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Abstract: At present, the scale of subway construction in Chinese cities has reached a new height, and
the shield slag produced by it has also surged year by year. Untreated subway shield slag not only
occupies the space resources of the country, but also carries CO2, which causes negative impacts on
the environment and which, as a result, is not conducive to the realization of the goal of the national
“double-carbon” strategy. Therefore, how to effectively manage the shield slag produced by subway
construction has become a scientific problem that needs to be solved urgently. In order to scientifically
dispose of metro shield slag and quantify the carbon reduction intensity of its disposal, based on the
new shield slag integrated recycling technology, and taking a tunnel interval of Shenzhen Line 13
as an example, this study systematically sorted out the shield slag disposal process, clarified the
management path of the on-site resource utilization of slag, and quantitatively compared the carbon
emissions before and after the treatment as well as carbon reduction intensity. The results show that
the on-site disposal process is basically feasible, and that, it is possible to achieve a shield structure
slag reduction of resource products and mud cake water content of less than 40% of the target, in
the case of 160,000 m3 of shield structure slag resource utilization after a total carbon reduction
of about 4240.13 t CO2, of which each preparation of 1 m3 of recycled bricks can bring about a
benefit of carbon reduction of 240.09 kg CO2. Compared with the conventional mud head truck slag
disposal, shield structure slag resource utilization can save a utilization cost of about 10.4 million
yuan, meaning that, in terms of economic and social levels, this method can achieve good benefits.
This case verifies the feasibility of the new technology, and the results of the study can provide
experience for other metro projects’ shield slag resource utilization, and provide stakeholders with a
shield slag recycling management strategy for government departments to scientifically formulate
metro shield slag management policy to provide data support.

Keywords: metro shield spoil; resource utilization; minimization; carbon emission; carbon intensity
reduction

1. Introduction

Over the past decade, China’s metro operating line reached a length of about 9206.8 km,
and the construction scale has reached a new height. At the same time, this construction
process produced a large number of metro shield slag, the cumulative output of which
exceeded 270 million m3, of which the shield slag mainly includes gravel, slurry, and other
wastes [1]. Further, at present, China’s metro shield slag utilization rate of resources as a
whole is low, and there is still a large gap between China and other countries [2–8], which
is a great pressure on China’s urban environmental management. In order to realize the
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“14th Five-Year Plan” target [9] and set up a good social image, we need to further study
the recycling of urban subway shield slag. The rational disposal of metro shield spoils can
also reduce carbon emissions, fulfill the goal of sustainable development [10,11], and lay a
solid foundation for China to achieve the goal of reducing carbon dioxide emissions to 18%
within the planning period [12,13].

According to the statistics of Shenzhen Municipal Bureau of Housing and Urban
Development, shield slag accounts for about 75% of construction waste. At present, the
disposal of shield structure spoils in Shenzhen is mainly based on simple landfill, which
not only occupies a large amount of land resources and makes it difficult to meet the
requirements of the urban environmental protection system [14], but also causes soil and
water pollution due to the infiltration of surface water, and is prone to slope destabilization
under rainfall conditions. As of 2030, in Shenzhen City, there is still more than 500 km of
subway construction planned, but at present, in Shenzhen, there are only five companies
to carry out the shield slag resources disposal business [8]. Thus, processing equipment
integration and the modularization of a low, disposal process flow is a relatively important
issue, among others, and there is an urgent need to explore standardized technology paths
and systematic disposal processes. At the same time, it is urgent to explore standardized
technology paths and systematic disposal processes, while reducing the release of carbon
dioxide during the extraction and transportation of raw materials to help achieve the
“dual-carbon” development goal [10,15].

