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ABSTRACT 
 
Salicylic acid is a well-known signal molecule that mediates plant resistance and is also involved in 
the control of plant development. Conversely, despite its well-established role in plant resistance, its 
impact on plant development is still poorly understood. the body of research indicating the essential 
functions of salicylic acid in controlling cell division and expansion, two processes that ultimately 
determine a plant's structure. This study summarizes the current knowledge of the mechanisms and 
molecular mechanisms via which salicylic acid regulates plant development through a                         
range of pathways. Here, the role of salicylic acid in controlling growth regulation through               
effects on cell division and expansion is highlighted. The methods and molecular                           
processes by which salicylic acid controls stress tolerance through a variety of                               
pathways are compiled in this study. The relationships between salicylic acid and other hormones 
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as well as their significance in determining plant development were also covered. Future crop 
improvement will greatly benefit from a deeper understanding of the process underpinning salicylic 
acid-mediated growth. 
 

 
Keywords: Cell division; hormones; plant resistance; salicylic acid. 
 

1. INTRODUCTION 
 

Ortho-hydroxybenzoic acid, or salicylic acid (SA) 
— derived from the Latin word Salix, which 
means willow tree — is another name for the 
phenolic derivative that is widely found in the 
plant kingdom and is recognized for its ability to 
regulate several physiological and biochemical 
processes, including plant signaling or defense 
mechanism, thermogenesis, and response to 
different abiotic and biotic stress [1,2]. Salicylic 
acid may be extracted from plants in both free 
and conjugated form, and it is a member of a 
broad class of plant phenolics from a chemical 
perspective. The conjugated form is the aromatic 
ring being hydroxylated, methylated, and/or 
glucosylated [3,4]. Johan Büchner first extracted 
salicin, one of the naturally occurring salicylic 
acid derivatives, from the willow tree’s (Salix sp.) 
bark in 1828 [5,6]. The concentration of this 
natural compound in plants varies significantly 
with the seasons by 3 mg/g of fresh biomass in 
S. laponum plants [7]. The highest content of 
salicylic acid is found in spring and summer and 
the lowest content in autumn and winter. 
Subsequently, it was found that nearly all willow 
trees, including Salix daphnoides, Salix 
purpurea, Salix alba, and Salix fragilis were 
particularly rich in it [7]. The Italian chemist 
Raffaele Piria obtained salicylic acid in the bloom 
and buds of the European plant Spiraea ulmaria, 
later renamed Filipendula ulmaria (L.) Maxim. 
Piria was the first scientist to find this natural 
substance in species other than Salix sp. in late 
1838. The identification of these phytohormones 

as non-specific to the Salix genus has allowed 
for further research into its production, 
biochemical properties, and physiological roles in 
plants [8]. 
  
In terms of production, two metabolic pathways 
are known to produce salicylic acid via the 
shikimate pathway in terms of its production. The 
first route—also referred to as the phenylalanine 
route—occurs in the cytoplasm of the cell. Trans-
cinnamic acid (t-CA), which is oxidized to 
benzoic acid (BA) is produced by the enzyme 
phenylalanine ammonia lyase (PAL) from 
phenylalanine (Phe). Salicylic acid is 
subsequently formed via the hydroxylation of the 
aromatic ring of benzoic acid (BA), which is 
catalyzed by the enzyme benzoic-acid-2-
hydroxylase (BA2H). Hydrogen peroxide (H2O2) 
must be present for BA2H to convert benzoic 
acid (BA) into salicylic acid [9- 11]. The initial 
evidence for the first pathway came from Ellis 
and Amrchein, who noted that salicylic acid was 
produced when Gaultheria procumbens plants 
were fed with 14C-cinnamic acid or 14C-benzoic 
acid [12]. Nevertheless, new findings suggest 
that salicylic acid is most likely derived directly 
from benzoyl glucose, a conjugated form of 
benzoic acid (BA) [11,13]. The second step, 
known as the isochorismate (IC) pathway, takes 
place within the chloroplast [14- 16]. 
Isochorismate pyruvate lyase (IPL) and 
Isochorismate synthase (ICS) are the two 
enzymes that catalyze the conversion of 
chorismate in plants into isochorismate and 
ultimately salicylic acid. 

