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Abstract
Data-driven turbulence modeling is experiencing a surge in interest following algorithmic and
hardware developments in the data sciences. We discuss an approach using the differentiable
physics paradigm that combines known physics with machine learning to develop closure models
for Burgers’ turbulence. We consider the one-dimensional Burgers system as a prototypical test
problem for modeling the unresolved terms in advection-dominated turbulence problems. We
train a series of models that incorporate varying degrees of physical assumptions on an a posteriori
loss function to test the efficacy of models across a range of system parameters, including viscosity,
time, and grid resolution. We find that constraining models with inductive biases in the form of
partial differential equations that contain known physics or existing closure approaches produces
highly data-efficient, accurate, and generalizable models, outperforming state-of-the-art baselines.
Addition of structure in the form of physics information also brings a level of interpretability to the
models, potentially offering a stepping stone to the future of closure modeling.

1. Introduction

Simulation of fluid flow for practical applications is characterized by high Reynolds number turbulent flows
over complex geometries [1, 2]. The temporal and spatial scales of motion in such flows span several orders
of magnitude [3]. The cost of direct numerical simulations (DNSs), which attempt to capture all energy
containing lengthscales in the flow, grows superlinearly with the Reynolds number of the flow [4–6], limiting
the scope of fully resolving simulations to canonical geometries at medium Reynolds numbers [3].

Turbulence closure models have been developed for cases where resolving and evolving the entirety of
velocity and pressure spectra is not possible. Techniques such as large Eddy simulations (LES) and Reynolds
averaged Navier–Stokes (RANS) allow for cheaper calculations of high Reynolds number flows by resolving
only a portion of the spectrum and ‘modeling’ the rest [7]. Put simply, the goal of turbulence modeling is to
find a closed system that can describe the time-evolution of observables, such as the resolved velocity
spectrum, via a ‘closure’ map that allows one to untangle the dependence of said observables on unresolved
variables [8–10].

The problem of turbulence closure modeling has been extensively studied for over a century, dating back
to Boussinesq’s Eddy viscosity hypothesis in 1877 [11]. More recently, machine learning (ML) based methods
have utilized for modeling fluid flow problems [12–20]. The success of ML is built upon the ability of deep
neural networks to approximate functions in high-dimensional spaces with a number of parameters that
does not scale exponentially with the dimension of the problem space [21]. As the underlying problem in
closure modeling is of finding the functional mapping between high-dimensional vector spaces, deep neural
networks can be utilized in a supervised learning framework.

However, the performance of ML models to turbulence modeling has largely been unsatisfactory. A
probable reason is that while neural networks are touted to break the curse of dimensionality, the cost of
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Figure 1. Data-driven models can incorporate different inductive biases, from locality in convolutional networks, symmetries in
equivariant networks, to differential equation forms in universal differential equations. Models on the right are constrained by
known physics, such as a dynamical system or advective and dissipative terms, leading to interpretable models where the learning
problem has been restricted to unknown or residual physics.

attaining an accurate model may be larger. The cost of generating high-fidelity data for the model does scale
with dimensionality [7], and even if data is readily available, ML models need to be trained on large number
of samples to accurately approximate even simple functions. In other words, an optimal closure model may
be present in the space of functions that a neural network architecture can express, but there is no clear path
towards realizing it.

Some success has been seen, however, by augmenting neural network models with physical priors. For
example, Ling et al [22, 23]. improved upon conventional ML models by embedding Galilean invariance in
the prediction of Reynolds stress tensor for RANS simulations. Shankar et al [24] enhanced the output of a
convolutional neural network model on homogeneous isotropic turbulence by imposing the divergence-free
constraint on the model output. Both approaches can be understood as attempts to narrow down the space
of functions that a neural network architecture can represent.

Rackauckas et al [25]. further develops inductive biases in data-driven learning by directly embedding
trainable parameters in a model’s governing differential equations. Training such parameters against a loss
function that depends on the solution to the governing system requires passing gradient information
through a differential equation solve. Therefore a solver that is compatible with automatic-differentiation
(AD) toolchains in needed. Directly backpropagating gradients is computationally expensive for large solves,
so the adjoint optimization method [26–29] is utilized. Computational fluid dynamics (CFD) codes such as
SU2 have utilized the adjoint method for sensitivity analysis and shape optimization [30].

This idea is formalized into the notion of Differentiable Physics [31], defined as the set of scientific
avenues emerging from the marriage of state-of-the-art partial differential equation (PDE) solvers with
differentiable programming. The promise of differentiable physics is that ML models can be developed to
learn specific unknown or residual physics, leading to more interpretable models than classical ML
approaches. We envision the landscape of data-driven models on an axis of increasing inductive biases in
figure 1.

In this work, we comprehensively test the ability of ML techniques to develop turbulence closure models
that are resolution independent, interpretable in the language of flow physics, and generalizable across a
range of Reynolds numbers. We consider the one-dimensional (1D) Burgers system as the ideal test problem
for modeling the energy spectra observed in advection-dominated turbulence problems, and narrow our
focus to the task of subgrid-stress modeling. We test a range of differentiable physics models, that vary from a
black-box approach to training coefficients in state-of-the-art turbulence models. Experiments are
conducted over a range of Reynolds numbers and grid resolutions to assess the generalizability of the model,
and over multiple resolution-independent architectures. We find that physics-based inductive biases are
critical to the development of data-efficient and accurate ML closures, and that these ML closures can
outperform state-of-the-art closure baselines in a wide range of flows.

1.1. Our contributions
• We present a novel approach to learning data-driven closures by pairing non-local neural operators, which
are grid independent, and a differentiable PDE solver, which allows for a-posteriori training on the velocity
field directly. This is unique to existing approaches that either segregate the solver from the training, learning
some intermediate quantity such as the Reynolds stress, or that use grid dependent neural architectures such
as convolutional nets to develop a non-local closure.
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• We design, train, and assess a large suite of PDE-described closure models that allow for significant inter-
pretability of the data-driven models and investigation into the effect of traditional fluids approximations,
such as the Boussinesq hypothesis, on the closure learning problem.