After mining the literature, the current research of some scholars on shield slag from
metros mainly focuses on confirming its environmental benefits [16–22], such as Li [23]
and others, who confirmed the advantage of disposing shield slag in reducing global
warming based on the whole life cycle approach, and Fořt [24] and others, who quantified
the recycling value of discarded slag from the environmental point of view. Secondly,
some scholars have also studied the properties of shield slag and modified it for secondary
utilization according to different properties, such as Rondinel [25], who converted the
sand in waste slag into acoustic walls and filler for reuse, and Yang et al. [26], who used
the waste slag to produce grouting materials for the back walls of shield tunnels with
different water-to-cement ratios. Voit et al. [27] applied the shield material to replace the
conventional aggregate, which is now successfully applied in the base tunnel in Switzerland.
Therefore, the former research is mainly limited to a single verification of the environmental
benefits and recycling value of disposing of shield tunnels slag [28], but it has not formed
an integrated recycling process, nor has it considered whether the integrated equipment is
adapted to on-site operation in depth, nor has it compared the cost of disposing of slag with
the economy of recycling, and it lacks a certain degree of popularization [29]. In summary,
in order to make up for the above research gaps and limitations, this study establishes
an integrated disposal process of slurry separation—sand washing—filtration of shield
sludge, and conducts empirical research on the site of a section of Shenzhen Metro Line 13
tunnel interval. The results show that the work method is applied to a high degree in
the field, the recycled products all meet the emission standards of Shenzhen City, and
the total carbon reduction of 160,000 m3 of shield slag in the interval reaches 4240.13 t.
Compared with the traditional disposal method, the resourceful disposal of slag saves
a total of about 10.4 million yuan in economic costs, which achieves a good benefit at
both the economic and social levels. The results of this study can provide reference for
other metro projects, provide management strategies for stakeholders, and provide data
support for local governments to scientifically formulate relevant policies, and the carbon
reduction effect brought about will also help China to realize the goal of “dual-carbon” as
soon as possible.

2. Research Methods
2.1. Metro Shield Sludge Integrated Recycling Technology

In this study, a set of integrated recycling technologies for sand-bearing strata, which
can dispose of the sludge produced by mud-water balanced shield (SBS) and earth-pressure
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balanced shield (EPB), is proposed, which mainly consists of several systems, including
mud-water separation, sand washing, pressure filtration, and light-wave brick making.
The detailed operation flow of this method is shown in Figure 1.
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The recycling step mainly includes separating the mud sand and waste slurry pro-
duced by shield machine digging. Qualified slurry is provided to the shield machine
for recycling, and the separated waste soil is transported to the sand washing system for
secondary treatment; the sand washing system physically disperses, vibratory sieves, and
impact crushes the waste soil separated from the former along with the earth-pressure
shield residue to make the fine sand less than 3 mm, and the vibration is used to reduce the
water content of the net sand; the waste liquid is flocculated and precipitated in the filter-
pressing system by adding the polymer, the waste liquid is flocculated and precipitated by
chemical reaction, the top filters out the water, which can be reused for sand washing or on-
site cleaning, and the bottom forms a slurry that is transported to the filter press for reuse,
which is pressurized to separate out the dry soil, which can be made into environmentally
friendly building materials for reuse. Finally, in the light-wave brick-making system, the
dried mud cake is transported to the light tunnel for dehydration and solubilized with
additives, which makes the cross crystallization of soil mud micro-particles and cement
micro-particles more rapid; then, through the shaping system, it is pressed into standard
bricks by the static pressure device for brick making.

2.2. Case Background Introduction

The project is located in Gongming North Road, Guangming District, Shenzhen City,
located in a geographical area with a sand content of more than 40% of the stratum, mainly
including fine sand, medium-coarse sand, gravelly sand, and other water-content strata,
as well as hard-plastic sandy clayey soil, granite, sandstone, mudstone, and other strata
with a high content of mud. The overall geological complexity to the medium and fine
particles are dominated by the shield slag soil with a high content of water, and the mud
has a large number of characteristics. The case has 4 stations and 3 intervals and the total
length of the interval is about 2361.6 m, among which the mud-water balanced shield is
1334.3 m long, the soil pressure balanced shield is 1027.3 m long, and the total cubic volume
of the shield slag entity is 158,000 cubic meters. Among them, the diameter of the shield
machine for double line excavation is 6.48 m, the digging speed is about 3.6 m/h, and the
mud discharge is about 1.00 m3/h.
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2.3. Information on Main Materials and Equipment Parameters

The integrated disposal system proposed in Section 2.1 specifically includes two
mud-water separation systems, one sand washing system, and five filter-pressing systems
in order to ensure the resourceful disposal of shield spoils along with construction. In
addition, the main materials added include polyacrylamide for mud dewatering, defoamer,
and lubricating grease for equipment.