 

 
 

Fig. 1. Various effects of salicylic acid on field crops 
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Fig. 2. Role of Salicylic acid on growth and development of field crops 

 
It is well recognized from a physiological 
perspective that salicylic acid is essential for 
controlling plant development and growth 
regulation, defense against different abiotic and 
biotic stress, and immunological responses (Fig 
1) [4,17- 21]. From that point on, there was an 
exponential rise in the number of articles 
focusing on salicylic acid as a plant growth 
regulator, signaling molecule, and plant elicitor 
that protects plants from different abiotic and 
biotic stresses [20- 27]. The current study 
provides an extensive compilation of data on the 
roles that salicylic acid plays in plant stress 
tolerance as well as plant growth and 
development by focusing on these factors (Fig 
2). The goal is to provide a clear image of 
salicylic acid and aid in directing further studies 
on this subject. 

 
2. LITERATURE REVIEW 

 

2.1 The Role of Salicylic Acid on Growth 
and Development of Plants 

 
Salicylic acid may exhibit controversial roles in 
the growth and development of plants, contingent 
on its concentration, the plant's growing 
environment, and its stage of development [28]. 
Elevated levels of salicylic acid can often impede 
the growth and development of plants (which is 
contingent upon the plant type; however, 

concentrations exceeding 1 mM are deemed 
high). Nevertheless, utilizing appropriate doses 
of salicylic acid has advantageous effects. 
Salicylic acid has been shown to promote growth 
in various plant species under both normal and 
diverse abiotic stress conditions [29]. 
  
Exogenous salicylic acid application diversely 
impacts plant growth, such as seed germination, 
budding, blooming, fruit setting, and ripening. 
Salicylic acid-induced blooming in finger millet 
plants [30]. Seed germination of maize and 
barley was inhibited when infused with more than 
3 mM of salicylic acid [31]. However, ingesting 
maize seeds by 0.3 mM - 0.9 mM salicylic acid 
resulted in increased shoot length, germination 
rate, and germination percentage [32]. The 
strongest germination-stimulating impact was 
notably shown by 0.43 mM salicylic acid; 
however, at higher doses, its effect was 
diminished. So, various salicylic acid can either 
promote or inhibit plant growth in various plant 
species. 
 

2.2 The Role of Salicylic Acid on Biotic 
Stress Tolerance 
 

Salicylic acid is a plant defense-related hormone 
essential for resistance to several microbial 
diseases, including fungi, bacteria, viruses, and 
oomycetes [33]. It is widely known that 
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endogenous salicylic acid levels in plants are 
positively correlated with resistance mechanisms 
to both biotrophic and hemibiotrophic diseases 
[34]. Additionally, the use of exogenous salicylic 
acid induces local and systemic acquired 
resistance to several pathogens, such as 
Alternaria alternata, Fusarium oxysporum, 
Colletotrichum gloeosporides, Magnaporthe 
grisea, Xanthomonas spp., various viruses, and 
so forth [35- 37] (Table 1). Notably, the growth of 
the powdery mildew disease in cucumber plants 
was almost entirely inhibited by the exogenous 
application of salicylic acid. Due to its intricacy, 
salicylic acid's functions in plant defense against 
necrotrophic diseases are yet unclear. There 
have been a few reports of exogenous salicylic 
acid treatment-induced higher sensitivity among 
various plant-necrotrophic pathogen interactions. 
Salicylic acid treatment in broad beans reduced 
red light-induced resistance to the necrotrophic 
fungus Botrytis cinerea, but it did not increase 
black light-induced vulnerability [38]. Application 
of tomato SA-induced increased susceptibility in 
a dose-established way against B. cinerea. It is 
also controversially suggested that salicylic acid 
increases the resistance of Arabidopsis and 
tomato plants to B. cinerea [39,40]. 
 

