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KAUFFMAN BRACKET OF 2- AND 3-STRAND BRAID
LINKS

ABDUL RAUF NIZAMI!

ABSTRACT. In this paper we give explicit formulas of the Kauffman bracket

of the 2-strand braid link 5? and the 3-strand braid link xl{xgl We also

==

show that the Kauffman bracket of the 3-strand braid link $’1’$§” is actually

the product of the Kauffman brackets of the 2-strand braid links a:l{ and

m
Ty
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1. Introduction

The Kauffman bracket was introduced by L. H. Kauffman in 1987 in [1].

The Kauffman bracket (polynomial) is actually not a knot invariant because
it is not invariant under the first Reidemeister move. However, it has many
applications and it can be extended to the popular Jones polynomial, which
is invariant under all three Reidemeister moves. In the present work we shall
confine ourselves to the Kauffman bracket to avoid from unnecessary length and
to leave it for applications. In [2] Nizami et al, computed Khavanov Homology
of Braid Links and in [3] gave recursive form of Kauffman Bracket.

This paper is organized as follows: In Section 2 we shall give the basic ideas
about knots, braids, and the Kauffman bracket. In Section 3 we shall present
the main results.
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2. Preliminary Notions

2.1. Links. A link is a disjoint union of circles embedded in R?. A one-
component link is called a knot. Links are usually studied via projecting them
on a plan; a projection with extra information of overcrossing and undercrossing
is called the link diagram.

oy (D

undercrossing
Trefoil knot Hopf link

Two links are isotopic iff one of them can be transformed to the other by a
diffeomorphism of the ambient space onto itself. A fundamental result by Rei-
demeister [4] about the isotopic link diagrams is: Two unoriented links L1 and
Lo are equivalent if and only if a diagram of L1 can be transformed into a dia-
gram of Lo by a finite sequence of ambient isotopies of the plane and the local
(Reidemeister) moves of the following three types:

=20 g X
K= K

The set of all links that are equivalent to a link L is called a class of L. By a
link L we shall always mean the class of L.

The main question of knot theory is which two links are equivalent and which
are not? To address this question one needs a knot invariant, a function that
gives one value on all links that belong to a single class and gives different values

(but not always) on knots that belong to different classes. The present work is
basically concerned with this question.

2.2. Braids. Braids were first studied by Emil Artin in 1925 [5, 6], which play
an important role in knot theory, see [7, 8] for detail.

An n-strand braid is a set of n non intersecting smooth paths connecting n points
on a horizontal plane to n points exactly below them on another horizontal plane
in an arbitrary order. The smooth paths are called strands of the braid.

A 2-strand braid
The product ab of two n-strand braids is defined by putting b above a and gluing
their end points.
A braid with only one crossing is called elementary braid. The ith elementary
braid z; on n strands is:
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A useful property of elementary braids is that every braid can be written as a

product of elementary braids. For instance, the above 2-strand braid is x; 3=

(2 ) ().
The closure of a braid b is the link b obtained by connecting the lower ends of b
with the corresponding upper ends.

An important result by Alexander [9] connecting knots and braids is: Fach link
can be represented as the closure of a braid.

Remark 2.1. In the last section we shall present all the links as closures of
products of elementary braids.

2.3. The Kauffman Bracket. The Kauffman bracket was introduced by
Kauffman in [10].

Before the definition it is better to understand the two types of splitting of a
crossing, the A-type and the B-type splittings:

XXX

A- and B-type splittings

In the following, the symbols O and | | represent respectively the unknot and
the disconnected sum.

Definition 2.1. The Kauffman bracket is the function (-) : Links — Z[a,a™!]
defined by the axioms:

(L) = a(La)+a ' (Lp)
(LuOy = (—a®—a2)(L)
Oy =1

Here L, L4, and Lp are three links which are isotopic everywhere except at one
crossing where the look as in the figure:

La L

Proposition 2.2. The Kauffman polynomial is invariant under second and third
Reidemeister moves but not under the first Reidemeister move.
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3. Main Results

In this section we shall give the Kauffman bracket of the links 5? and 2822, and

—

show that ia\:?x%”} = (zb)(z]).