The mud-water separation system mainly consists of a mud-water separator, mod-
ulation slurry equipment, mud-water purification equipment, a processing power of
1200 KW·h, using a double-layer pre-screening structure and a high-excitation force exciter
on the sludge for the initial screening, power up to 15 KW, and a speed of 960 rpm, and it
can deal with a flow rate of dirty slurry 1000 m3/h. Immediately after the sand and mud
separation by the first cyclone, the second cyclone de-sludge unit conducts dewatering and
grading. The sieve hole of the primary cyclone sand sedimentation system is 0.4~0.6 mm,
the pressure drop of the cyclone is 0.12~0.18 Mpa, the single processing capacity reaches
480~650 m3/h, and the cutting point of the cyclone is 74 microns; the sieve hole of the
secondary cyclone sludge removing unit is 0.4~0.6 mm, the pressure drop of the cyclone is
0.15~0.25 Mpa, the single processing capacity reaches 32~42 m3/h, and the cutting point
of the cyclone is 20 microns. The cyclone cutting point is 20 microns, and the overall
separation efficiency is as high as 85% or more to achieve good separation of fine stone
powder and silt clay.

The sand washing system mainly consists of feeding equipment, an impact crusher, a
flat water screen, a closed screen, a spiral sand washer, a dewatering screen, etc., of which
the impact crusher power is about 200 t/h, and it is mainly crushed into the slag for stones
with a diameter of less than 50 mm, through the sieve diameter of 4 mm of the flat water
screen for initial screening. For those with a diameter of 3 mm, the closed screen is used for
screening again, while sand that is less than 3 mm sand can be moved directly through the
vibration dewatering to form a finished sand to use. For 3 mm ≤ stone diameter ≤ 50 mm,
the stone is once again crushed by the crusher, and the above steps are repeated until all
stone is transported to the spiral sand washer, which has a spiral sand washer power of up
to 180 m3/h, and ultimately is run through the sieve with a diameter of about 120 microns
of dewatering sieve dehydration in order to control the residual mud moisture content
and the water content of the residual mud. The water content of the residual sludge is
controlled to ensure that the water content of the external slag is less than 40%.

The filter press system mainly consists of a filter press, slurry pump, slurry tank, and
control system, in which the diameter of the pumping pipeline is divided into two sets
of 100 mm and 300 mm, the capacity of the slurry concentration tank is 1500 m3, and the
total power of the final filter press unit is 675 KW·h, with the daily capacity being up to
1200 m3, which can fully satisfy the requirements of waste slurry pool storage and filter
press processing requirements.

The light-wave brick-making system mainly consists of loading equipment, a crusher,
a light tunnel dehydration system, a light mixing system, a molding system, a hardening
system, and stacking equipment. Its main function is to make the slurry with a moisture
content less than 50% into finished bricks for secondary use through light tunnel dehy-
dration, mixing, additives, and so on. The process takes about 25 min, 200 t of slag can
produce 80,000 standard bricks per day, the compressive strength of the finished bricks
reaches 16~16 Mpa, and the flexural strength of the bricks reaches 2.7~3.5 Mpa.

2.4. Data Collection and Processing

In this study, the carbon reduction benefits of resource utilization are mainly cate-
gorized and calculated according to electricity, oil, and water consumption. Since water
consumption can be recycled on-site, our study mainly focuses on the statistics of daily
machinery oil consumption and electricity consumption data from the on-site control cen-
ter, and ignores the water consumption part for the time being. The average daily fuel
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consumption of machinery, electricity meter data, and other records are mainly used to
estimate the consumption within the specified working period.

Since the above recycling device can produce recycled sand and recycled building
materials, there is also a partially compensated carbon benefit, and the carbon emission
calculation of the resourceful disposal is shown in Equation (1).

