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aSMART Lab, Institut Supérieur de Gestion de Tunis-ISGT, Université de Tunis, Bardo, Tunisia; bLIRIS,
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ABSTRACT
Road crashes are present as an epidemic in road traffic and con-
tinue to grow up, where, according to World Health Organization;
they cause more than 1.24 million deaths each year and 20 to
50 million non-fatal injuries, so they should represent by 2020 the
third leading global cause of illness and injury. In this context, we
are interested in this paper to the car-following driving behavior
problem, since it alone accounts for almost 70% of road accidents,
which they are caused by the incorrect judgment of the driver to
keep a safe distance. Thus, we propose in this paper a decision-
making model based on bi-level modeling, whose objective is to
ensure the integration between road safety and the reducing travel
time. To ensure this objective, we used the fuzzy logic approach to
model the anticipation concept in order to extract more unobser-
vable data from the road environment. Furthermore, we used the
fuzzy logic approach in order to model the driver behaviors, in
particular, the normative behaviors. The experimental results indi-
cate that the decision to increase in velocity based on our model is
ensured in the context of respecting the road safety.

Introduction

Road crashes are present as an epidemic in road traffic and continue to grow,
where, according to World Health Organization (WHO 2015), they cause more
than 1.24million deaths each year and 20 to 50million non-fatal injuries, so they
should represent by 2020 the third leading global cause of illness and injury. In
this context, the Car-Following (CF) behavior that represents the basic unit to
ensure the longitudinal movement of vehicles is an important issue in terms of
road safety, where, according to Distner (2009), it alone represents nearly 70% of
road accidents, which they are caused by the incorrect judgment of the driver to
keep a sufficient safety distance.

According to various research projects, such as (Papageorgiou 1991;
Sameh, Alexis, and Stephane 2002), the safety problems are generated by
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individual driver errors. In addition, René et al. (2008) indicated that human
factors appear in more than 90% of road accident. As a result, the driver
behaviors become a major concern for researchers (Benjamin et al. 2017;
Victor, Christelle, and L.M. 2012). In this context, according to various
research studies, such as (Golias, Yannis, and Antoniou 2001), driver beha-
vior is classified into two types, normative behavior, and non-normative
behavior. The first type ensures that the driver behavior adopted leads the
driver to respect the Highway Code, thus increasing the road safety rate. On
the other hand, the second type eliminates the road safety objective, by giving
priority to reducing travel time with violent driving. In this context, the
simulation is used as a perfect solution to study human behaviors, whose
objective is to propose solutions that reduce the enormous rate of accidents
caused by the human factor.

For the imitation of human behavior, we are interested in the decision-
making of a driver agent based on CF driving behavior, which is the most
accidental behavior. In this context, the decision-making during this driving
behavior has two aspects: how far away the follower conductors allow
a leading vehicle to get closer with an acceptable distance, and how they
control the velocity according to the leading vehicle stimulus. In this context,
the velocity has been identified as a key risk factor, influencing both on the
road safety and on the travel time, where decision-making for the velocity
value to be adopted in the near future is expressed using mathematical
techniques, such as differential equations. Such solutions are sometimes
sufficient but are not acceptable when the purpose of the simulation is to
mimic the actual behavior of human drivers. In fact, the decision-making
ensures the production of road phenomena that are the result of an indivi-
dual decision error influenced by driver behavior, thereby directly influen-
cing on road safety. However, mathematical techniques do not ensure the
production of road phenomena, but they ensure reproduction, which does
not ensure the imitation of human behaviors.

The modeling and implementation of the CF microscopic driving behavior
require a technology that guarantees autonomy, responsiveness, adaptability,
and interaction. The technology of software agents meets these criteria
perfectly and is positioned as an appropriate solution to simulate driver
behaviors. Thus, we used this technology to model the drivers during the
simulation.

In short, the main contributions of this paper are:

(1) Designing a decision-making model that uses the fuzzy one to know
the velocity and the safety distance, which will be applied by the
follower driver agent to react to the environment state in near future.

(2) Reporting the simulation experimentation rests on actual instances was
treated by the American Federal Highway Administration Program called
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the Next Generation SIMulation computer (NGSIM 2005), where the used
data were collected from the stretch of US101 highway (Hollywood
Highway) in Los Angeles, California; in addition to a comparison against
the reference work of Gipps (1981), and a recent work of Yang et al. (2014).

In the second section, we present the related works of decision-making
with CF driving behavior. In the third section, we illustrate the details of our
proposition of a decision-making model. In the fourth section, we present the
experimental results. Finally, we finish this paper with conclusions and future
works.

