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ABSTRACT 
 

The stress field of a rectangular dislocation loop in an isotropic solid, which is in an infinite medium, 
is obtained here for a Volterra-type dislocation which has three non-zero Burgers vector 
components. Explicitly, the stress field of the dislocation loop in an infinite isotropic material is 
developed by integrating the Peach-Koehler equation over a finite rectangular dislocation loop. In 
this work, analytical/numerical verification of the stress field is demonstrated. To be specific, the 
verification is carried out to ensure that both the Equilibrium Equations and the Strain Compatibility 
Equations are satisfied. Moreover, a comparison with the stress field of a rectangular loop summed 
as four dislocation segments, using the DeVincre formula, is performed. Due to analytical 
verification, no error was detected in the presented solution. Also, comparing with the DeVincre 
formula presented identical results, qualitatively and quantitatively.  
 

 
Keywords: Rectangular dislocation loop; infinite isotropic material; stress field; numerical/analytical 

verification. 
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1. INTRODUCTION 
 
A rectangular dislocation loop is a closed loop 
formed by four linear dislocation segments. 
Dislocation lines cannot end inside a material. 
They have to end on free surfaces, grain 
boundaries, or form a close loop inside a material 
[1]. In this work, the development of the stress 
field of a Volterra-type rectangular dislocation 
loop is focused on. 
 
The stress solution obtained in this paper 
facilitates in the development of three-
dimensional dislocation dynamics codes [2-3]. 
The 3D discrete dislocation dynamics (DDD) 
simulation codes are able to capture the 
collective interaction of a whole population of 
curved dislocation lines in a mass of crystalline 
material on a mesoscopic scale, and to predict 
mechanical macroscopic behavior out of this 
interaction. In these codes, a contiguous and 
curved dislocation line in 3D is discretized in one 
form or another. One approach is to replace the 
dislocation line with straight finite-length 
segments of mixed character [3]. Another 
approach, followed by [4] is to decompose every 
segment into two perpendicular segments which 
are a screw segment and an edge segment. The 
stress field of the original dislocation curve is 
then approximated by the additive sum (from the 
principle of linear superposition) of the self-
stresses of the segments composing the curve. 
Formulae for the self-stress of a straight 
dislocation segment of mixed character has been 
given by [5], and by [6]. 
 
Different kinds of dislocation problems in terms of 
material type, geometry and size have been 
investigated for decades. In the early years, 
research on infinite isotropic materials was 
focused on by different researchers. Derivations 
for the displacement, strain and stress fields of 
infinite screw and edge dislocations in an infinite 
medium, assuming material isotropy, were 
provided [6-8]. Moreover, integral equations for 
finding the displacement field (the Burgers 
equation) and the stress field (the Peach-Koehler 
equation) of a closed dislocation loop (of any 
shape) in an infinite isotropic material have been 
provided by [6]. 

 
Several researchers have studied different kinds 
of the dislocation loop problems using various 
techniques. Initially, [9-10] investigated the 
prismatic circular loop. The circular glide loop 
was initially investigated by [11-12]. This solution 
was later corrected in [13-14]. In a more recent 

study of the displacement and stress fields of 
glide and prismatic circular dislocation loops, [15-
16] corrected some earlier work. The 
displacement field, including the solid angle term, 
of a rectangular dislocation loop of the Volterra 
type in an infinite medium was developed by [17]. 
One utility for dislocation loops is its use in the 
“collocation point” method used to solve traction-
free surface problems simulated with the 3-D 
DDD method via a surface mesh of dislocation 
loops, see [18-21]. As for circular dislocation 
loops, they were used for modeling pile-ups 
around rigid cylindrical particles [22] and for 
modeling Frank sessile loops which result from 
irradiation damage in some metals [23-25].  
 
If the Burgers vector is not constant in space, 
with respect to an inertial coordinate system, but 
rather varies along the dislocation line, the 
dislocation is then of the Somigliana type. Work 
on the ring Somigliana ring dislocation was 
performed by [26-27] for a radial Burgers vector, 
and by [28] for a tangential Burgers vector (i.e. a 
torsional dislocation loop). 
 