• We present resolution-invariant data-driven closure models, which to our knowledge has not been done
in the literature. We rigorously test our models against existing baselines and show that this method can
consistently outperform baselines on a variety of grids without retraining.

• Much of the literature onML turbulencemodels focus on developing local closure corrections because these
models are naively scalable and generalizable to larger meshes. We choose to develop non-local closures that
require the full state of the system as input and quantitatively show that this choice results in lower test error
compared to a local model with similar architecture on the Burgers system.

• We propose a modification to the classic Smagorinsky closure model that uses a neural network to compute
a spatially and temporally evolving Smagorinsky constant. We show that it systematically reduces error over
the baseline Smagorinsky model, as well as existing non-local dynamic Smagorinsky models, and that the
model can maintain the improvement across a variety of grid resolutions.

2. Background

2.1. Burgers turbulence
Turbulent flows are characterized by a competition between viscous forces, which damp out velocity
fluctuations by converting kinetic energy into heat, and inertial forces, such as gravitation or pressure
gradients. These tend to generate and preserve velocity and pressure fluctuations [32]. In low Reynolds
number flows, viscous forces dominate and the flow is near perfectly damped, meaning that any arbitrary
fluctuation in the velocity field would be smoothed out in no time [33]. The velocity fields adjusts almost
instantaneously to any changes in the pressure gradient that drives the flow. At high Reynolds numbers,
however, viscous forces may not be strong enough to dampen out velocity fluctuations, and even tiny
disturbances may cause the entire flow to destabilize into turbulence [34]. Energy dissipation primarily
happens at the smaller scales as the rate of dissipation scales with the wavenumber squared.

We restrict the scope of this work to the task of subgrid stress modeling in advection-dominated
turbulence problems. The unforced, viscous Burgers problem, equation (1), an advection-diffusion type
problem [35] that exhibits an energy cascade similar to the Navier–Stokes system, is the perfect test bench.
The Burgers system is governed by

∂tu+ u∂xu= ν∂xxu, (1)

where u(x, t), the solution to the Burgers system, represents a time-varying velocity field and ν is the
kinematic viscosity. The 1D viscous Burgers system is a canonical PDE that is widely used as a simplified case
study for subgrid model development and analysis [35–38]. The nonlinear advective term coupled with
viscous dissipation leads to similar multiscale phenomena observed in more complex flow dynamics.
Equation (1) is deterministic which allows us to directly compare trajectories rather than statistical averages,
speeding up model training. We insulate the problem from arbitrary effects of boundary conditions by
considering equation (1) on the entire real line, R, which is approximated by periodic boundary conditions
on an interval. The Burgers equation can also be written in its conservative form

∂tu+
1

2
∂xu

2 = ν∂xxu, (2)

which is typically more amenable to numerical calculation.

2.2. Large eddy simulations
As high Reynolds number flows have a wide energy spectrum, DNS of such flows is often computationally
intractable, and a turbulence model is needed. LES resolves the flow variables starting from the intertial
range up to a cut-off length,∆, that depends upon the computation grid [39, 40]. Critically, an LES
calculation ignores the smallest lengthscales in the flow, which are most computationally expensive to
resolve. Filtering is accomplished by

u(x, t) = u(x, t)+ u ′(x, t)

u(x, t) = G∆ ⋆ u(x, t),
(3)

where G∆ is a low-pass filtering operator. Quantities of interest are interpolated onto a computational grid
that can resolve flow features only up to lengthscale∆. The grid has much lower resolution than what is
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needed to fully resolve the flow, and evolving flow variables on this grid lead to saving computational
resources.

Filtering the Burgers equation in this manner leads to

∂tu+
1

2
∂xu

2 = ν∂xxu−
1

2
∂xu ′2, (4)

The LES equations for the Burgers system. Evolving u per equation (4) is not possible as one does not
have access to the subgrid stress term, η := 1

2u
′u ′, and ignoring it leads to an incorrect flow field and

numerical instabilities. For the Navier–Stokes equations, ignoring subgrid stresses leads to numerical
instabilities spurious high-frequency modes [41]. The closure problem of LES is of modeling the effect of η
on the dynamics of u. This is called subgrid stress modeling. As one does not have access to the unresolved
quantities, subgrid stress models are formulated in terms of the resolved quantities.

Kolmogorov hypothesized that the finer scales are largely similar [4], and are primarily responsible for
energy dissipation. One approach to closure modeling is to take out small amounts of energy from the
high-frequency modes in u by applying a mild low-pass filter at every timestep. Mullen and Fisher [41]. has
applied this methodology to the Navier–Stokes equations in the CFD code NEK5000 [42], and Layton et al
[43]. has proven existence of unique strong solutions to the resulting continuum model for the same.

Another approach is to directly model the commutative error term, η in terms of u with a map η(u), and
evolve the flow variables as per equation (4). Hypothesizing a functional form for additive closures of this
sort is highly problem dependent. A common hypothesis is the eddy viscosity family of models [44, 45] that
introduce an ‘effective’ or ‘eddy’ viscosity, ν t , to the momentum equation for enhancing dissipation. This
leads to a functional form of η = ∂xνt∂xu, where ν t could be a fixed scalar based on known flow physics and
computational grid, or be defined by a transport equation. In section 4 we consider several such models and
apply them to the Burgers problem.

3. Method

3.1. Numerical methods
We compute solutions to the Burgers equation via a pseudospectral method [46]. The periodic 1D domain is
discretized with a regular grid of N grid points. The periodic nature of the solutions allow for expansion in a
Fourier basis, as per

u(x, t) =

N/2∑
k=−N/2

ûk(t)e
ikx. (5)

The linear term of the equation can be computed pointwise in Fourier space

∂xxû(k, t) =−k2û(k, t), (6)

however the nonlinear term introduces interactions between all the wavemodes and thus requires more care
for efficient computation. Therefore, it is more suitable to compute the quadratic term u2 pointwise in real
space at the N collocation points, then compute the spatial derivative in Fourier space.