Related Work

The study of the CF behavior began in the 1950s (Chandler, Herman, and
Montroll 1958; Gazis, Herman, and Potts 1959) and this in the more general
context of road traffic analysis. These first models open the way to the
longitudinal control modeling. Indeed, the CF models can be classified
under two categories. The first one is the classic CF models, where over
time it updates the state variables by using equations. The second one is
based on artificial intelligence.

Analytical Models

The classic CF models contain several categories, such as the Stimulus-response
models. These precursor models are based on the assumption that the triggering
of driver actions (acceleration, braking) is caused by external stimuli such as the
variation of an inter-vehicle distance. The advantage of this model lies in its
simplicity in terms of calculations, implementation, and estimation of its para-
meters in reduced numbers. However, it assumes that drivers have the ability to
assess the relative velocity between the two vehicles. Gazis, Herman, and Potts
(1959) supposed that the term of sensitivity is inversely proportional to the
distance between the lead vehicle and its follower. Thus the sensitivity increases
as the relative distance between the two vehicles decrease, giving a better reac-
tivity of the driver and this at the slightest change in relative velocity. Conversely,
the driver reacts little when he is away from the vehicle followed. Newell (2002)
also proposed a simplified “Stimulus-Response” type model based solely on the
estimation of distance indices. The driver behavior of the follower vehicle is
summarized in the reproduction of that of the vehicle followed in reaction time
and desired inter-vehicle distance.

The safe and optimal distance models are one of the classic CF models.
According to this approach, the driver is supposed to control his velocity so as
to maintain between his vehicle and the one preceding it a distance to avoid any
risk of collision in case of sudden braking of the vehicle followed. Gipps (1981)
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proposed a model based on the fundamental principle of dynamics. In this
model, the driver has two velocity controls which he chooses for safety the one
with the lowest value. One ensuring compatibility with its desired velocity and
acceleration (not taking into account other traffic vehicles), the other guaran-
teeing it to avoid any collision with the vehicle followed in case of untimely
braking. Like collision avoidance type models, Bando et al. (1995) proposed that
the driver regulates his velocity not on the basis of that of the vehicle he follows,
but on a velocity which guarantees him the case of sudden braking to avoid any
risk of contact with the vehicle followed. In the same context of Bennajeh et al.
(2016a, 2016b)) proposed a decision-making model for the CF behavior pro-
blem by taking into account the road safety and the reduction of travel time.
Other safe distance models have also been developed, such as (Broqua et al.
1991; Qiang et al. 2011; Yang et al. 2014).

Models Based on Artificial Intelligence

Human behavior is a very complex paradigm, which requires more than
mathematical equations to ensure a perfect imitation. In this case, the using
of artificial intelligence to resolve this problem is presented as a perfect
solution. Among the artificial intelligence models developed in the past two
decades, the fuzzy logic (FL) approach is presented as the best approach to
ensure the imitation of the logic of the human thinking, especially with
adopting the CF driving behavior, since drivers decide and act based on
their experience, logic, and judgments. In this context, to examine the
qualitative and unclear decision of the drivers, several models of the FL
approach have been developed and used in traffic studies. Kikuchi and
Chakroborty (1992) applied FL rules to model the CF behavior for the first
time. After Kikuchi and Chakroborty (1992) model, many other CF models
were developed based on FL rules, such as (Chakroborty and Kikuchi 1999;
Das et al. 1999; Gao, Hu, and Dong 2008; Gonzalez-Rojo et al. 2002; Hao,
Ma, and Xu 2016; Hatipkarasulu and Wolshon 2003; McDonald, Wu, and
Brackstone 1997; Won et al. 2007; Zheng and McDonald 2005).

Discussion of Existing Works

The above works examined the existing microscopic models of CF driving
behavior in two broad categories: classic and artificial intelligence models.
Their concepts and properties have been highlighted by providing some exam-
ples of their applications. Indeed, the artificial intelligence models based on
complex algorithms, which make them more complicated to understand and
use compared to the classic models that are based on reasonable equations. In
fact, the classic models play the most important role in many existing traffic
simulation models. However, these latter do not consider the examination of the
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driver behavior when making decisions, which is the most important point of the
intelligence artificial models. In fact, the classic models consider the driver
behavior by measuring the characteristics of the vehicle, such as spacing, velocity,
and acceleration, it can be accepted for normal traffic conditions, but in severe
situations such as congestion, driver behavior needs complex modeling. In this
context, the models based on the artificial intelligence resolved this complex
problem, but these existing models, always based on a single objective, where, it
does not exist a model that provides the combination of more than one objective
at the same time of decision making, such as, the increasing of the road security
and the reducing of the travel time, which is the main objective of this article.