The links 27 fall into two categories, the two-component links when n is even
and the one-component links (means knots) when n is odd. When n is even, we
have:

Proposition 3.1. The Kauffman bracket of the link a/:’l\l, when n > 2 is even, is
< 5717 S= @32 4 @36 _ 3n—10 4 3n-14 __ -nd6 _ [ —n=2 (1)

Proof. We prove it by induction on n.
When n = 2,

(@3) = <@> =a<@>+al<@>
- a[a(@) + a1<@>} tal [a(@) + a1<@>]

= afa(—a®—a ) +a ' D)) +a a(l) +aH(—a® —a™?)]
= —a*—a* (2)

Similarly, we have

(xt) = —a'%+a®—a*—a"
= —a*W72 1 36 1 q72(32) (3)
and
<;3§> = —a®+a?—a®+at—a"—a"?
—a?(72 4 3076 4 =2y (4)
We now assume the result holds for n = k, that is
@% — _q3h—2  g3k—6 _ 3k—10 | 3k—14 _  6-k k-2 (5)

Now for n = k + 1, we, following Equations 3.3 and 3.4, write

— —~

<xllc+2> _ —a3(k+2)_2—|—a3(k+2)_6—|—a_2<x’f>

= _g3(2)=2 4 3(k+2)—6 4 2 [ _ gPk—2 4 3k—6 _ ;3k—10

I a—k—Q}

= _gBA2)=2 | (3(k+2)=6 _ (3k—4 | 3k—8 _ 3k—12 | 3k—16
Ak ka

= 3R =2 | (3(R42) =6 _ (3(k+2)-10 | 3(k+2)-14 _ 3(k+2)-18

+a3kt2)-22 _ g8 (kH2) _ —(kt2) -2
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This completes the proof. (I
Proposition 3.2. The Kauffman bracket of the knots ;;?, when n is odd, is

< 5? >= a3n72 _ a3n76 + a3n710 _ a3n714 4= afnJrG o a7n72. (6)
Proof. Similar to the proof of Proposition 3.1 O

Proposition 3.3. The Kauffman bracket of the braid link x2%, when b is even,
18

b—1
ZZ(_ z+1 6b—41i +Z l+1 2b 4i (b—2)a2b
i=1

+a472b+a72b 4.

Proof. We prove it by induction on b.
When b = 2, we have

(3a}) = @ = a@ + a-1@>

- a[a @> +at( q = [a(@) + a1<@>]

= a? [a(@> + a—l<@>] + a<@> + a‘l<@> + a(@> + a_1<@> ta? [a<@> +
a1<@>}

o <@>} ta [a<@>+a—l <@>} tat [a<@>+a—l <@>} tat [a<@>+a—l <@>} +

a=%af by . al@ﬂ

= a¥(—a? - a~?)? +a*(—a® — 2)+a2(—a2—a*2)+(—a2— 2)2 4 g2(—q? —
a2)+1+1+a’2(—a2—a2)+a2( a?—a?)+1+1+a2(—-a®>—-a2)+
(—a? —a2)? +a2(—a® —a~?) + a~2(—a? — a~2) + a~4(—a® — a2)?

a

=a®+24+a8=[a®] + [1] + [0] + [1 +a™¥]

_ 23:1 Z( 1)1—1—1 6(2)—41 + Z?:l( 1)1—1—1(2 _ i)a2(2)—4i _ (2 _ 2)a2(2) +a4—2(2) +
q—2(2)—4

as required.

Similarly, we get

(xtzd) = a®® —2a'° 4+ 30" —2a® +3a* — 24+ 2071 + a2 (7)
= [a20 —2a' + 3a12] + [3@4 -2+ a_4] —2a® + [a_4 + a_12]
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3 4
Zi(_l)i+1a24f4i + Z(_l)i+1(4 _§)a®4 248
i=1

i=1
tat 4 g2
In order to manage the proof, we reorganize (3.7):
(zfz3) = [a4 +2a7 + a_12] — [a*] + [a®] =2+ [- 2a'0 + 3a12]
—|—[ —2a® + 3a4]
— a74 [<$%$%>] _ Z i(_1)1+1a874z + Z i(_1)1+1a2474z —9
i=1 i=1
3
+3 i(=1)F e — 20° + 3a” (8)
i=2
Similarly,
(2828) = a®® —2a®® 4 3a** — 4a*° + 5a'% — 4a'? + 5a® — 40" + 3 — 2a7*
19078 4 g 16
3 3
- a $1$2 Z i 1+1a20—4z + Z i(_1)1+1a36—41 _ 2&4
i=1 i=1
4 Zi(—l)”la‘%‘*‘” — 4a'? + 58 (9)