The spatial discretization allows for a method of lines approach to time evolution. The discrete Fourier
modes from the spectral basis expansion produces a system of N ordinary differential equations (ODEs) that
can be solved with standard ODE integration schemes. We choose the Tsitouras adaptive 5th order scheme
[47].

3.2. Problem statement
Accurate simulation of the governing Burgers equation imposes certain restrictions on the temporal and
spatial discretization. As we use an adaptive time-stepping scheme with fixed error tolerance, we focus on
errors arising from the spatial discretization. The spatial grid should be sufficiently dense to resolve the
smallest dissipative length scales in the flow, typically much smaller than the characteristic length scales of
the flow.

We wish to approximate solutions to the Burgers equation on a considerably coarser grid ofM points, by
exploring a family of data-driven models enabled by algorithmic differentiation of the temporal and spatial
discretization schemes. Each of the models is described by a PDE or set of PDEs, where certain terms in the
equations are computed by deep neural networks. Thus, we enable significant interpretability of the models
as network outputs can be readily identified as components of traditional closure modeling approaches.

4



Mach. Learn.: Sci. Technol. 4 (2023) 015017 V Shankar et al

3.3. Models
In this section, we provide a description of the various models that we use in our experiments. First, we make
clear our notational conventions.

u(x, t) is the spatiotemporal velocity field we are modeling. u(x, t) is the filtered velocity field on the LES
grid. We drop the parentheses for brevity. η represents an unknown closure variable we are modeling. The
exact description of this variable differs across models. In some models, an additional transport equation is
introduced to govern the dynamics of the closure variable. The • and the∇ symbols correspond to the time
derivative and spatial derivative of the field respectively. A subscript 0 represents the initial condition of the
field.

Neural networks are indicated with subscript θ. These functions are parameterized by a large number of
weights with functional form described in the subsequent section. Network inputs and outputs are written
as:

c,d= fθ(a,b;e), (7)

where a and b are explicit inputs to the network, and c and d are outputs of the network with implicit
dependence on variable e. For example, η = fθ(u;x) represents a network that takes the spatially varying
velocity field as input and produces a spatially varying η field as output.

The ground truth equation, or nonemodel, is given by:

u̇= ν∇2u− u∇u. (8)

Since there is no closure term or trainable networks, we use this as a baseline comparison for our learned
models.

We also compare our models to a couple baseline closure models [48], the constant Smagorinsky model
(further denoted as smag-const), and the dynamic Smagorinsky model (further denoted as smag-dyn). The
constant Smagorinsky model [49] is given by:

u̇= ν∇2u− u∇u+∇(νt∇u) (9)

νt = (Csδx)
2|∇u|, (10)

where ν t is the eddy viscosity, Cs is the Smagorinsky constant, and δx is the grid spacing. While there are no
trainable networks in this model, Cs can be optimized via hand tuning or gradient descent.

The dynamic Smagorinsky model [50, 51] is similar to the constant model, however the term (Csδx)2 is
determined from the state of the system. Studies have shown that Cs is not constant and may be variable with
different flow characteristics [52]. The model uses a second test filter, denoted by∼ with filter scale δ̃x. We
fix the filter ratio κ= δ̃x/δx= 2. Specifically,

(Csδx)
2 =

⟨HM⟩
⟨M2⟩

, (11)

H=∇(ũ
2
/2)−∇(ũ2/2), (12)

M= κ2∇(|∇ũ|∇ũ)−∇( ˜|∇u|∇u), (13)

where ⟨⟩ denotes averaging over the spatial domain.
The rest of the models in this section contain trainable networks in functional forms that rely on varying

degrees of assumptions typically used in closure analysis. At one extreme, we have model resnet, which uses
the classical ResNet architecture [53] to predict the coarse-grained flow field at the next time step:

(ut+∆t,ηt+∆t) = (ut,ηt)+ fθ(ut,ηt,ν;x)∆t, (14)

η0 = gθ(u0;x), (15)

where∆t is a coarse time step. This model makes no assumptions about the physical description of the
system, including the fact that it may be described as a PDE. The closure variable η is used only to lift the
model into a higher-dimensional space governed by the neural network. The network may choose to learn
ηt = 0, or it may leverage η in the computation of ut. Projecting or transforming an input into a
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higher-dimensional subspace is a common practice in ML, where a large latent space of hidden channels
eases learning. This is a core component of augmented neural ODEs [54], which have shown to generalize
better than standard neural ODEs.

anode, an augmented neural ODE, is a small modification to resnet that assumes an ODE inductive bias.
The model is given by:

u̇, η̇ = fθ(u,η,ν;x) (16)

η0 = gθ(u0;x), (17)

where f θ explicitly describes the RHS of an ODE governing the discretized flow field. The dynamics of u and
η are determined purely by the network f θ with no additional terms. This involves only a small change in the
code of resnet, changing the solver from explicit Euler to an adaptive scheme.

Filtering the governing equations as in equation (4) introduces an additional closure term to the
equations.Model direct models the entirety of this term directly as an additive correction:

u̇= ν∇2u− u∇u+ η (18)

η = fθ(∇u,ν;x). (19)

Model transport-I leverages the fact that the closure term can be written as the divergence of an unknown
subgrid stress. Here, η represents this stress analogue in 1D, which is additionally transported with another
dynamical equation:

u̇= ν∇2u− u∇u+∇η (20)

η̇ = α · ν∇2η−β · u∇η (21)

α,β = fθ(∇u,∇η,ν;x) (22)

η0 = gθ(u0,ν;x). (23)

The coefficients of the dissipative and convective terms in the η transport equation are given by neural
networks.