Main Idea and Motivations

The phenomena of road traffic, such as congestion, occupation of traffic lanes and
road accidents. They are concluded from the interactions between the drivers and
the individual practices of these later. However, mathematical models work
according to the equations that guarantee the accuracy of the decision to be
made. Thus, these models do not provide the production of traffic phenomena,
but they ensure reproduction, which influences the efficiency of the simulation.

Based on the aforementioned anomalies, modeling of making-decision is
proposed in this paper to ensure a perfect imitation of human behavior with the
CF driving behavior. Indeed, this modeling is based on a hybrid between the
mathematical models in order to exploit the criterion of precision of these
models, and the artificial intelligence-based models in order to exploit the
generation of road phenomena based on behavioral approaches. Thus, we try
to create a driving agent characterized by intelligence and autonomy during
decision making, to ensure the production of road phenomena as a result of the
decisions taken by him. In this context, we have incorporated anticipatory
behavior to the follower driver agent during the decision making and depend-
ing on the CF behavior, in a continuous space and in discrete time, and with
a set of driving rules that reflects the normative behavior of drivers.

Model: Decision-making Based on Bi-level Modeling

Overview and Motivations

Driving a vehicle involves moving around in a changing environment. To move,
drivers support a set of interactions described by the constraints of other drivers’
behavior, road infrastructure, and regulation. A driver often aims to minimize
his travel time. So, he tries to reach his maximum psychological velocity, also
called the desired velocity. by considering his current state (velocity, position,
etc.) and various constraints imposed by his environment (other vehicles, infra-
structures, etc.). Thus, decision-making during CF behavior has two aspects:
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how far away the follower drivers allow a leading vehicle as an acceptable
approach distance, and how also the follower drivers control the velocity
depending on the movements of the leader vehicles. In this context, the velocity
has been identified as a key risk factor, affecting both road safety and travel time.

In short, reducing travel time results is translated by increasing the velocity,
which reduces the safety distance. However, according to the road security rules,
if there is an increase in the velocity, then it is mandatory to have an increase in
the safety distance. Thus, this road security rule influences on the operation of
the CF driving behavior, where, to chose the velocity that will be applied by the
follower driver, a problem is posed during the simultaneously optimize of the
two contradictory objectives: the maximization of the velocity and the maximi-
zation of the safety distance. Figure 1 presents the bi-level modeling schema.

Upper Module

Objective Function
The problem consists of finding the values of decision variables satisfying
a set of constraints and optimizing a vector function. In this context, we start
with the objective function “maximization of the Safety Distance to be
Adopted (SDA)”, which is represented by Equation 1.

Max SD Ax Tþ 1ð Þ¼ ASDx Tð Þþ Vy Tþ 1ð Þ�t
� �

Vx Tþ 1ð Þ�tð Þ (1)

Where, ASDx(T) is the Adopted Safety Distance by the follower vehicle
X during the simulation time step T and which shows the distance between the
follower vehicle X and the leader vehicle Y, t is the simulation time step duration,

Figure 1. The bi-level modeling schema.
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Vx(T + 1) and Vy(T + 1) are the decision variables respectively representing the
velocities of the follower vehicle X and its leader vehicle Y in the near future T + 1.

Definition Domains of the Decision Variables
The decision variable of the upper-level Vx(T + 1) of the objective function
“maximization of the safety distance” represents the velocity that will be applied
by the follower vehicle X. The definition domain of this variable is based on the
characteristics of the vehicle to be used in the simulation. Thus, the definition
domain is expressed as follows: ∀ Vx(T + 1) (Vx(T + 1) ∈ [0; Vmax]), where Vmax

represents the maximum velocity that the vehicle X can reach.
In the modeling of Bennajeh et al. (2016a), the definition domain of this

variable is limited to a small variation of the velocity of the simulation time step
T, which forced them to eliminate the objective function “maximization of the
velocity” of the leader vehicle Y, thus eliminating the anticipation of the velocity
that will be applied by this vehicle. As a result, the risk of a collision is increased,
especially with the sudden change in driving behavior of the leader vehicle. In
this newmodeling, knowing the velocity of the leader vehicle Y in the near future
becomes a problem to be solved as that of the follower vehicle X. Thus, the
modeling of the new definition domain of the decision variable Vy(T + 1) is
expressed as follows: ∀ Vy(T + 1) (Vy(T + 1) . [0; Vmax]).