CeR = V × Er × Ee + ∑r Mr × Er − ∑i Ei × Ee (1)

where CeR is the carbon emissions in the process of resource utilization of subway shield
slag, measured in kg CO2e;

V is the volume of subway shield slag, measured in m3; Er is the energy consumption
of resource treatment of 1 m3 subway shield slag, measured in KW·h/kg;

Mr is the mass of the first kind of added material, Er is the carbon emission factor of
the rth kind of added material, measured in kg CO2e/t;

Ei is the energy consumption in the production process of replacing the primary
building materials of type i, measured in kg, L, KW·h;

Ee is the carbon emission factor of energy, measured in kg CO2e/(KW·h), kg CO2e/kg.
The carbon emission generation of the direct landfill method mainly includes the

energy consumption of transportation and mechanical landfill equipment. The carbon emis-
sion calculation formula of the traditional disposal method is shown in Equations (2)–(4).

Cet = ∑
n

M × Di × Ei × Fy (2)

CeM =
n

∑
m

Ti × Ri × Ee (3)

CeL = Cet + CeM (4)

where Cet is the carbon emissions from transportation energy consumption of the transport,
in kg CO2e;

M is the mass of subway shield slag, measured in t;
Di is the subway shield slag using the ith mode of transportation of the average

transportation distance, measured in km;
Ei is the carbon emission factor per unit mass transportation distance under the

transportation of the first way, measured in 0.129 kg CO2e/(t km);
Fy is the empty vehicle turnback factor, and n is the type of transportation mode;
CeM is the carbon emissions from energy consumption of construction machinery

involved in landfill disposal, in kg CO2e;
Ti is the consumption of the ith type of construction machinery unit;
Ri is the energy consumption per unit shift of the ith type of construction machinery,

measured in KW·h/shift, kg/shift;
m is the type of construction machinery; CeL is the carbon emission in the process of

subway shield soil landfill disposal, measured in kg CO2e.
Substituting the average daily fuel consumption and electricity consumption data

into the formula, the final calculation obtained that the carbon emission of the resource
utilization stage of the subway shield slag is about 4451.6 t CO2, while the carbon emission
of the direct landfill elimination and disposal is about 8691.7 t CO2, and the overall benefit
is reduced by 51.2%, which is a very optimistic finding.

In terms of economic benefits, the study is calculated according to several aspects,
including construction and installation costs (A), production and operation costs (B), slag
disposal costs (C), and recycled sand compensation (D). Rm represents the cost after re-
sourceful disposal, calculated as shown in Equation (5).

Rm = A + B + C − D (5)



Buildings 2023, 13, 2816 6 of 13

Among them, the construction and installation project cost is calculated based on the
procurement cost of basic equipment and supporting maintenance facilities provided by
the procurement department, and the production operation mainly includes water and
electricity costs, labor costs, and material testing costs, of which water and electricity costs
and labor costs are calculated according to the average monthly expenditure multiplied by
the total construction period of 16 months and the material testing is calculated according
to the actual occurrence of the quality control requirements. The disposal fee of untreated
shield structure residue is calculated according to RMB 320/m3, half of the remaining
volume of the soil volume after reduction, and it has to be calculated according to the dry
soil disposal fee of RMB 280/m3. The total amount of shield structure residue treated by
this process is about 160,000 m3, and 80,000 m3 of dry soil is left after reduction. Secondly,
the amount of recycled sand is calculated according to the sand content and actual output of
different strata, and a total of about 50,000 m3 of recycled sand was recycled in our sample.
In the end, the traditional disposal cost totaled 51.2 million, and the cost of the resourceful
disposal of residual soil totaled 46.21 million, saving a total of 4.99 million yuan.

3. Results
3.1. Detailed Recycling Process

The detailed steps for the recovery of shield slag from the integrated system are shown
in Figure 2, where the main materials used and the related equipment parameters are
referenced to the contents of Section 2.3.
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3.1.1. Preliminary Slurry Screening

The spoil excavated by the slurry shield method carries slurry into the primary screen,
and the diameter of the screen hole is 3 mm. This process adopts a double-layer pre-
screening structure with a downhill angle, the upper layer being 10 mm thick and the lower
layer being 5 mm thick. The coarse screen separates the coarse particles in the slurry from
the sand. The vibrating screen screens out the spoil with a particle size greater than 3 mm
from the slurry of the shield machine, and the spoil falls to the slag yard for stacking. If the
particles over 3 mm, and the moisture content of the residue is less than or equal to 30%, it
can meet the direct external transport. The remaining sand containing slurry is pumped
through the pipeline to the next step for screening.
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3.1.2. Slurry Swirling and Screening