Model transport-II uses the Boussinesq hypothesis that the subgrid stress has a linear relationship with
the strain in the flow. η represents an eddy viscosity analogue:

u̇= ν∇2u− u∇u+∇(η∇u) (24)

η̇ = α · ν∇2η−β · u∇η (25)

α,β = fθ(∇u,∇η,ν,δx;x) (26)

η0 = gθ(u0,ν;x). (27)

Model transport-I-p is nearly identical to transport-I, however the η transport equation has an additional
production term γ:

u̇= ν∇2u− u∇u+∇η (28)

η̇ = α · ν∇2η−β · u∇η+ γ (29)

α,β,γ = fθ(∇u,∇η,ν;x) (30)

η0 = gθ(u0,ν;x). (31)
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Figure 2. An example schematic of the FNO neural network architecture for the function f θ in smag-ml. At each time step, the
network takes as input∇u, ν, and δx, computing the η field that corresponds to a spatially varying subgrid term. Within the

network, there are two FNO layers that include a local linear bias from matrix B and a transformation of the Fourier modes ĥk
with matrixWk. These are summed and passed through a non-linearity to the next layer.

Model transport-II-p is equivalent to transport-II except for the additional production term:

u̇= ν∇2u− u∇u+∇(η∇u) (32)

η̇ = α · ν∇2η−β · u∇η+ γ (33)

α,β,γ = fθ(∇u,∇η,ν;x) (34)

η0 = gθ(u0,ν;x). (35)

The last model, smag-ml, attempts to improve on the standard constant Smagorinsky model by learning a
spatially varying Smagorinsky constant, computed via neural network:

u̇= ν∇2u− u∇u+∇(νt∇u) (36)

νt = (ηδx)2|∇u| (37)

η = fθ(∇u,ν,δx;x). (38)

All of the models used in our analysis are tabulated in table 5 of the appendix.

3.4. Neural network architecture
To leverage our choice of pseudospectral discretization, we use Fourier neural operators (FNOs) as our
network architecture [55]. All functions with subscript θ in the previous section correspond to an FNO
architecture. FNOs combine pointwise in real space and pointwise in Fourier space linear operations with
pointwise nonlinearities in real space to enable learning of a large suite of resolution-invariant function
classes, including linear and nonlinear operators.

Given an input feature hn ∈ RN×cin , where cin is the number of channels or scalar fields, an FNO layer is
defined as:

hn+1 = σ(Bhn +F−1(WkF (hn)k)), (39)

where B ∈ Rcin×cout is a 2-dimensional tensor that is contracted along cin identically pointwise in real space
andW ∈ Rkmax×cin×cout is a three-dimensional tensor that is contracted along cin pointwise in Fourier space for
each wavemode k up to kmax. Therefore, the Fourier transform of the input is truncated at kmax. The output of
these operations are summed and a pointwise nonlinearity σ is applied. The parameters of the layer are given
by the tensorsW and B. Figure 2 illustrates the algorithm for η = fθ(∇u,ν,δx;x) in the smag-mlmodel.

7
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Figure 3. A schematic of the training procedure for learning the parameters in the data-driven models. An initial velocity field is
evolved (offline) according to the governing equations on a DNS-resolving grid and filtered to generate ground truth data. During
the optimization loop, the same field is filtered and evolved with the data-driven model to compute an estimate for the filtered
field. The gradients are backpropagated through the ODE solve and spatial discretization to update the parameters.

3.5. Optimization
Network parameters are optimized with respect to the loss function:

L=
T∑

i=1

M∑
j=1

(umodel(xj, ti)− uDNS(xj, ti))2

M ∗T
(40)

uDNS = G ⋆ uDNS, (41)

where uDNS is the ground truth velocity field resolved on a grid of N points, uDNS is filtered using sharp
low-pass filter G with cutoff k=M/2, xj correspond to theM collocation points on the coarse grid, and ti
correspond to the T timesteps in the discretized solution trajectory.

Optimization is achieved with the gradient-based optimizer Adam, shown to be effective for deep
learning applications [56]. Gradients are computed with the AD platform available in Pytorch via
reverse-mode autodifferentiation, or backpropagation [57]. We show a schematic of the training procedure
in figure 3.

Most of the operations in our solution algorithm consist of basic linear operations and pointwise
nonlinearities, operations that have formed the foundation of classical multi-layer perceptron ML
architectures. Deep learning libraries have readily supported backpropagation through these operations for
many years and thus we do not discuss implementation details further. However, we highlight two slightly
more complex components of the algorithm corresponding to aspects of the spatial and temporal
discretization and discuss their gradient computation.

3.5.1. Gradients of the Fourier transform
In reverse-mode gradient accumulation [58], we wish to compute vector-Jacobian products (VJPs) [59, 60]
of each function f in the algorithm:

VJP= vTf ′(x), (42)

given the cotangent vector v, input x, and Jacobian f ′(x). The VJP can then be passed to the previous
function in the computational graph to compute the next VJP.

We leverage spectral basis expansion to compute spatial derivatives in the flow and inside the FNO layers.
This is implemented with a discrete Fourier transform (DFT) operation. Since the DFT is ultimately a linear
operation

FDFT(x) = Fx, (43)

with DFT matrix F, the Jacobian of the transform is simply the matrix F. To compute the VJP, we can
equivalently perform matrix-vector multiplication with the adjoint operator F∗. Since F∗ = NF−1, we can
compute the VJP as an inverse Fourier transform multiplied by the size of the signal. The benefit of this
approach comes from the ability to implement fast Fourier transform [61] (FFT) algorithms during the
backwards pass as well, instead of constructing the entire DFT matrix explicitly.

8
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3.5.2. Propagating gradients through time integration
Time evolution of the velocity field is accomplished by solving the ODE resulting from spatial discretization
of the field using an arbitrary integration method. A naive implementation of AD would propagate gradients
through each of basic operations in the solver. Depending on the solver tolerance, order, and trajectory
length, this may result in a very large number of operations, and all intermediate steps must be saved in
memory for AD to work. In our experiments, backpropagating through even moderately sized trajectory
lengths, networks, and batch sizes could exceed the 16GBs of memory on our NVIDIA V100 GPU using
naive autograd.