Constraints
The decision making in our modeling is based on the CF behavior and the
driver behavior, in particular the normative behavior, where, according to
Golias, Yannis, and Antoniou (2001) a driver with a normative behavior is
characterized by the respect of the code of the road, and that translates with
the CF driving behavior by respecting the maximum velocity of the traffic
area and respecting the safety distance, in order to avoid longitudinal colli-
sion problems. Thus, for the modeling of the constraints to be respected by
the follower driver agent, it is necessary that these constraints translate the
driver normative behavior based on the continuous change in the environ-
ment state. The goal in this step is to find a set of values to assign to decision
variables, and that satisfied all constraints.

For the constraints of the objective function of the upper level, “the
maximization of the safety distance”, the inequalities 2 and 3 eliminate the
sudden deceleration of the leader driver that influences on the road safety,
where, the velocities to be applied by the follower vehicle X and the head
vehicle Y must be greater or equal to zero.

Vx Tþ 1ð Þ > ¼ 0 (2)

Vy Tþ 1ð Þ > ¼ 0 (3)
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Lower Module

Objective Function
The objective function “maximization of the velocity”, Vx(T + 1) and Vy

(T + 1), which reflect respectively the objective of the follower driver agent
X and the leader driver agent Y. The modeling of this objective function is
illustrated by Equations 4 and 5.

Max Vx Tþ 1ð Þ¼ Vx Tð Þþ Ax�tð Þþm (4)

Max Vy Tþ 1ð Þ¼ Vy Tð Þþ Ay�t
� �þm (5)

Where, Ax and Ay are the decision variables representing the action or also
called the driving behavior (acceleration, deceleration, maintain velocity) that
will be adopted by the follower vehicle X and the leader vehicle Y, t is the
simulation time step duration and m is the margin of precision that influ-
ences on the accuracy of the velocity. In fact, the first objective function,
“maximizing the safety distance to be adopted”, contains two decision vari-
ables Vx(T + 1) and Vy(T + 1) representing the velocities of the vehicles
X and Y in the near future T + 1. In addition, the same decision variables are
designed as the objective function, “maximization of the velocity”. Therefore,
this is why the modeling of our problem is bi-level modeling.

Definition Domains of the Decision Variables
The decision variable Ax of the objective function “maximization of the velocity”
of the follower vehicle X, presents the action that will be adopted and can be
summed up in one of the following driving behavior: acceleration, deceleration
and maintain velocity. To ensure a realistic simulation, the deceleration and
acceleration values of the decision variable Ax must be realistic. Therefore, the
definition domain of the decision variable Ax is a continuous domain. In this
context, the selection of the deceleration value for the decision variable Axmust be
between dmin and dmax. Similarly, the selection of the acceleration value for the
decision variable Ax must be between amin and amax. Also, the selection of the
maintain velocity value for Ax must be between mmin and mmax. In short, accord-
ing to the modeling of Bennajeh et al. (2016a), the definition domain of the
behavior “maintain velocity” contains only the value zero. However, it is impos-
sible to have a deceleration or acceleration value equal to zero, thanks to several
factors which ensure the change of driving behavior by a slight deceleration or
acceleration. Therefore, if the deceleration value or acceleration value is below the
recognition threshold of a human driver, then the action is known as maintaining
velocity. Thus, the new definition domain of the decision variable Ax is expressed
as follows: ∃ Ax (Ax ∈ [dmin; dmax] ⋁ Ax ∈ [amin; amax] ⋁ Ax ∈ [mmin; mmax]).

Indeed, the decision variable Ay has the same definition domain as the
decision variable Ax. The modeling of the definition domain of Ay translates
as following: ∃ Ay (Ay ∈ [dmin; dmax] ⋁ Ay ∈ [amin; amax] ⋁ Ay ∈ [mmin; mmax]).
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Constraints
To define the constraints of the objective function of the lower level, “the max-
imization of the velocity”, the increase in the velocity is linked to the driver
behavior, such as a driver with normative behavior ensures that the velocity that
will be applied must lead to respect the Highway Code, which increases the rate of
road safety. On the other hand, a driver who is characterized by non-normative
behavior eliminates the objective of safety road, thus giving priority to the reduc-
tion of driving time by a violent increase in velocity. In this context, the decision
making in our modeling is related to the driver normative behavior. Thus, it is
necessary to have modeled the constraints which translate these normative beha-
viors, modeling, which is not based on mathematical equations. For this reason,
the FL approach relates to the human reasoning flexibility and ensures the
modeling of data imperfections by using qualitative and quantitative descriptions
in which observations of drivers agents are expressed. This approach gives the
possibility of modeling the constraints to be respected by the values of the decision
variables Ax andAy according to the linguistic rules. In addition, since the decision
variables Ax and Ay are slaved to thresholds; it is then quite possible to use a fuzzy
regulator to ensure this selection task, respecting the environment state, as well as
the driver behavior. At this point, we replaced the analytical modeling of Bennajeh
et al. (2016a) with an input/output system consisting of a set of linguistic rules,
a “black box” whose outputs predicted the action to be adopted (accelerating or
decelerating or maintaining velocity) in the future.