Deducting from Equations 3.9 and 3.10, we can write

— 3 b—3
(@bad) = a [t %ab )] - Zi(_l)i+1a6b—4i—16 3 (1)L Ot
=1 i=1
b—1
2b 8 + Z H—l 6b—4i (b _ 2)a2b 4 (b o 1)a2b—4'
i=b—

We now assume the result holds for b = &, that is

k—1
<@2¢> _ Zi( 1)it1  Bh—4i +Z 1+ (k — )24 — (k — 2)a?*
i=1
+at2k 4 g2k, (10)
Now for b = k + 2, we have
. k—1 k—1
@2y = o x1x2 Z i(—1)i+1 g0k —4i—1 4 Z i(—1)it1 g0k —ti+12
i=1 i=1

k+1
_9g2k—4 4 Zi(_l)i+1a6k74i+12 — ka?kt 4 (k + 1)a2k
i=k
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E

-1

(]

k
i(_l)i+1a6k—4i—4 + Z(_l)v—i-l(k _ i)a2k—4i—4
1 =1
I e

-
Il

|
—~

k—1 k—1
_ i(_l)i+1a6k—4i—4 + Z i(_l)i+1a6k74i+12 _ 2a2k74
1=1 i=1
k+1
+ i(_l)i+1a6k74i+12 — ka2Ft4 4 (k + 1)a2k
i=k
k+1 k
= i(_l)i+1a6k—4i+12 + Z (_1)i+1(k _ i)a2k—4i—4
i=1 i=—1
a2k 4 g2k _ 2k
k+1 k+2
= Zi(—l)”laﬁ’““‘”” + Z(_l)l+1(k+ 9 _ j)a2hti+t
i=1 i=1
T L
and the induction is completed. (Il

Proposition 3.4. The Kauffman bracket of the braid link x/l{;g, when b is odd,

is
. b—1 b
(xbab) = i(—1)F1gS—4 4 Z(—l)i(b —i)a® Y 4 (b—2)a?
i=1 i=1
Lghm2b 4 204,
Proof. Similar to the proof of proposition 3.3. O

—

Proposition 3.5. The Kauffman bracket of 2%x5*, when b > m > 2, is

m—1
<$l1)$5n> — Z (_1)b+m+1—i(i)a3(b+m)—4i + (—1)b+1(m _ 1)a3b—m
=1

+m Z (_1)b+1—ia3b—m—4i + (_1)m+1(m_ 1)a—b+3m

+ (_1)m+17i(m o i)a7b+3m74i + 2a7b7m+4 + a7b7m74.

Proof. We first verify the result for arbitrary b and m = 2:

Resolving all 2372 crossings as were resolved for (z2z2) in Proposition 3.3, we
get

(2323) = —a'+a" —a*+2at+a?
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Similarly, we get

(xtx?) = a—a'®+2d° —a®+2a7%+a 1

= —a*(@dzd) +a+a*+2a 2 +a 0 +a® (11)
(b23) = —a'"+a"®—2a°+2a° —a+2a"3 +a M

= —d*@atd)+adP+a+2a+a M +aT (12)
(x$22) = a®® —a'®+2a"% —2a® +2a* — 1+ 207 + a2

= —a®@b2d) +a* +14+2a +a P +a (13)

It follows from (3.11), (3.12), and (3.13) that

(@2d) = —a3(at122) +a P10 4 g b6 ogTh2 | b2 4 b6,
Now suppose the result is true for b = ¢ and m = 2, that is

—

(@had) = (1)t (L1)ttlg3t2 4o Z(_l)t+17ia3t7274i
_a7t+6 + 2a7t+2 + a7t76. (14)
For b=t + 1, we have

<£C§+1(E%> _ _a3<xfix%> + a—t+9 + a—t+5 4 2a—t+1 +a—t—3 + a—t—?
_ _GB[(_1)7t+2a3t+2_’_(_1)t+1a3t72+2Z(_1)t+17ia3t7274i

_a—t+6+2a—t+2+a—t—6:| gt gt 4gg il
gt g gt T
_ (_1)t+3a3t+5+(_1)t+2a3t+1+2Z(_1)t+27ia3t+174i