Therefore, a more memory efficient approach is desired. We use the adjoint method in time, which has
been proposed for use in ML applications by Chen et al [26]. The forward ODE system is given by the
evolution of the discrete Fourier modes:

dûk(t)

dt
= f(ûk(t),θ), (44)

where θ represents any learnable parameters in the model. The loss can be written as an integral:

L=

ˆ tT

t0

l(ûk(t))dt. (45)

The adjoint method produces a second ODE system that evolves the adjoint variable λ backwards in time,
given by the equation:

dλ(t)

dt
=−λ(t)T

∂f(ûk(t),θ)

∂ûk
+

∂l(ûk(t))

∂ûk
, (46)

and an integral:

dL

dθ
=−
ˆ t0

tT

λ(t)T
∂f(ûk(t),θ)

∂θ
dt, (47)

to compute the parameter sensitivities. The RHS of the equations involve VJPs that are efficiently evaluated
with AD. The adjoint system can again be solved with an arbitrary solver, potentially even different than the
forward solver. Specifically, we use the interpolated adjoint method, which reduces the memory footprint by
constructing an interpolation of the forward solution, which appears in the adjoint equations. During the
forward pass, the solution is saved at a selected few timesteps and reused in the adjoint computation via
interpolation during the backwards pass.

4. Experiments and results

To assess the quality and practicality of our proposed models, we seek to study model performance across a
range of Burgers solutions.

4.1. Viscosity generalization and temporal stability
In this experiment, we examine model generalizability with respect to initial conditions of the velocity field
and the viscosity parameter ν. In addition, we investigate stability of the models by extrapolating in time
relative to the training data.

The models are trained using the optimization procedure described in the previous section on a ground
truth dataset of 100 Burgers solutions. We vary the initial conditions of the velocity field by randomizing the
Fourier modes of the initial field. The kth Fourier mode is denoted by ûk. The dataset is generated with the
parameters tabulated in table 1.

The neural networks in the trainable models contain two FNO layers with kmax = 16, 128 hidden
channels, and appropriate input and output sizes. The first layer uses a rectified linear unit (ReLU)
nonlinearity while the second uses the identity. The models are trained for 500 epochs using the Adam
optimizer with learning rate varying from 10−3 to 10−1 depending on the model. Generally, models such as
smag-ml that are more constrained by inductive biases required larger learning rates.

Model performance is gauged using the mean-squared error (MSE) of the predictions relative to the
ground truth solution on an unseen test set. We leverage two test sets to assess generalizability across
viscosities and stability in time. The first test set consists of 25× 25 solutions—25 discrete viscosities in the
range of 10−4.5 − 10−2 and 25 trajectories, or different initial conditions, per viscosity. We compute the
model error for each prediction and plot the average ensemble error as a function of viscosity.
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Table 1. Parameters and their distributions used to generate the training set for the first experiment, including the viscosity ν, the
Fourier modes of the initial velocity field ûk, the timespan for integration t, the DNS grid resolution N, and the coarse grid resolutionM.

Parameter Range

ν [10−4,10−3)

ûk ([−0.5,0.5)+ [−0.5,0.5)i)e−0.5k, k= 0..32
t [0,3)
N 4096
M 64

Figure 4. Blue shaded regions indicate the section of the plot corresponding to the training regime, while red shading indicates a
test regime. (a) Plot of the ensemble mean-squared error relative to the ground truth DNS for each model as a function of
viscosity. All models generally improve over the no closure baseline except anode and resnet, but only smag-ml improves of the
constant Smagorinsky model. (b) Ensemble MSE for each model as a function of time. The inclusion of a production term gives
rise to anomalous behavior in the extrapolation region.

The second test set contains 25 trajectories at ν = 10−3. Here, we evolve the trajectories between
t= [0,10), over 3 times longer than the training set, to see how the models behave outside of the training
regime. The average error across all trajectories is plotted as a function of time.

Two non-trainable models none and smag-const provide some bounding benchmarks for model
comparison. In figure 4(a), at the upper end, the nonemodel with no closure results in high error at low
viscosities, where the dissipative length scales are small, with progressively lower error at higher viscosities
where the dissipative length scales become larger. An effective closure model should at the very least perform
better than this, otherwise no additional physics have been learned to improve over the baseline governing
equations solved on a coarse grid. At the lower end, the smag-const model is a well-known closure model that
has been shown to perform well in a wide range of viscosities. An ideal model would produce lower loss than
this baseline, indicating that the neural closure functional form can show improvements over classical
closure models from theory.

Model performance is delineated well by model accuracy relative to the baselines in figure 4(a). Model
anode has the highest loss, greater than the none baseline, thus showing no improvement over the governing
equations. Given that the anodemodel contains no inherent physics or structural form to the PDE, this result
is unsurprising as the model must learn both the governing dynamics and any closure approximations.
Despite resnet having a similar architecture to anode, resnet can achieve marginally better accuracy, although
it is still no better than the none baseline. Theoretically, anode should be able to learn the same optima as
resnet, since anode has the same functional form as resnet, except solved using an adaptive time-stepper.
However, actually reaching those optima can be challenging during optimization due to the ODE inductive
bias.

Models transport-I and transport-I-p show marginal improvement over none, with transport-I-p the
better of the two. These models were particularly difficult to train, producing very stiff ODEs that made
integration difficult. This is apparent in the fact that some of the viscosities are not shown as the stiffness of
those systems led to intractable solutions. We hypothesize that this could be due to overfitting the training
set, since all of the training samples could be solved in a reasonable amount of time.

Model direct lies firmly between the two benchmarks. Accuracy is relatively uniform with little
dependency on viscosity. Thus, while direct consistently improves over none at low viscosities, the advantage
decreases with increasing viscosity, becoming a disadvantage at the highest viscosities.
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Table 2. Table of evaluation times for the models on the second test set. Times are normalized by the nonemodel, which is the cheapest
differential equation-based model to compute.

Model Relative evaluation time

none 1.0
anode 2.54
resnet 0.37
direct 2.97
transport-I 3.36
transport-I-p 3.40
transport-II 3.48
transport-II-p 3.52
smag-ml 3.24
smag-const 1.36

Models transport-II and transport-II-p have accuracies comparable to smag-const and perform almost
identically to each other within the viscosity test. Generally, we see a consistent positive bias over the baseline
closure benchmark that diminishes only at the highest viscosities.