The sand containing slurry obtained from the preliminary screening is stored in the
slurry storage tank. When the liquid level in the slurry tank exceeds the set start liquid level
line, the slurry pump and cyclone are started and the slurry enters the primary cyclone
for centrifugal grit separation. The sand particle size that can be treated is from 3 mm to
74 microns. The slurry flows automatically to the bottom of the primary screen, and then
flows through the sieve hole with a diameter of 0.5 mm before reaching the next stage of
the cyclone. The secondary cyclone can handle particle sizes ranging from 74 microns to
45 microns. The secondary sieve’s hole diameter is 0.3 mm. The fine sand is separated
and dropped to the slag yard for stacking. After separation, the qualified slurry is used
for shield tunneling, and the waste slurry exceeding the standard is filtered. The specific
operating system is shown in Figure 3.
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Figure 3. Slurry Disposal Equipment of Slurry Shield.

3.1.3. Dispersing and Washing

The main purpose of dispersing and washing is to disperse sand and stone, and remove
slurry lumps. The spoil separated from the first and two steps falls into the washing tank
at the bottom of the hopper, and then is transferred to the top of the horizontal screen. The
water pipe at the upper part of the horizontal screen is opened to wash the spoil, and the
sand and gravel with a diameter greater than 50 mm are smashed through the crusher.
Sand with a diameter less than 50 mm is transported to the next step by belt for secondary
water washing of the closed screen. The detailed operating system is shown in Figure 4.
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3.1.4. Secondary Washing of Closed Screen

In this step, the vibration motor of the closed screen is started in turn, and the starting
time interval between the two motors is 6 s to 8 s. At the same time, the high-pressure water
for washing is turned on, and the belt conveyor for feeding is started after the vibrating
screen operates stably. After feeding, the sand with a particle size less than 3 mm can be
washed by high-pressure water above the closed screen to remove slurry in the aggregate.
The sand with a particle size less than 3 mm is naturally dropped into the water tank of
spiral fine sand for the third flushing, while the sand with a particle size greater than 3 mm
is transported to the impact fracture by the belt for crushing and shaping.

3.1.5. Crushing

The sand with a particle size greater than 3 mm is screened out by the closed screen in
the previous link and stored in the feeder on the upper part of the impact broken by the
conveyor belt. When the storage weight of the feeder exceeds 100 tons, the lower crusher
can be started for crushing and shaping. This causes the sand with a particle size less
than 3 mm to easily discharge from the discharge pipe, through a return belt into the sand
washing machine to form a circulating sand-making process.

3.1.6. Spiral Sand Washing

The spiral sand washer is mainly composed of a motor, feed inlet pipe, spiral blade,
water tank, and slurry outlet. Before starting the motor, sufficient water must be added
to the water tank. When the machine runs smoothly, the fine sand screened by the closed
screen will be sent to the water tank through the feed inlet. Sand is washed away by currents
moving in parallel and in the reverse direction. The sand is scoured and desilted by the
water flow in the forward and reverse directions simultaneously. When the spoil content
of the slurry is large, the sewage can be cleaned and then the water can be injected again
to wash the sand again. The slurry and sewage obtained during cleaning are discharged
through the slurry outlet. Clean sand is pumped to the discharge port through spiral blades
and falls into the vibrating dewatering screen for dehydration.

3.1.7. Dehydration

After the dehydration screen is started and stabilized, the clean sand will fall into the
sieve plate of the dehydration screen. The water content of the sand is reduced to less than
4% after dehydration. The dehydrated sand is transported to the finished sand yard by belt.

3.1.8. Flocculent Settling

This step is mainly aimed at the slurry in slurry shield and slurry produced during the
sand washing. After starting the slurry pump, polyacrylamide is automatically added to
the concentration tank to cause the chemical reaction. After the auxiliary agent fully reacts
with the slurry, the flocculation stratification effect will be formed after standing. Due to
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the mixed impurities of the thick slurry, its overall density is higher than that of the clean
water, and it is at the bottom. Clean water is on the top. The slurry pump is turned on at
the bottom of the concentrator, and the concentrated slurry at the bottom is pumped to the
filter press for further processing. The supernatant of the upper layer flows naturally into
the clean water pool through the sink for recycling.