+a—t+9 _ 2a—t+5 _ a—t—3 + a—t+9 + a—t+5 + 2a—t+1
+a—t—3 +a—t—7
_ (_1)t+3a3t+5 + (_1)t+2a3t+1

t—3
+[2 Z(_l)t+2—ia3t+1—4i 1927 tH9
i=1

_a S gt gt
_ (_1)(t+1)+2a3(t+1)+2+(_1)(t+1)+1a3(t+1)—2

(t+1)-3
) Z (t+1 )+1—i 3(t+1) 2—4i

_a—(t+1)+6 + 94~ (t+1)+2 + o~ (t+1)—6
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Similarly, we get

2
<xll)xg> _ Z( 1)b+4 z() 3b+9— 4z+(_1)b+12a3b73
i=1
+3 i(_l)b+17ia3b7374i + 2a7b+9
e I
and
—_— 3
<$l{$%> — Z( 1)b+5 1() 3b+12— 41+(_1)b+13a3b—4

i=1

b+1 A 3b 4—41 3a—b+12

—i)a ~b+12-4i 4 9,=b |, —b-8

i

Now with the assumption that the result is true for an arbitrary m, we have

< /m\+1>

1T
-3
— )
_ —(L3<{Eb$m>+( 1)b 3b—(m+1) +4 b+1 z 3b (m+1)—41
142
= 1

+2a—b—(m+1)+4+a—b—(m+l)+a—b (m+1)—4

m—1
_ ( 1)b+m+2 1() 3(b+m)+3— 4z+(_1)b+2(m_l)a3b—m+3
=1
b—m—1
+m Z b+2—1 3b—m,+3—41+(_1)m+2(m_ ].)(L_b+3m+3
i=1
m—2
+ Z m+2 ’L _ 7;)a7b4r3m+374i _ 2a7b7m+7 _ afbfmfl
=1
b—3
+(_1)ba3b—(m+1)+4+2(_ b+1 1() 3b—(m+1)—4i
=1

_|_2a7b7(m+1)+4 _’_afbf(erl) _|_a7b7(m+1)74

+
_ Z b+(m+1)+1 l() 3(b+(m+1))—
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b—m—1
+m Z (—1)bH2igbmm3—di 4 (_ymH2(py 1) bt3m3
=1

i=
m—2
4 (_1)m+27i(m _ i)a7b+3m+374i _ 2a7b7m+7

=1

b—3

+ ( 1)b+1 1() 3b— (m+1)74i+zafbf(m+1)+4_|_a7b7(m+1)f4
i=1
(m+1)—1
_ Z b+(m+1)+1 1() 3(b+(m+1))—4

i=1
[ b+1 3b7m71+(_1)bma3b7m75+(_1)b71ma3b7m79

+
IS ( 1)m+3 fb+3m+7 S (_1)m+2(m _ 1)a7b+3m+3
+ [(_1)m+1(m _ l)a—b+3m—1 + (_1)m(m _ 1)a—b+3m—5

H(=1)" N m = 3)a” I 4 (1) 12g 70T +}

_2a7b7m+7

+ |:<(_1)ba3b—m—5 + (_1)b—1a3b—m—9 4ot (_1)m+3a—b+3m+7)

+((_1)m+2afb+3m+3 §(m1)mHlgTb Mol (L 1)mgmbt3m=5

et (_1)4a—b—m+11>:| 4 2g b (mAD)+4 | —b—(m+1)—4

Now collecting terms of same exponents, we get

(m+1)—1
_ Z ( )b+(m+1)+1 1() 3(b+(m+1))— 4z+(_1)b+1ma3b—m—1

i=1

[ + (=1)P(m + 1)a® ™5 4 (=1)P (m + 1) 0

co (=)™ (m 4 1)a oI _|_] + (=1)™F2 () q b +3m+3

+ o+ o+

|:(_1)m+1(m)a—b+3m—l + (_l)m(m _ 1)a—b+3m—5

4+ 4 (_1)43a’7b7m+11 _ 2a*b’m+7}

+2a—b—(m+1)+4 + a—b—(m+1)—4

which finally, in terms of summation form, is the required result.
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Theorem 3.6. For any b,m > 2,

(@0 = (28) (2T,

Proof. Depending on b and m, the proof is divided into three cases: when b, m
are even and equal, when b, m are odd and equal, and when b, m are distinct.