Model smag-ml is the only model with lower error than smag-const everywhere in figure 4(a). Given that
the model leverages the functional form of the classical Smagorinsky model and only adds a spatial
dependency, again this result is perhaps unsurprising. However, it is promising that the improvements persist
beyond the training region.

Overall, besides models none, transport-I, and transport-I-p, accuracy is mostly independent of the
viscosity within this range. While models have been trained on viscosities between 10−4 and 10−3, they can
be used on viscosities well outside this range, with little to no erroneous behavior outside the training regime.

Figure 4(b) shows model accuracy on the second test set. The blue region indicates the time span the
model was trained on, while the red region shows the extrapolation range. The model hierarchy by accuracy
is generally preserved here, i.e. anode performs the worst, smag-ml the best, and transport-II and
transport-II-p are comparable to smag-const.

However, the stability test highlights the effect of the production term in the models. The models largely
have a monotonically decreasing slope in the error over time, except for anode, transport-I-p, and
transport-II-p, which display aberrant behavior in the extrapolation range. The inclusion of the production
term results in improvements within the training time regime, and in the case of transport-I and
transport-I-p, the difference is significant. Outside of this range, the production term can hinder the solution
and lead to growing errors. Deviations between transport-II and transport-II-p can be seen at t> 5, and error
from transport-I-p grows to match transport-I at t= 10.

In addition, there is a clear separation of models transport-II, transport-II-p, smag-ml, and smag-const
with regards to the rest of the models tested. These four models show decreasing MSE after t≈ 1, while the
rest of the models’ error grows, indicating potential instabilities. The origin of the disparity stems from the
usage of the Boussinesq hypothesis in the better-performing four models, enforcing that the viscous forces
are by design dissipative. Since there is no external forcing, both the DNS and the Boussinesq models
eventually decay to zero, as does the MSE. This physical prior is imposing some known behavior (dissipative
system), while still leaving room for the neural network to learn the closure variable, resulting in significantly
more accurate models.

Table 2 shows the model evaluation times relative to none. All of the models except for resnet are more
expensive than this baseline, which is expected considering that the models require more operations and
Fourier transforms to compute than the governing dynamics. We found that the model evaluation times have
limited correlation with the number of operations needed at each time step, and are more heavily influenced
by the stiffness of the resulting ODE system, given the adaptive integration scheme. Thus, resnet is much
more efficient than other models because it requires the fewest function evaluations, coinciding with the
fixed Euler time steps.

We also show training curves for this experiment in figure 5, including the train loss and training time as
a function of epoch. We point out the train loss of resnet in figure 5(a), which is vastly different than the test
loss in figure 4, different behavior from the other models tested. We believe the use of differential equation
inductive biases in the other models close the learning gap between training and testing data distributions,
promoting data-efficient and generalizable models. Figure 5(b) clearly demonstrates the effect of ODE
stiffness. Since the number of operations per function evaluation in each model is fixed, one might expect
the training time to be linear with epoch. However, as models like transport-I and direct evolve in training,
the curves become steeper, indicating more function evaluations required for time integration.
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Figure 5. Training curves for the models in the first experiment. (a) MSE loss of the models, normalized by none, as a function of
epoch. There is significant variability between the models in time to convergence and magnitude of the overall change in loss. (b)
Training time as a function of epoch. For some models, the computational cost of evaluation remains constant, leading to linear
behavior. For others, the computational cost increases with training iteration, demonstrating non-linear behavior with a positive
second derivative.

Table 3. Parameters and their distributions used to generate the training set for the second experiment, including the viscosity ν, the
Fourier modes of the initial velocity field ûk, the timespan for integration t, the DNS grid resolutionN, and the coarse grid resolutionsM.

Parameter Range

ν [10−4,10−3)
ûk [−0.05,0.05)+ [−0.05,0.05)i, k= 0..32
t [0,6)
N 8192
M 64, 128, 256, 512

4.2. Resolution invariance
In the previous experiment, we have shown that many of the models generalize well over a wide range of
viscosities and time. In this experiment, we wish to examine our approach with regards to the coarse-grain
scale. In the previous experiment, we fixedM= 64, here we will varyM and thus the cut-off of the low-pass
filter, k=M/2.

Again, we generate a training dataset of 100 Burgers solutions. Since we desire for all the cutoffsM/2 to
lie in the inertial region of the flow spectrum, we slightly modify the distribution of the initial condition, the
time span for integration, and the ground truth grid density N, realizing a wider inertial range. We divide the
set into 4 batches withM= 64,128,256,512. The dataset parameters are tabulated in table 3.

We train the two best performing models from the previous experiment, transport-II and smag-ml, as
well as two modifications to the smag-mlmodel to understand the impact of certain neural network
architectural choices. These models are trained for 200 epochs, which was sufficient for convergence, again
using the ADAM optimizer with learning rate varying from 10−3 to 10−1 depending on the model.

Specifically, we add two models, smag-ml-small and smag-ml-local. smag-ml-small reduces the number of
hidden channels in the network to 2 from 128. Since the FNO architecture requires each of the channels to be
Fourier transformed and inverse transformed at each timestep, the size of the hidden layer has a large impact
on the computational efficiency of the model. Therefore, we wish to see how small the model can be made
without sacrificing accuracy. smag-ml-local switches the FNO layers for standard linear layers resulting in a
purely local closure correction. The FNO is a non-local operator given the pointwise multiplication in
Fourier space. Replacement with a linear layer gives only pointwise multiplication by a linear operator in real
space. Thus, we can compare the efficacy of a non-local functional form with a local functional form.

To test the models, we generate a new test set that includes variation inM. Here, we look at a set of
13× 25 trajectories—13 discreteM’s in the range of 26–29, including interpolation between the training
discretizations, and 25 samples perM. The ν and ûk values are drawn from the same distributions as the
training set, and t= [0,20).