In this paper, the stress field of rectangular 
dislocation loop in an infinite isotropic material is 
developed by integrating the Peach-Koehler 
equation over a finite rectangular dislocation 
loop. Also presented are analytical and numerical 
verifications of the analytical solution obtained 
here. Furthermore, a comparison of the stress 
field developed here and the stress field obtained 
using the DeVincre’s Formula [5] is performed. 
The analytical results here add to the knowledge 
base of solutions for dislocations of different 
geometries. It has direction applications in 
Eigenstrain theory/computations [29] and the 
collocation-point method for capturing the effect 
of free surfaces on dislocation forces/motion [30].  
 
2. INTEGRATION OF THE PEACH-KOEHLER 

(PK) EQUATION 
 
The dislocation problem under consideration is 
shown in Fig. 1. The figure shows a rectangular 
dislocation loop (also described as a “finite-sized 
dislocation loop”) in an infinite isotropic medium. 
This Volterra-type dislocation loop has three 
Burgers vector components   ,    and   , and 

has a dimension 2a in the x-direction and a 
dimension 2b in the y-direction. The line sense of 
the dislocation loop is shown by the arrow along 
the dislocation loop. The goal in this problem is 
to obtain the stress components for an arbitrary 
material field point P. Note that in this paper    
and x are used interchangeably, so are    and y, 
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and so are    and z. Analogously for     and   , 
and so on.  
 
The PK Equation (1) is an integral equation for 
the stress field of any curved closed dislocation 
loop [6]. It is composed of three terms. They are 
all line integrals and they sum the contributions 
of infinitesimal line lengths (   ) along the line 
sense of the loop: 
 

       (1) 
  

          
 

  
       

 

   
 
       

 
 

;    (2) 

 

       
(3)

 
 

    (4) 
 

Where     is the      
component of the stress 

tensor  ,    is the m
th
 component of the 

displacement vector                 ,     is the 

ij
th
 component of the Kronecker delta,    is the 

shear modulus,   is the permutation symbol,   is 
Poisson’s ratio, 

                           (see Fig. 1) 

and         . 
 
For integration of the Peach-Koehler Equation, 
some steps need to be considered for the 
rectangular loop in Figure 1 which is composed 
of four numbered segments/sides. First, the 
elevation of the dislocation loop above the xy-

plane is fixed in the     global coordinate system, 

which means the value of    is constant in this 

case or      . Second,    is a constant equal to 

   along segment 1, which means       along 

this segment. Analogously,       and       

along segment 3,       and       along 

segment 2,       and       along segment 4. 
 
For the sake of illustration, only the integration 
for     for a non-zero    is shown as an example 
of the integration of the PK Equation:  
 

          
 

  
       

 

   
 

 

 
   

 
  ; 

(     )                                                     (5) 
 

          
 

  
       

 

   
 

 

 
   

 
  ; 

(      )                                                     (6) 

 

 
 

Fig. 1. The geometry of a rectangular dislocation loop in an infinite material. Here         
          . The primed quantities belong to a differential length     on the dislocation loop 
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(7) 

 

Hence, 

 

                               
 

       
    

   

       
    

 
 

 

       
    

   

         
    

 
 

 
   

       
   

   

       
      

  
        

 
   

       
   

   

       
      

  
        

 
   

       
   

   

         
      

  
        

 
   

       
   

   

         
      

  
       ;           (8)  

 

Let’s focus on the integral: 
   

       
   

   

       
      

  
      . For the integrand 

   

       
 , it is given by:  

 

   

       
 

                

                                

     

                                 

 

Hence, the integral 
   

       
   

   

       
      

  
       

is in actuality composed of two integrals:  
 

   

       
   

                

                                  
   

  
        

 

and  

 

 
   

       
   

     

                                     

  
      .  

 

If one is interested in integrating by hand or 
manually, one can use the integral tables in [31]. 
We only show how to integrate the second 
integral here, i.e.  

 

 
   

       
   

     

                                     

  
      .  

 

According to [31],  
  

   
 
 

        

           
,     (9) 

 

Where            ; Note that the 

integrand 
     

                                can be 

written as 
     

                    
 
             

. 

 

In this example,                

       
 
                    , where 

            
 
         ,      ,    .  