For the extraction of the values for the decision variables Ay (T + 1) and Ay

(T + 1), which satisfy the constraints of the objective functions of the lower level,
“the maximization of the velocity”, we have adopted the anticipatory model of
Bennajeh et al. (2018b).

Lower Level Fuzzy Constraints

The FL approach is used as a solution to ensure the imitation of human
reasoning, using an expressive language closer to natural language and
translated by qualitative and quantitative descriptions. Therefore, in the
road traffic context, in particular with the CF driving behavior, we can
estimate the velocity that respects the environment state and the objectives
of the driver, according to his behavior, which is in our case a normative
behavior. In this context, we used the anticipation approach defined by
Bennajeh et al. (2018a, 2018b)), which is based on the FL approach.

Bi-level Resolution Algorithms

Main Algorithmic Schema

Our bi-level modeling is composed by two problems, which are: the decision
making of the safety distance that will be applied in the near future, which is
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presented in the upper level of our modeling, and the decision making of the
velocity that will be applied in the near future, which is presented in the lower
level of our modeling. For the resolution, we used the Genetic Algorithm (GA).
Furthermore, we used the Tabu Search Algorithm in the lower level as it is
defined by Bennajeh et al. (2018b). Thus, the resolution of our modeling is
based on two nested algorithms: the genetic algorithm and the Tabu search
algorithm. In this context, Figure 2 presents the main algorithmic schema.

GA Module

Based on the studies on the use of meta-heuristics for micro-simulation
models (Abhay, Alexander, and Steven 2017; Hollander and Liu 2008)
suggest that the Genetic Algorithm (GA) is the most popular optimization
method. For example, it was used to calibrate the VISSIM traffic model to
match the simulation results with the observed distributions obtained in the
field (Kim, Kim, and Rilett 2005). Also, the calibration approach based on
GA is widely used, such as (Li, Liu, and Zhang 2009; Manjunatha, Vortisch,
and Mathew 2013; Mathew and Radhakrishnan 2010; Omrani and Kattan
2013; Yu et al. 2006). Therefore, the genetic algorithm is selected in this
work for the calibration of the velocity that will be adopted in the nearest
future.

Initial Population
According to Nicolas and Jean-Marc (1999), and Michalewicz and Janikov
(1991), a genetic algorithm is initially based on an initial population. Thus,
the choice of the initial population of individuals strongly conditions the
speed of the algorithm. If the position of the optimum in the state space is
totally unknown, it is natural to randomly generate individuals by making
uniform draws in each of the domains associated with the components of the

Figure 2. The main algorithmic schema.
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search space, ensuring that the Individual products respect the constraints.
On the other hand, if a priori information on the problem is available, it
naturally seems natural to generate the individuals in a particular sub-
domain in order to accelerate the convergence. In the hypothesis where the
management of the constraints cannot be done directly, the constraints are
generally included in the criterion to be optimized in the form of penalties. It
is clear that it is better when it is possible to generate only population
elements respecting the constraints.

Based on this definition, we adopted an initial population generationmechan-
ism capable of producing a population of individuals from a particular sub-
domain and which respects the constraints of our modeling. In this framework,
for the values of the Vx (T + 1) decision variable, we applied our anticipation
strategy on the Ax decision variable, where we selected the best solution based on
the defuzzification method that defined by Bennajeh et al. (2018b) and the n-1
neighboring solutions. The same principle applied to the selection of n values for
the decision variable Vy (T + 1).

Evaluation Operator
Once the initial population was created, we made out the most promising
individuals, those who will participate in improving our population. We have
therefore assigned a rank which is presented as a quality index for each indivi-
dual. The rank of an individual is the index of the population in which he has
been noticed as being not dominated by no other individual. Then, we get out
those who are not dominated by any other individual, we give them rank 1 and
wemake them stand out. Then, for the individuals who are not out of the lot, we
repeat the operation, looking for those who are not dominated by any of the
remaining individuals and we give them rank 2, and so on, until exhaustion of
the population. Individuals considered the best are those of the lowest rank.