Figure 6 shows the MSE of the models normalized by the constant Smagorinsky baseline. Since the
training dataset encompasses variations in both ν andM, we train the Smagorinsky constant via gradient
descent on the same training dataset as the models to obtain the optimal constant instead of hand-tuning.
The training procedure converged clearly to a value of Cs = 0.4 as shown in figure 7. We also include a
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Figure 6. The ensemble mean-squared error of various models normalized by the MSE of the constant Smagorinsky model, one
of the baseline we hope to improve over. The adaptive ML Smagorinsky models can reduce the error up to 40%, with
smag-ml-small demonstrating the best performance. smag-dyn can only achieve lower error than smag-const at high resolutions,
where the inertial region is more fully resolved.

Figure 7. Convergence of the Smagorinsky constant Cs to 0.4 as optimized by gradient descent on the training dataset.

comparison to the non-trainable smag-dyn baseline, given that most of the models in this experiment are
Smagorinsky model derivatives.

Similar to the previous experiment, figure 6 shows that model transport-II results in greater error than
smag-const, while the adaptive Smagorinsky approaches can improve over the constant model. Even when the
ideal Cs is fit to the data, the spatiotemporally varying models outperform the baseline. Within the adaptive
trainable Smagorinsky models, the local correction can improve over the constant baseline at all resolutions,
though not as much as the other two models. The two non-local models generally perform better than all
others, which fits with our understanding that turbulence is a non-local phenomenon. However,
surprisingly, the smag-ml-smallmodel ultimately shows a universal advantage over both the dynamic and
constant Smagorinsky baselines. Comparing the training and validation losses of the models provides some
insight. The overparameterized smag-mlmodel overfits the training set resulting in worse performance on
the test set. While this may be ameliorated by a larger training dataset, we do not pursue this route and leave
this study for future work. Instead, we show that we can learn an effective and computationally efficient
correction to the baseline Smagorinsky model with limited training data, due to our differentiable physics
approach to end-to-end training of ML models.

Table 4 lists the normalized evaluation times for the models in this experiment. While the FNO-based
models are unequivocally more expensive than any of the baselines, smag-ml-local provides an interesting
compromise between computational cost and accuracy, achieving lower error than the baselines everywhere
except for the highest resolutions, where smag-dyn improves over smag-const.

The training curves for the models are shown in figure 8. From figure 8(a), convergence was achieved in
200 epochs and from figure 8(b), these models did not display the same kind of non-linear behavior in the
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Table 4. Table of evaluation times for the models used in the resolution experiment. Times are normalized by the nonemodel, which is
the cheapest to compute.

Model Relative evaluation time

none 1.0
smag-const 1.33
smag-dyn 2.35
smag-ml 3.65
smag-ml-small 3.47
smag-ml-local 1.77
transport-II 3.97

Figure 8. Training curves for the models in the second experiment. (a) MSE loss of the models, normalized by none, as a function
of epoch. The inductive biases of these models lead to fast convergence. (b) Training time as a function of epoch. Although
smag-ml and smag-ml-small have comparable final evaluation costs, the differences become significant during training, in terms
of overall optimization time.

Figure 9. Statistics and snapshots comparing results from closure model smag-ml-small to a baseline and DNS withM= 64. (a)
Sample snapshot of the velocity field from DNS, the smag-const baseline, and smag-ml-small. (b) Sample snapshot of the closure
model eddy viscosity field and spatially varying Smagorinsky constant from smag-ml-small. (c) Snapshot of the energy spectra of
the sample from DNS and smag-ml-small. The cutoffM/2 lies in the very upper region of the inertial range. (d) MSE of the model
and baseline over time.
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Figure 10. Statistics and snapshots comparing results from closure model smag-ml-small to a baseline and DNS withM= 512. (a)
Sample snapshot of the velocity field from DNS, the smag-const baseline, and smag-ml-small. (b) Sample snapshot of the closure
model eddy viscosity field and spatially varying Smagorinsky constant from smag-ml-small. (c) Snapshot of the energy spectra of
the sample from DNS and smag-ml-small. The cutoffM/2 lies very close to the dissipative range. (d) MSE of the model and
baseline over time.

training time. smag-ml-small was much faster to train than smag-ml, despite the comparable evaluation
times.

Lastly, we show some examples of predictions from model smag-ml-small compared to smag-const.
Figure 9 displays results fromM= 64, where the cut-off wavenumber is close to the energy containing region
of the spectra. Figure 10 presents results fromM= 512, where the cutoff wavenumber is on the other side of
the inertial region close to the dissipative region. The snapshots of the velocity field in (a) and the
Smagorinsky constant and eddy viscosity in (b) are taken at t= 10. (c) Compares the DNS and model energy
spectra at t= 10, where the cutoff wavenumber is indicated by the model spectrum. (d) Illustrates the MSE
loss of the model smag-ml-small and smag-const over time, including the relative loss of the model to the
constant Smagorinsky baseline.

5. Conclusions

In this work, we systematically investigate the efficacy of various ML based closure models for Burgers
turbulence using an end-to-end learning framework. We aim to develop a better understanding of how the
functional form of the data-driven closure impacts its ability to accurately model subgrid scales, and seek to
design a data-driven closure that is broadly applicable and ideally outperforms baseline closure models. Our
models are discretization independent and thus defined by their PDE form and neural network
hyperparameters. Models are trained in an end-to-end fashion, meaning the entire closure PDE is solved
with a pseudo-spectral method at each iteration of the optimization procedure. Differentiable programming
closes the gap between typical a priori learning and separate a posteriori testing that is common in ML
closure modeling today. Given a differentiable solution algorithm, models can be trained via gradient descent
directly on an a posteriori loss function. This approach allows for great flexibility in model design. Just as
neural network hyperparameters can be easily tuned and adjusted, the PDE form of the closure can be
modified to incorporate various degrees of known physics or physical assumptions. Once the high level PDE
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has been defined, the system is solved and evaluated on the loss function, the MSE of the velocity field
relative to a ground truth DNS simulation.