According to equation (9),  
 

 
     

                    
 
             

    

 
          

   
 

 
                

           
 

                

             
 
                                   

 
         

 

             

        
 
        

 
                  

 
         

; 

 
Hence finally,  
 

 
   

       
   

     

                 
 
          

         

  
       

 
   

       
  

            

                
 
                         

 
  

 
             

                
 
                         

 
  ;             (10) 

 
Moreover, one can also use the mathematical 
software Mathematica, which has a very strong 
symbolic engine, to do the integration instead. 
This provides efficiency and time savings.  
 

3. RESULTS AND DISCUSSION 
 
The stress field terms for a rectangular 
dislocation loop in an infinite medium were 
integrated from the PK Equation using the 
software Mathematica. The full list of results for 
the stress components, based on the Burgers 
vector components, are supplied in the 
appendices. For a loop with more than one, or all 
three, of the Burgers vector components not 
being zero, then the stress component is simply 
the sum, from the principle of superposition, of 
the results for these different Burgers vector 
components (as in the appendices). Note that in 

the appendices, we have replaced the    in Fig. 1 
with c. 
 
If one is interested in the strain field terms or 
components instead, which are not listed here for 
brevity, these could be obtained from the 
stresses in the appendices using the inverted 
Hooke’s law for isotropic materials: 
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                         (11) 

 

Where     is the first invariant of the stress 

tensor,   
  

           
,   

 

      
, and E is 

Young’s modulus.  
 

3.1 Equilibrium Equations Verification 
 

The partial differential equations of static 
equilibrium in a solid material can be written in 
indicial notation as: 

 

      
    

   
                        (12) 

 

If the last equation is expanded on the repeated 
indices then the resulting three equations are: 

 
    

  
 

    

  
 

    

  
                       (13) 

 
    

  
 

    

  
 

    

  
                       (14) 

 
    

  
 

    

  
 

    

  
                       (15) 

 

This is keeping in mind the symmetry of the 
stress tensor, i.e.        . These equations 

should be satisfied at every material point of a 
solid in equilibrium. To verify the developed 
stress solution     given by equation (1) and 

provide in the appendices, one can see if 
equations (13-15) are identically satisfied either 
using analytical or numerical methods. For the 
analytical method, the equations are all reduced 
to zero by utilizing Mathematica. Similarly if one 
considers any line in space. For such line, the 
three equilibrium equations also equate 
analytically, or exactly, to zero. Hence, analytical 
verification of the equilibrium equations is 
feasible.  
 

Alternatively, numerical verifications can also be 
made by plotting equations (13-15) along any 
plane in the material to see if the equations show 
a zero result. Figure (2.1, 2.2, 2.3 ) shows such 
plotting for bx ≠ 0. The figure shows that the 
equilibrium equations are satisfied. Note that 
given the combination of Burgers vector 
components and equilibrium equations a total of 
nine plots are minimally generated. For this 
reason, only three plots for one of the Burgers 
vector components are shown here for brevity. 

 
 

Fig. 2.1. Plot of equation (13)                   Fig. 2.2. Plot of equation (14)

 
 

Fig. 2.3. Plot of equation (15). For these plots, the following values were chosen:          , 

      ,        ,     ,      ,      ,                          
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3.2 Strain Compatibility Equations 
Verification 

 
The equations of compatibility can be written in 
indicial notation as [32]: 
 

                                     (16) 

 
This equation can be expanded over the 
repeated indices and written explicitly as six 
different/unique equations: 
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                       (22) 

 
These equations should be satisfied at every 
material point of a solid. To verify the developed 
stress solution,   (the strain tensor) and its 
components are given by equation (11). One can 
then investigate if equations (17-22) are 
identically zero using either analytical or 
numerical methods. For the analytical method, 
the equations are so large that Mathematica is 
not able to reduce them to exactly 0. However, 
for any given line in space along the x-, y- or z-
directions, Mathematica identically simplifies the 
compatibility equations to zero. Hence analytical 
verification of the compatibility equations is 
possible. 

 
Alternatively, numerical verifications can also be 
made by plotting equations (17-22) along any 
plane in the material to see if the equations give 
a zero result. Figure (3.1, 3.2, 3.3) shows such 

plotting for     ≠ 0. The figure shows that the 

compatibility equations are satisfied. Note that 
given the combination of Burgers vector 
components and compatibility equations a total 
of eighteen plots are minimally generated. 