2.3 The Role of Salicylic Acid on Abiotic 
Stress Tolerance 

 

Plant productivity is threatened by climate 
change and continuous crop production due to 

several abiotic stressors, including salinity, 
ozone, UV light, temperature, drought, and heavy 
metals [46]. It is interesting to note that in 
addition to resistance to biotic stresses, salicylic 
acid regulates tolerance to various abiotic stimuli 
[47] (Table 2). The following are the mechanisms 
of salicylic acid-induced abiotic stress tolerance: 
(1) accumulation of osmolytes that can support 
the maintenance of osmotic homeostasis; (2) 
regulating minerals absorption; (3) increased 
activity of scavenging reactive oxygen species; 
(4) increased production of secondary 
metabolites, including nitrogen (alkaloids, non-
protein amino acids, and cyanogenic glucosides,) 
and sulphur-containing compounds (allinin, 
glutathione, thionins, phytoalexins, defensins, 
and glucosinolates) and (5) control of additional 
hormone pathways [47,48]. 
 
A group of pathogenesis-related (PR) genes, 
including PR1, PR2, and PR5, are expressed 
upon exogenous salicylic acid treatment is 
applied [49]. Transgenic overexpression of 
several PR genes improved tolerance to various 
abiotic stressors as well as resistance to various 
infections [50- 52]. Increased resistance to heavy 
metals was shown by transgenic tobacco that 
overexpressed pepper PR-1 [51]. In Arabidopsis 
plants, overexpression of pepper PR-1 increased 
resistance to salt and drought stress [50]. 
Additional studies are needed to understand the 
underlying molecular processes by which these 
PR proteins enhance resistance to abiotic stress. 

 
Table 1. Enhancement of disease resistance mechanism by foliar spray of SA in different 

plants 
 

Host Pathogen 
Salicylic acid 
concentration 

Effect Reference 

Oryza sativa 
(Rice) 

Xanthomonas 
oryzae 

1 mM 
Reduction of leaf 
blight lesion  

[41] 

1 mM 
Reduction of severity 
of disease (30%) 

[42] 

Magnaporthe 
grisea 

8 mM 
Reduction of severity 
of disease (70%) 

[43] 

Oebalus pugnax 16 mM 
Reduce the number 
of bugs (35%) 

[44] 

Cicer arietinum 
(Chickpea) 

Fusarium 
oxysporum 

14.5 mM (stem) 
Reduction of severity 
of disease (20%) [45] 

 
0.58 mM (soil) 

Reduction of severity 
of disease (20 %) 

Vigna mungo 
(Black gram) 

Mungbean 
yellow mosaic 
Indian virus 
(MYMIV) 

0.1 mM 
Reduction of severity 
of disease (71%) 

[36] 
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2.4 Salicylic Acid and Plant Microbes 
 

The plant science community has recently shown 
increased interest in studies examining the 
relationship between plant health and the 
microbiome [57, 58]. The impact of salicylic acid 
on the microbiome of the model plant 
Arabidopsis thaliana was examined using either 
exogenous salicylic acid application or mutants 
with changed endogenous salicylic acid levels 
[59]. Results showed that the application of 
salicylic acid significantly increased the amount 
of certain bacterial isolates from the Synthetic 
Community (SynCom) experiment and 
decreased the amount of Mitsuaria sp. 370 (β-
Proteobacteria). Furthermore, in cpr5 mutants 
that constitutively manufacture salicylic acid, the 
population densities of 12 groups of 
Proteobacteria and nine Actinobacteria groups 
was decreased and raised, respectively. This 
implies that salicylic acid may significantly 
change the microbiome of the soil or 
rhizosphere. Stimulation of the systemic immune 
response has so far been the main effect of 
salicylic acid effects on plants so far                         
after soil drench application; however,                          
not much is known about the effects of 
compounds on endophytic microbiomes or                 
plant roots [60].  