We assess the models on a wide range of Burgers systems to determine their generalizability. Given the
spread of Reynolds numbers encountered in flow problems and the need for a closure model that can
accommodate this range, we test our models’ performance on unseen Burgers systems with viscosities
spanning 2.5 orders of magnitude, including interpolation of the training viscosities and extrapolation
outside of this distribution. We also check the stability of the models by extrapolation in time.

We find that models that incorporate more physical assumptions result in lower errors on the test set
than those without such inductive biases. For example, use of the Boussinesq hypothesis in transport-II
produces significantly better approximations than transport-I, which only models a stress analogue directly.
The resnet and anodemodels have no assumptions of the PDE form, meaning they must learn all the
complex dynamics of the Burgers system with limited training data, resulting in unsuccessful models.
Increasing the size of the training set may have allowed for improved learning, however we are specifically
interested in data-efficient models given the cost of generating ground truth DNS simulations. At the other
extreme, we leverage all the assumptions of the baseline Smagorinsky model and only apply a small
modification to learn a spatially varying Smagorinsky constant. Here, we are able to show universal
improvement over the baseline Smagorinsky models at all viscosities.

We take our analysis further by demonstrating the resolution invariance of our closure approach. Subgrid
closures model flow scales smaller than their cutoff wavenumber, k=M/2 in our case. This cut-off should lie
in the inertial region of the energy spectra, but where exactly within the region it lies may be variable
depending on the coarse grid resolution and system parameters. A universal closure model should be able to
adapt to different cutoff wavenumbers, which impacts the range of energy scales it must model. In our
second experiment, we examine the adaptive trainable Smagorinsky models in more detail with regards to
different coarse grid resolutions. We train the model on four resolutions ranging from cutoffs very close to
the dissipative region to cutoffs close to the energy containing region. We show that the model can continue
to outperform the constant model at all resolutions, including interpolation between the training
resolutions. To the best of our knowledge, this is the first use of a differentiable physics based closure on
varying uniform grids.

Finally, we show the impact of two neural network architectural choices—the size of the hidden layer in
the network and the non-locality of the FNO functional form. It is typical in ML approaches to create very
large networks with 10 s of thousands of parameters to create very expressive networks that can act as
universal approximators. However, we have included a great deal of inductive bias in our model simply by
leveraging the Smagorinsky form, meaning our network only has to learn a small correction to see
improvement. We demonstrate that a small network of 520 parameters is enough to learn an effective
correction, even showing lower loss than the larger model which can overfit the small training set. Lastly, we
see the impact of the non-local FNO by testing a model with linear layers. While indeed the local adaptive
model improves over the baseline, the advantage is not as significant as the non-local model, although its
computational efficiency is greater.

Closure modeling remains a significant challenge in the fluid dynamics community. ML is enabling a new
class of data-driven models, but their performance on arbitrary flows can be difficult to characterize. We use
the Burgers system as a test bed for developing subgrid models in a differentiable framework, training on an
a posteriori loss and testing on a large variety of Burgers systems. We show that a simple correction to existing
closure models using data-efficient neural networks can result in better performance.
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Appendix

Table 5.Model descriptions.

Name Equations Time-stepper
Layer
type

Hidden
channels Notes

none u̇= ν∇2u− u∇u Tsit5 N/A N/A

smag-const u̇= ν∇2u− u∇u+∇(νt∇u),
νt = (Csδx)

2|∇u|
Tsit5 N/A N/A This model contains

no neural networks,
but Cs is a potentially
trainable parameter.

smag-dyn u̇= ν∇2u− u∇u+∇(νt∇u),
νt = (Csδx)

2|∇u|,
(Csδx)

2 = ⟨HM⟩
⟨M2⟩ ,

H=∇(ũ
2
/2)−∇(ũ2/2),

M= κ2∇(|∇ũ|∇ũ)−∇( ˜|∇u|∇u)

Tsit5 N/A N/A

resnet (ut+∆t,ηt+∆t) = (ut,ηt)+ fθ(ut,ηt,ν;x)∆t,
η0 = gθ(u0;x)

Euler FNO 128

anode u̇, η̇ = fθ(u,η,ν;x),
η0 = gθ(u0;x)

Tsit5 FNO 128

direct u̇= ν∇2u− u∇u+ η,
η = fθ(∇u,ν;x)

Tsit5 FNO 128

transport-I u̇= ν∇2u− u∇u+∇η,
η̇ = α · ν∇2η−β · u∇η,
α,β = fθ(∇u,∇η,ν;x),
η0 = gθ(u0,ν;x)

Tsit5 FNO 128

transport-II u̇= ν∇2u− u∇u+∇(η∇u),
η̇ = α · ν∇2η−β · u∇η,
α,β = fθ(∇u,∇η,ν,δx;x),
η0 = gθ(u0,ν;x)

Tsit5 FNO 128 The input δx to f θ is
only used in the
resolution study.

transport-I-p u̇= ν∇2u− u∇u+∇η,
η̇ = α · ν∇2η−β · u∇η+ γ,
α,β,γ = fθ(∇u,∇η,ν;x),
η0 = gθ(u0,ν;x)

Tsit5 FNO 128

transport-II-p u̇= ν∇2u− u∇u+∇(η∇u),
η̇ = α · ν∇2η−β · u∇η+ γ,
α,β,γ = fθ(∇u,∇η,ν;x),
η0 = gθ(u0,ν;x)

Tsit5 FNO 128

smag-ml u̇= ν∇2u− u∇u+∇(νt∇u),
νt = (ηδx)2|∇u|,
η = fθ(∇u,ν,δx;x)

Tsit5 FNO 128 The input δx to f θ is
only used in the
resolution study.

smag-ml-local u̇= ν∇2u− u∇u+∇(νt∇u),
νt = (ηδx)2|∇u|,
η = fθ(∇u,ν,δx;x)

Tsit5 Linear 128

smag-ml-small u̇= ν∇2u− u∇u+∇(νt∇u),
νt = (ηδx)2|∇u|,
η = fθ(∇u,ν,δx;x)

Tsit5 FNO 2
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