3.1.9. Filter Pressing

The filter press system is mainly composed of a filter press, air compressor, slurry
pump, slurry tank, and control system. After the slurry pump sends the slurry in the
underflow flow slurry tank to the closed chamber between the filter plates of the filter press,
the solid particles of the slurry are intercepted by the filter cloth and gradually enriched to
form the filter cake, while the filtrate flows out through the filter cloth and enters the filtrate
collection tank. When the liquid level in the tank reaches a certain height, the drainage
pump will be opened to discharge the filtrate. When the liquid level in the tank decreases
to a certain height, the drainage pump will stop. The remaining filtrate is used for pipe
flushing. The detailed filter pressing system is shown in Figure 5.
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3.2. Economic and Environmental Analysis

Calculated based on the rules introduced in Section 2.4, the cost of shield sludge re-
sourcing mainly includes the construction and installation costs, production and operation
costs, recycled sand revenues, and waste treatment costs. Although the cost indicators of
the first three are greater than conventional treatment, the cost savings of waste treatment
are much greater than the first three. Substituting the above costs into the formula, the
total cost of shield gangue resources is 46.21 million yuan, as shown in Table 1. Compared
with the total cost of conventional disposal of 51.2 million yuan, there is a reduction of
4.99 million yuan. The economic benefits are more significant.

Table 1. Energy Carbon Emission Factors.

Type of Energy
Carbon Content

per Unit Calorific
Value/(t C/TJ)

Carbon Oxidation
Rate/%

Carbon Emission
Factor/

(kg CO2e/Unit)

Petrol 20.2 0.98 3.10
Diesel 18.9 0.98 2.93

Electrical power / / 0.89~0.81

In addition, CO2 emission was adopted as the environmental impact evaluation index.
The carbon emission of the whole life cycle of the shield slag was evaluated. The total
conventional carbon emissions of the project were compared with the total carbon emissions
after reduction. Expenditures by sub-item are shown in Table 2. It is calculated that about
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160,000 cubic meters of shield soil recycled in this project can reduce CO2 emissions by
48.2%. Overall, the closed-loop management of waste on-site treatment has been realized
to achieve the near-zero emission of solid waste and reduce carbon dioxide emission.

Table 2. Calculation of Economic Benefits.

Number Cost Item Quantities Cost of
Recycling

Cost of Convention
Disposal

1 Construction and
Installation

Equipment
foundation 18,000 m2 ¥4,320,000 0

Procurement and
Installation

1 set of sand washing system;
3 filter presses ¥13,700,000 0

Supporting
Facilities

Closed plant; Pipeline
transmission system;
Belt conveyor system

¥2,000,000 0

2
Production and

Operation

Labor 30 people/month,
16 months ¥3,840,000 0

Water and
Electricity

Total power 1186 kw;
Synchronization coefficient 0.45;

16 months of operation
¥3,070,000 0

Materials 1 ton/thousand m3 slurry of
Reagent cost

¥2,880,000 0

3 Spoil Disposal Waste spoil 160,000 m3 ¥22,400,000 ¥51,200,000

4 Reclaimed Sand Reclaimed sand 50,000 m3 ¥6,000,000 0

5 Total 1 + 2 + 3 − 4 ¥46,210,000 ¥51,200,000

After the calculation of the formula, the final results of the indicators are shown in
Table 3.

Table 3. Total Carbon Emission of Shield Spoil.

Characteristics Total Conventional CO2
Total CO2 after Input of

Resource Equipment

Shield spoil disposal 158,443 m3 8.69 × 106 kg 4.45 × 106 kg
Cubic meter index Solid cube index 54.8 kg/m3 28.1 kg/m3

Percentage Based on conventional total
carbon emissions — 51.2%

4. Discussion

The above content describes in detail the recycling steps of mud-water balance shield
sludge and soil-pressure balance shield sludge, and analyzing the economic and envi-
ronmental benefits, it is not difficult to find that the resourceful disposal of waste shield
sludge is optimistic. Through the recycling process, the sludge and mud are eventually
transformed into resourceful products, such as treated water, mud cake, and regenerated
sand, which can be reused in the construction as shown in Figure 6.