 

2.5 Salicylic Acid with Other Plant Growth 
Regulators (PGRs) 

 
Salicylic acid controls many plant responses by 
interacting with other plant growth regulators or 
plant hormones under both favorable and 
unfavorable conditions. Under both ideal and 
stressful conditions, the relationship between 
salicylic acid and other hormones, including 
cytokinin, auxin, gibberellins, abscisic acid, 
brassinosteroids, and ethylene has been 
investigated. In stressful situations, the 
interaction between salicylic acid and hormones 
may have an antagonistic or synergistic effect. 
Tamás et al. [61] recently examined how salicylic 
acid controlled the reduction of Cd-induced 
auxin-mediated ROS (reactive oxygen species) 
generation in barley roots, hence mitigating Cd 
stress. The authors hypothesize that salicylic 
acid plays a part in the IAA   (indole-3-acetic 
acid) signaling system since salicylic acid 
treatment reduces the stress responses that IAA 
generates in plants. Agtuca et al. [62] 
documented that salicylic acid and IAA                      
had opposing roles in maize roots. IAA                          
applied exogenously promoted lateral 
development by inhibiting primary root growth, 
while salicylic acid increased the total root 
biomass [62]. 

Table 2. Exogenous application of SA in various plants increases their resistance to abiotic 
stresses 

 

Host 
Abiotic 
stress 

Salicylic acid 
concentration 

Effect Reference 

Triticum aestivum 
(Wheat) 

Freezing 
0.01, 0.1, and 1 
mM 

Cell mortality and the loss 
of PS II quantum yield 
brought on by freezing 
stress were dramatically 
reduced by 0.01 mM                
and 0.1 mM salicylic  
acid. 

[53] 

Zea mays (Maize) Cadmium (Cd) 0.5 mM 

Root DW and shoot FW 
are raised by around 
121% and 262%, 
respectively. 

[54] 

Hordeum vulgare 
(Barley) 

Cadmium (Cd) 0.5 mM 

Root DW and shoot FW 
are raised by around 
127% and 133%, 
respectively. 

[55] 

Osmotic 
stress 

30, 60, and 120 nM 

Approximately 50% less 
osmotic stress-induced 
membrane damage 
occurred. 

[56] 
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Plants may experience oxidative stress and 
increased ethylene production when exposed to 
several environmental conditions, such as heavy 
metals (HM) [47]. Peak expression of ethylene-
related biosynthetic genes or expression of 
ethylene-responsive genes is the cause of the 
enhanced ethylene synthesis. The exogenous 
spray of salicylic acid helped wheat under Cd 
stress by raising GSH levels, which led to metal 
detoxification and scavenged ROS (reactive 
oxygen species) produced by HM (heavy 
metals)-triggered ethylene synthesis. Addition of 
salicylic acid under Cd stress increased abscisic 
acid (ABA) levels in wheat seedlings, which were 
linked to the biosynthesis of ABA [63]. 
Additionally, during HM stress, endogenous ABA 
regulated SA-mediated changes in dehydrin 
protein concentration, indicating the protective 
function of salicylic acid in wheat plants [63]. 
 
Crosstalk between salicylic acid and jasmonate 
is required to regulate plant development in the 
presence of abiotic stressors [64, 65]. The 
signaling pathways for jasmonic acid and 
salicylic acid often function antagonistically. The 
antagonistic effect between salicylic acid and 
jasmonic acid cell signaling is mediated by the 
Mitogen-Activated Protein Kinase (MAPK) 
signaling pathway [66]. Nonantagonistic 
interactions between salicylic acid and jasmonic 
acid have also been recorded, although further 
research is necessary to determine the precise 
mechanism [64]. Cu stress caused salicylic acid 
production in maize plants, which in turn caused 
jasmonic acid priming and jasmonic acid-induced 
volatile organic molecules. 
 

3. CONCLUSION 
 
Salicylic acid and its derivatives are promising as 
environmentally friendly plant protection products 
because of their positive effects on plant and 
human health. Determining the optimal 
concentration from micromolar to low millimolar 
levels is important to provide disease resistance 
without interfering with plant growth. Higher 
concentrations of 2 mM can act as effective 
growth regulators to slow development and 
control disease. Research into natural salicylic 
acid derivatives, such as amorphutin, with 
improved efficacy may lead to the development 
of more effective plant protection methods. 
Further research is needed to understand the 
practical applications of salicylic acid in various 
crop species and to develop sustainable and 
cost-effective crop management systems using 
these versatile compounds. 
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