Selection Operator
We have adopted the method of binary tournament selection. This technique
uses proportional selection on pairs of individuals and then chooses from
among these pairs the individual who has the best quality. The quality of the
individuals is treated in our modeling according to the Evaluation Criterion
(EC) of Equation 6, where the individual with the lowest EC contains the
highest quality.

EC ¼ SDAx Tþ 1ð ÞCSDx Tþ 1ð Þj j (6)

Where CSDx(T + 1) is the calculated safety distance and has the evaluation
function of the selected feasible solution. The calculated safety distance CSDx

(T + 1) is expressed by Equation 7.
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CSDxðTÞ ¼ ðRT þ DT þ ATÞ � VxðT þ 1Þ þ w
2� G� ρ� Af � Cd

� ln 1 þ
ρ�Af�Cd

2 � VxðT þ 1Þ2
ðη� μ�WÞ þ ð fr �W � cos θÞ þ ðW � sin θÞ

 !

(7)

Where, RT is the reaction time, AT is the action time, DT is the decision time,
W is the vehicle weight, ρ is the air density, G is the gravity speed, Af is the area
of projection, η is the braking efficiency, Cd is the factor of the air resistance, µ is
the coefficient of the friction, θ is the road slope and fr is the factor of the decay.
Vy(T + 1) is the adopted velocity during the simulation step T + 1. Indeed, the
safety distance equation is defined by Chen and Wang (2007).

Crossover Operator
The purpose of crossbreeding is to enrich the diversity of the population by
manipulating the structure of chromosomes. In our work, we applied the elitist
replacement with a probability of crossing Pc, where the selection of parents is
treated randomly from the selected individuals with the selection operator.
Thus, after the generation of the children, an internal evaluation in the crossing
operator is started to check if the new individuals (children) meet all the
constraints, otherwise, they will be eliminated and their parents will be sent back.

Mutation Operator
The role of this operator is to modify randomly the value of an individual
component, ensuring thus the diversity of the population, and giving an
equal chance for all the values of the search space. In this context, we applied
the mutation operator with a probability of mutation Pm, where the selection
of a solution is treated randomly from a value search space contained only
values that satisfy all the constraints. The search space of a solution is
concluded from the fuzzy rules.

Experimentation

Data Sets

To study the optimization results in the CF driving behavior, we adopted the
vehicle trajectories of NGSIM (2005). Traffic data were collected on a stretch of
highway US101 (Hollywood Highway) in Los Angeles, California. Figure 3
illustrates the US101 study area by using digital video cameras. The schematic
drawing at the bottom of Figure 3 presents the ways of the highways and the
location of the ramps on Ventura Boulevard and on Cahuenga Boulevard in the
study area.
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The study reflects a total of 45 minutes of transcribed data from the digital
video cameras were mounted, with which the Federal Highway
Administration Program was processed a total of 11779 vehicle trajectories,
which are recorded in a complete dataset.

Comparative Models

In addition to using the traffic data were collected from the Federal Highway
Administration Program (NGSIM 2005), and in the context to better discuss
the performance of our model and for comparison, we selected two famous
analytical models from the same family of car-following behavior as our
proposed model, “Security distance models”, which are: model of Gipps
(1981) and model of Yang et al. (2014).

Performance Metrics and Parameters Setting

In the study context of the simulation results, we used the evaluation indices,
which are widely used in evaluating models of subroutines (for example
Hamdar, Treiber, and Mahmassani 2009; Punzo and Simonelli 2005). The

Figure 3. Simulation Zone (US101 Hollywood Highway.
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evaluation indices used are: Mean Error (ME), Mean Absolute Error (MAE),
and Mean Square Error (MSE). The modeling of each is expressed respec-
tively by Equations 8, 9 and 10.

ME ¼ 1
N

XN
n¼1

yrealn � ysimn
� �

(8)

MAE ¼ 1
N

XN
n¼1

yrealn � ysimn
�� �� (9)

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

yrealn � ysimn
�� ��

vuut (10)

Where, yrealn is the nth data sample of the real vehicle, and ysimn is the nth data
sample of the simulated vehicle. yrealn and ysimn containing the adopted values
for the decision variables Ax and Vx(T + 1).

Table 1 presents the values of different simulation parameters used by the
simulated vehicle 1720, where most of these values are collected from the model
of Chen andWang (2007). However, the following simulation parameter values:
dmax, dmin, amax, amin and Vmax are based on the traffic data of NGSIM (2005).