Case I. (When b and m are even and equal.)
In this case, letting m = b, we show that (z%z5) = <xl{><x/§\”) So, we proceed as
follows:

(@33) = d*+2+a* = (—a' —a ) (~a' —a) = @) (a}).

Also, we have

(xfrd) = a®® —2a"% +3a"? —2a® +3a* —2+ 227 +a 12
(—a'® +a® — a2 — a=%)(—a'® + ¢ — a® — a9
= (1)(a1)
and
<x/(fx\g> = a*® —2a%® +30* — 40® + 5a"% — 40" 4 54° — 4a*
+3—-2a"*+2a 84 a71°

= (a4 a2 tat—a®—a ) (—a®+al2—a

+a* —a® —a8) = (28)(29).

Now we assume that the result is true for b = k, that is

8

(wfal) = () (a]).
Since (z7) = —aB(M=2 4 ¢3(M=6 4 4=2((z"~2))  we have
<xllc+2><xllc+2> _ [_ a3k+4 + a3k + a72(<x’f))] [_ a3k+4 4 a3k

+a=2((2h))]

_ 74 [< >] + a6k+8 %2 6k+4 + aﬁk o 2a3k+2 <£Elf>

k)
_ [ ]2 4 gfk+8 _9gbktd 4 6k | 9 6k _ o 6k—4
+2a6k 8 2a6k 12 e — 2a2k+12 + 2a2k+8 + 2a2k
_2a6k74 + 20,61{:78 _ 2a6k712 4 2a6k716 . + 2a2k+8

—%2a 2k+4 —9%a 2k—4
_ a74 [< >] + a6k+8 2 6k+4 + 3a6k _ 4a6k74 + 40,61{:78

_4a6k 12 _|_4a6k 16 _ . +4a2k+8 _ 2a2k+4 + 2a2k
—2q¢%k4, (15)
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Also
. o k—1 , 4
@ARER) =t [ - Y (-1t
i=1
k—1
i Z i(_l)i+1a6k—4i+12 _ 9q2k—4
i=1

k+1
+ 3 i(—1) a2 g (ko 1)a%

_ a’4[ x’f)]2 — Bk8 4 9gBk—12 _ 3,6k—16 4 4 6k—20
k— 3)(_1)k—2a2k+8 _ (k _ 2)(_1)k—1a2k+4
(_1)ka2k 4 qOkt8 _ 9gbktd | 3,6k _ 4, 0k—4

+5a6k78 _ 6(1,6]6712 4 7a6k716 _ 8(1,6]6720 W

+(k —3)(— 1)k—2a2k+24 + (k — 2)(_1)k—1a2k+20
+(k—1)(— 1)ka2k+16 —9g2k4 4 k(_l)k+1a2k+12
+(k+1)(— 1)k+2a2k+8 — ka® ™ 4+ (k + 1)a®

- [< & ]2 1 gBFH8 _ ggbk+d | g 6k 4 6k—4 | 4 6k—8
—4gBF12 4 g0k 16____+4a2k+8_2a2k+4+2a2k
—2a%F 4, (16)

The result now follows from (3.15) and (3.16).
Case II. (When b and m are odd and equal.) Similar to Case I.

Case IIL. (When b and m are distinct.)
In order to prove this part let us agree on the terminology:

T, = (—1)m+"a3m7(4"72), n=1,2....,m—1,%,=—a "2

Y, = (—1)b+la3b7(4172),l =1,2,....,b— 1,75, = —q 02
i = 1,2,....m,j=1,2,...,0;b>2

(@) (@)

m
- ny >oommt Y wE+Tan
itg= itj=mt1itm itj=mt 2,iEm
+ Z TiY; +TmYg + -+ Z T + TmYp—m-1

i+j=m+3,i£m i+j=b,i#m
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e D DR | (R WA MRS )
i+j=b+1,i#1l,m i+j=b+2,i#2,m
(Y T ATl TR+

i+j=b+3,i#£3,m

-|-( Z TiYj; + TmYp—a + fm—4?b)
i+j=b+m—3,i#m—-3,m

(T ATt + TnBls + T ss) + (Flio—s + oW )|
+(TmTpr + Tn1T ) + T
Since this agrees with the result of Proposition 3.5, the proof is finished. ]
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