and topic modeling. Data & Knowledge
Engineering 88:1–24. IEEE. doi:10.1016/j.datak.2013.08.006.

Wang, H., Z. Xu, H. Fujita, and S. Liu. 2016. Towards felicitous decision making: An
overview on challenges and trends of big data. Information Sciences 367:747–65.
doi:10.1016/j.ins.2016.07.007.

Wu, X., X. Zhu, G. Q. Wu, and W. Ding. 2014. Data mining with big data. IEEE Transactions
on Knowledge and Data Engineering 26 (1):97–107.

Zhang, L. Tianrui, and Y. Pan. 2012. Parallel rough set based knowledge acquisition using
mapReduce from big data. Proceedings of the 1st International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models
and Applications, 20–27, Beijing, China, ACM.

Zhou, and et al. 2017. A model for hidden behavior prediction of complex systems based on
belief rule base and power set. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 84, no.9, 1649 - 1655, 2017, IEEE.

1156 Y. M. ESSA ET AL.

http://dx.doi.org/10.1016/j.knosys.2012.10.011
http://dx.doi.org/10.1016/j.dam.2013.07.015
http://dx.doi.org/10.1145/2522968.2522979
http://dx.doi.org/10.1145/2522968.2522979
http://dx.doi.org/10.3348/kjr.2015.16.1.217
http://dx.doi.org/10.1177/1753193413492914
http://dx.doi.org/10.1016/j.datak.2013.08.006
http://dx.doi.org/10.1016/j.ins.2016.07.007

	Abstract
	Introduction
	Related Work
	Problem Statement
	ANovel Theory of Powerset Generation
	Proposed Powerset Algorithms
	Performance Evaluation
	Implementation Environment
	Real Implementation Results

	Discussion
	Data Transfer
	Memory Usage
	Reliability
	Ease of Administration

	Conclusion
	Acknowledgments
	References