The results of simulation that are presented in the next section through the
different tables and plots are calculated by the medium of 30 simulations
performed. Furthermore, the number of individual adopted in the genetic
algorithm is 100. Moreover, the number of iterations adopted by the GA is 46
and in the TSA is 50 iterations. In fact, the number of iterations adopted is
not high, because according to Chen and Wang (2007), the decision time for
an ordinary behavior driver is between 0.15 and 0.25 s, and according several
simulations, these adopted numbers of iteration respect this constraint.

Table 1. Simulation parameters.
Parameters Values Parameters Values

W 1735 (Kg) DT 0.15(s) to 0.25 (s)
G 9.81(m/s2) T 0.5(s)
Q 1.25 amax 4.917(m/s2)
Af 2.562 (m2) amin 0.5
Cd 0.4 dmax 4.917(m/s2)
H 0.6 dmin 0.5(m/s2)
µ 0.8 Vmax 31.333 (m/s)
Fr 0.015 Pc 0.8
RT 0.4(s) to 0.5 (s) Pm 0.2
AT 0.05(s) to 0.15(s)
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Comparative Results

In this context, to evaluate the effectiveness of simulation results, we adopted
three criteria, which are:

● Imitation of human behavior.
● Reducing travel time.
● The guarantee of road safety.

Upper-level Results: Safety Distance
The evaluation criterion “imitation of human behavior” is reflected in the corre-
spondence between the simulated sample and the actual samples. At this point,
Figure 4 shows the trajectories generated as a function of space and time of 8
vehicles.

The curve with ID 1720 models the sample of the simulated vehicle based
on a driver agent adopting our decision-making model, while the others
represent actual vehicle samples. Therefore, the results of experiments con-
ducted using the dataset of NGSIM (2005) to validate our optimization,
indicate that the travel trajectory of the simulated vehicle 1720 is totally
homogeneous with the actual travel trajectories in terms of deviation.

Figure 5 shows a comparison between the adopted safety distance (ASD) and
the calculated safety distance (CSD). Indeed, the difference between the adopted
safety distance and the calculated safety distance, presents the evaluation criterion
(EC) to evaluate the homogeneity between the maximization of the travel velocity
and the maximization of the safety distance that will be applied, thus allowing the

Figure 4. The spatiotemporal trajectories during travel of vehicles.
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Figure 5. Comparison of the safety distance adopted and the safety distance calculated between
the 8 vehicles.
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selection of the best solution that behaves as well as possible opposite the objectives
of the driver agent and the continuous changes in the environment state.

According to the results in Figure 5, we notice that with the results of the
simulated driver 1720, there is a correspondence between ASD and CSD, which
present the respect of the road security objective by respecting the CSD, and at the
same time, ensure the reducing of the travel time, by increasing of the velocity.
However, in the other graphs of the actual drivers, we notice that the ASD is bigger
than CSD, which present exaggerate caution by eliminating the objective of
reducing traffic time. Consequently, these results presents the success of our
proposed model to ensure the correspondence between two objectives at a time
during decision-making, which are: road safety by increasing the safety distance, in
fact, a logical increase not an exaggerated increase, and the reduction of the travel
time by the increase of the velocity, but by a logical increase also, which does not
eliminate of the first objective.

Lower Level Results: Velocity
To study the simulation results against the aforementioned evaluation criteria,
we have adopted an evaluation process, which consists in testing the error of the
decision variable values (Ax and Vx(T + 1)) used by the driver agent of the
simulated vehicle 1720, in relation to the actual values used by a human driver of
the vehicle 1717. In short, the vehicle 1717 does not appear in Figures 4 and 7
because it has been replaced by the simulated vehicle 1720, to know the rate of
correspondence between a vehicle driven by a driver agent based on our model
and a vehicle driven by a human driver. The evaluation indices used are: Mean
Error (ME), Mean Absolute Error (MAE), and Mean Square Error (MSE).

According to the evaluation indices values of the different models in Table 2,
the mean error index (ME) on the decision variables (Ax and Vx(T + 1)) shows
that the models of Gipps (1981) and Yang et al. (2014) tend to produce a lower
velocity than our model. This illustration reflects the objective adopted by the
driver agent based on our model, where, by increasing the velocity, the driver
agent tries to reduce the travel time.

The Mean Absolute Error index (MAE) and the Mean Squared Error index
(MSE) are two of the most common indices used to measure the accuracy of
continuous variables. At this point, according to these two indices, the errors of
our model are inferior to the models of Gipps (1981) and Yang et al. (2014).