The two reasons behind the positive results are mainly that: on the one hand, the
policy plays a leading and restraining role. In recent years, China has promulgated a series
of laws and regulations such as the urban construction waste and engineering slag disposal
management regulations and related solid waste pollution prevention and control law [13],
which have increased the control of subway engineering slag and at the same time enhanced
the incentives for the resourceful disposal of slag, which causes the construction enterprises
comply with the direction of intensive resource conservation [11,30]. On the other hand,
with the social happiness index, the pursuit of the high-quality social development concept
has been deeply rooted in people’s hearts, and practices such as following the sloppy
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method of slag landfill will affect the living environment of local residents [31,32]. Therefore,
the method introduced in this study is an inevitable way for enterprises to explore the path
of resourceful treatment of shield slag [33].
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Since our data project the consumption during the construction period by counting the
electricity meter and the fuel consumption of machinery, and the process did not include
the water consumption, the data are still not comprehensive enough. Secondly, there are
many situations on the construction site such as delays due to non-essential factors and
midway changes, and it is inevitable that some data will be lost in the process of on-site
collection, resulting in the ambiguity of some of the characteristics of the shield slag. In
addition, this paper only analyzes a section of Shenzhen Metro Line 13, not the other
sections of the line for collection and analysis, so there is still room for improvement in the
resourcefulness of metro shield slag. Future research can be based on the characteristics of
the slag and slurry materials to establish classification and grading standards for processing
and make it easy to count the consumption; secondly, the water consumption data can
also be added to make the results of carbon reduction calculations more accurate. What is
more worth thinking about is that, in the shield structure sludge environmental protection
treatment method, the form of sludge will be converted between solid and fluid, and the
treatment process of the various sub-systems and the various equipment, if there is no
fusion of parameter matching, will cause pool or pipeline silt blockage, damage to the
equipment, cyclone pressure failure, and other back problems. Then, the system would not
be able to match the stability of the work, and there is no guarantee of the recovery of the
quality of the product and the output. The system will not be able to work stably for a long
time, and then the quality and yield of the recovered products cannot be guaranteed.

In conclusion, the recycling of construction waste in the construction industry is
unavoidable, which is conducive to environmental protection and the conservation of
natural resources [34]. In terms of reducing carbon emissions, this method has achieved
remarkable results. The overall carbon emission of 160,000 m3 shield soil of the project is
51% lower than that of the whole project, which positively responds to the goals of “peak
carbon dioxide emission” and “carbon neutrality”, and positively responds to the policy of
“zero-waste city”, in a way that is replicable and applicable.

5. Conclusions

The method described in this study is a more complete shield soil resource recycling
and disposal system and, after the above treatment, the shield soil in the studied case
has been harmlessly disposed of. The method also creates two methods of slurry dewa-
tering for brick-making and coarse aggregate extraction for recycled sand, with a high
overall processing efficiency and good separation effect. Compared with conventional
shield soil disposal, the process saves about 4.99 million yuan in cost, with significant
economic benefits, and the carbon reduction effect is more obvious, which is in line with
the national strategy and policy requirements. This article also provides information on
project site information, stratigraphic conditions, and equipment parameters, with the aim
of facilitating reference for other readers, as well as providing recycling experience for
construction sites with similar geologic conditions, and shield soil recycling management
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strategies for stakeholders. It provides basic data support for government departments to
scientifically formulate shield damage management policies for metro projects.

In order to better promote the application of the described technology process on a
large scale, we suggest doing a good job of geological exploration, according to the results
of the geological survey, to be equipped with suitable equipment parameters, especially
the shield slag resource processing system of the fluid parameter matching problem, the
articulation of the various systems together. In this way, the site can be further improved to
the degree of integration and modularity of the equipment, ensuring better data acquisition
and control and the stability and balance of the system, and avoiding the problem of
machine downtime. In this way, there is no need to change the operating process, only
a need to match the adaptive parameters of the system so that it can be widely used,
and in order to more vigorously promote the transformation of society to high-quality
development, and to promote the country’s early realization of the planning period of the
goal of carbon reduction.
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