However, only three plots for one of the Burgers 
vector components are shown here for brevity.  
 

3.3 Comparision with Devincre’s Formula  
 
The DeVincre’s Formula [5] is an expression for 
the stress field of a straight or linear dislocation 

segment of finite length： 

    

                                                                              
                                                                        (23) 
 
Where    is the Burgers vector,              , 

   is the line sense vector or the line direction, 

             ,     is      component of the stress 

tensor,        ,                       

   ,                           ,     is 

the ij
th component of the Kronecker delta,   is 

shear modulus,   is Poisson’s ratio,        , 
        ,                      , and 

       
  

 

 
                   . Note that 

bold lettering represents a vector(s) herein. 
 
In this paper, the rectangular dislocation           
loop which is composed of four straight 
dislocation segments (or sides) is focused on 
here. Hence, the stress field of a rectangular 
dislocation can be obtained by adding up the 
contributions of four straight dislocation 
segments each obtained from the DeVincre’s 
Formula.  
 
To compare with the stress field obtained from 
the DeVincre’s Formula, the following 
parameters are used for the plots in Figs. 4-9:  

 

       ,    ,      ,          

                ,         ,  
 

The figures show perfect match between the 
analytical solution in this paper and the solution 
obtained from utilizing DeVincre’s Formula. This 
provides confidence in the presented analytical 
stress solution since it is matching the solution of 
four connected segments. Note that given the 
combination of Burgers vector components and 
stress components a total of eighteen plots are 
minimally generated. However, only six plots for 
one of the Burgers vector components are shown 
here for brevity. 
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Fig. 3.1. Plot of equation (17)                      Fig. 3.2. Plot of equation (18)

 
 

Fig. 3.3. Plot of equation (19). For these plots, the following values were chosen:     
     ,       ,        ,     ,      ,        ,                       

   
 

  
 

Fig. 4. Comparison of 
   

 
 analytical solutions in 

this paper (solid and black line) to the results 
of DeVincre’s Formula (dashed line) along x-

direction for non-zero bz 
 

Fig. 5. Comparison of 
   

 
 analytical solutions 

in this paper (solid and black line) to the 
results of Devincre’s Formula (dashed line) 

along x-direction for non-zero bz 
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Fig. 6. Comparison of 
   

 
 analytical solutions 

in this paper (solid and black line) to the 
results of DeVincre’s Formula (dashed line) 

along x-direction for non-zero bz 
 

Fig. 7. Comparison of 
   

 
 analytical solutions 

in this paper (solid and black line) to the 
results of DeVincre’s Formula (dashed line) 

along x-direction for non-zero bz 

 

  

Fig. 8. Comparison of 
   

 
 analytical solutions 

in this paper (solid and black line) to the 
results of DeVincre’s Formula (dashed line) 

along x-direction for non-zero bz 
 

Fig. 9. Comparison of 
   

 
 analytical solutions 

in this paper (solid and black line) to the 
results of DeVincre’s Formula (dashed line) 

along x-direction for non-zero bz 
 

4. CONCLUSIONS 
 
In conclusion, the stress field associated                          
with a rectangular dislocation loop in an infinite 
medium has been developed. It is obtained by 
integrating the PK equation over a finite 
rectangular area. Also, the strain field can be 
developed by equation (11) if one is interested in 
it. The stress field obtained herein not only 
contributes to calculating the total stress                         
fields of a rectangular dislocation loop in the 
isotropic half-medium, but also serves as a 
benchmarking tool for 3D dislocation dynamic 
codes which deal with generally-curved 
dislocations and need to properly quantify their 
elastic fields. 

 
The developed field solutions were verified using 
both analytical equations and numerical 

calculations. The verifications were to ensure 
satisfaction of the equilibrium equations, 
satisfaction of the strain compatibility equations, 
and comparison against the stress field 
developed by DeVincre’s Formula for straight 
dislocation segments. 
 

5. LIMITATIONS 
 
The main limitation of the current work is                   
that it deals with isotropic and not anisotropic 
materials. It also deals with infinite and not finite 
domains.  
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APPENDIX 

Considering the Burgers vector component bx: 
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Considering the Burgers vector component by: 
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Considering the Burgers vector component bz: 
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