Table 2. Comparison of simulation results.
ME MAE MSE

Models Vx Ax Vx Ax Vx Ax
Gipps (1981) −0.29 −0.27 2.05 2.5 2.61 3.23
Yang et al. (2014) −0.17 −0.13 1.78 2.34 2.26 2.89
Our model −0.37 −0.01 1.16 1.04 1.56 1.42
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Thus, our modeling provides a better imitation of human behavior than the
models of Gipps (1981) and Yang et al. (2014).

Based on the results of simulation, which illustrate through Figure 6, and
which present the accelerations and the velocities adopted by vehicle 1720.

Figure 6. Comparison of accelerations and velocities between a sample of the actual vehicle
1717 and a sample of the simulated vehicle 1720.

Figure 7. Comparison of the evaluation criterion (EC) between the 8 vehicles.
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The graph (A) shows the action values adopted by the real vehicle 1717 and
the simulated vehicle 1720, and the graph (B) presents the velocity values
adopted by the real vehicle 1717 and the simulated vehicle 1720 during each
simulation time step. Thus, as well as the results of our evaluation process in
according in the two graphs (A) and (B), there is a high correspondence
between the results of the real sample and the simulated sample.

Correspondence between the Upper and Lower Level Results
At this point, for the actual samples of vehicles 1706, 1699, 1690, 1685, 1673,
1667 and 1653, there is a significant gap between the two safety distances, where
it obviously appears that it has no effect on road safety since CSD is wider than
ASD. On the other hand, with the sample of the simulated vehicle 1720, there is
a harmony between the calculated safety distance and the adopted safety dis-
tance, which reflects the increase in the mean velocity (MV) of the simulated
vehicle 1720 compared to the actual vehicles in Table 3, thus ensuring the
reduction of travel time and taking into account the road safety.

Figure 7 contains 8 curves representing the evaluation criteria values of 8 vehicles
during each simulation time step. The curve of the simulated vehicle 1720 contains
the lowest EC, as shown in Table 3, the Mean Evaluation Criterion (MEC) of the
simulated vehicle is 1.097(m). However, MEC of the real vehicles varies between
9,606 (m) and 16,446 (m). Therefore, human drivers seek to ensure road safety, but
in an inefficient way, since the distance between the safety distance adopted and the
calculated safety distance has no effect on road safety, but it increases travel time.
Thus, we conclude that the possibility of generating undesirable road phenomena
(for example road congestion) from actual vehicle results is possible.

According to the simulation results at the final operator level “the selection
of a final solution”, if the adopted safety distance is very large compared to
the calculated safety distance, then the priority is directed to the highest
velocity, thus ensuring both, reducing travel time by reducing the gap
between the two safety distances, as well as the guarantee of the road safety.

In short, the simulation based on our model shows that the criterion of road
safety is always present in all states of the environment. On the other hand, the
criterion of reducing travel time is related to the environment state. At this point, it
obviously seems that the decision-making by a driver agent corresponds to the
decision-making by a human driver with normative behavior.

Table 3. Themean values of the evaluation criteria and the velocity of 8 vehicles.
Vehicles MV (m/s) MEC (m)

1720 10.124 1.097
1706 9.523 9.974
1699 9.21 9.606
1690 9.408 10.719
1685 9.356 13.861
1673 9.251 13.076
1667 9.185 16.446
1653 9.054 8.791
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Conclusion

In this paper, modeling is proposed to ensure a perfect imitation of human
behavior. In this context, our modeling of decision-making is based on the
combination between the bi-level modeling and the FL approach, where, the
upper level is solved by a set of constraints, and the lower level is solved by the FL
approach defined by Bennajeh et al. (2018b). For the resolutionmethod, we used
a genetic algorithm, where, according to the simulation results; we had solutions
with high quality. However, in our decision-making modeling, there are two
threats. Firstly, since our first objective is to ensure the imitation of human
behaviors, in particular, the normative behaviors. Thus, there is a threat to
drivers having non-normative behaviors. In this case, we plan to integrate the
non-normative behaviors in order allow the simulated drivers to better react
with the different behaviors of the neighbor drivers. Secondly, there is a threat in
the FL approach, in particular, in the defuzzification, where, in some cases, more
than a fuzzy set can appear to select value of the deceleration or acceleration or
maintain velocity, which increases the search space. Thus, we plan to integrate
a fourth input strategic variable presents the action of the leading vehicle.
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