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Abstract

Over millennia, nobody has been able to predict where prime numbers sprout
or how they spread. This study establishes the Periodic Table of Primes (PTP)
using four prime numbers 2, 3, 5, and 7. We identify 48 integers out of a pe-
riod 2x3x5x7=210 to be the roots of all primes as well as composites
without factors of 2, 3, 5, and 7. Each prime, twin primes, or composite
without factors of 2, 3, 5, and 7 is an offspring of the 48 integers uniquely al-
located on the PTP. Three major establishments made in the article are the
Formula of Primes, the Periodic Table of Primes, and the Counting Functions
of Primes and Twin Primes.
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1. Introduction

One of the greatest theorems of mathematics states that a composite integer can
be represented uniquely as a product of primes. Today primes as roots of integ-
ers are studied and applied widely to data science, cryptography [1], systems re-
liability design [2], etc. For a long time, many said these integer roots grew like
weeds among natural numbers, and nobody could predict where the next primes
may sprout [3]. Many believe that primes are unpredictable. Oliver and Sounda-
ranjan [4] investigated the distribution of consecutive primes, while Luque and
Lacasa [5] reported patterns of the last digit of primes. Wang [6] adopted pic-
tures to search for regularities of some of the primes, but with significant bias.
Owing to the lack of insight, there is no effective computable formula for
counting functions of primes and twin primes. Studies published to predict pri-

mality and pattern of primes are ad hoc with tremendous limitations and uncer-
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tainties.

Some [5] observed that primes located near each other tend to avoid repeating
their last digits, which indicates that primes are not distributed as randomly as
theorists often assume. Others such as Téth [7] found the existence of the primes
in k-tuple where the difference of two neighboring primes stays the same. How-
ever, few are able to explain what and where these tuple primes occur, nor can
they predict the longest tuple primes within an interval.

Initiated by Gauss, there have been studies on counting the total number of
primes and twin primes within an interval, but only approximations were ob-
tained [8] [9]. Since primes are the roots of integers, can we identify the roots of
primes? Can we find rules for generating composites; and if possible, may we say
that, in some aspects, primes are predictable?

Li et al [10] used 2, 3 and 5 in building a universal color system C,;; to unify
RGB (a light color frame) and CMYK (a pigment color frame). C,;; represents
colors R(red), G(green), and B(blue) by primes 2, 3, and 5, respectively. Conse-
quently, C(cyan), M(magenta), Y(yellow), and K(key black) are represented by
3x5=15, 2x5=10, 2x3=6, and 2x3x5=30, respectively. Through this
transformation, all colors are representable by 7 root numbers of 2, 3, 5, 6, 10, 15,
and 30. These root numbers encode millions of colors on a color wheel [10].

Inspired by C,;;, we intend to:

e find a set of integers which serve as the root of primes and twin primes,
o establish the Formula of Primes and build the Periodic Table of Primes (PTP)
that allocates primes, and
e form the Counting Functions of Primes and Twin Primes.
Also accomplished include predicting within an interval, the largest k-tuple

primes [8] with the same difference.

1.1. Steps and Notation Adopted to Build the PTP

First, we define a concise strategy by selecting the roots of primes greater than 10
and composites without factors of 2, 3, 5, and 7, and then form the Cyclic Table
of Composites (CTC) by identifying the locations of such composites, followed
by advancing the Formula of Primes and building the PTP. The procedures are
summarized in 4 steps:

1) Selecting the roots and cycles

Adopting the first four primes 2, 3, 5, and 7, we take 2x3x5x7 =210 as the
length of a period. Within the interval [11, 211], we sort out 48 integers of
primes or composites that do not contain factors of 2, 3, 5, and 7. These 48 in-
tegers, to generate primes and composites, are considered as the roots denoted
by n=11, =13, =17, -, r, =103, r, =107, -+, r,=211. These
rs are placed on the left column of a table.

2) Developing the Cyclic Table of Composites (CTC)

The CTC consists of multiple 48 x 48 tables [Z (i, ] )] derived from the posi-

tions of composites without factors of 2, 3, 5, and 7.

DOI: 10.4236/apm.2024.145023

395 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2024.145023

H.-L. Liet al.

Within an interval of [48(9 -1)+ 1,489} , where fe N, is considered a
cycle, there are 48 integers which do not contain factors of 2, 3, 5, and 7. These
48x 6 integers are either primes or composites, denoted as ¢, =7 =11,
g, =h=13, g;=r=17, -, g, =r, =211, for cycle 1; ¢, =¢, +210=221,
Gso =q, +210=223, -+, g4 =qus +210=421, for cycle 2; ---;

Qaso-1y1 = Qaso-2p1 T210=¢, + 210(0-1),

Dago-1)22 = Dago-2)2 + 210=¢, + 210(0 - 1) , v, and

Guso = Qagior) T 210=qu5 +210(0 1), for cycle 6. We call ¢, to g, segments
of cycle 1, g, to ¢, segments of cycle 2, -+, and G5y, 1O Gugy Se8-
ments of cycle €. The g are placed on the top row of a CTC table of & cycles.

Formulating the CTC of the first cycle, namely, CTC(1), we observe the dual
effect existing in [l (i, ])] , where index / refers to 7, and jrefers to g;, such
that in each row of this table, pairs of entries share the same value of elements
I(i, ])s. We also find for each row in the CTC(1), there is another row comple-
mentary to it, calling it the mirror effect. Specifically, there exist the mirror ef-
fects between the 23 top rows and the next 23 rows as well as between the 47
row and the 48" row of CTC(1). We define the basic CTC (CTC(basic)) to be a
24 x 48 table of [1(i,j)], i=1,2,---23,47 and j=12,,48.

Utilizing the mirror effect, we find the complementary CTC (CTC (comple-
mentary)) a 24 x 48 table made of [l(i,j)] for i=24,25,---,46,48 and
j=1,2,---,48 . Combining the CTC (basic) and the CTC(complementary), we
form CTC(1).

We observe further an intermedia effect in CTC(1) between different cycles of
composite tables where each is 48 x 48 in size.

3) Advancing the Formula of Primes

By deleting all composites located by CTC in an interval, we develop the
Formula of Primes.

Given a positive integer b with b — 211 being a multiplier of 210, an integer
a €[0,b] without factors of 2, 3, 5, and 7 is a prime if and only if there exists an
i€ {1,2,---,48} such that o =r,+210k, for some integer k with k+1¢ L, (l) ,
where L, (z) is a set of l(i,j)s which satisfy some conditions of b and & de-
scribed in the Results section.

4) Building the Periodic Table of Primes (PTP)

Denote PTP(k°,k') as a periodic table of primes from period £’ to &',
k' <k'eN,.PTP(k",k') is a 48x(k'~k"+1) table composed of all primes
within an interval [a,b] ,for a=11+210xk" and h=211+210xk’. Denote
PTP*(k°,k") as a table composed of primes in PTP( Kk plus composites
without factors 2, 3, 5, and 7 within the interval [a,b].

The steps of building a PTP are depicted in Figure 1. Starting from the CTC
(initial), we form a CTC (initial dual). By combining the CTC (initial) and the
CTC (initial dual), we obtain the CTC (basic) which is outlined in the Supple-
ment under Establishing the CTC (basic) by the CTC (initial). Once CTC (1) is
deduced from CTC (basic), all subsequent CTC (2), CTC (3), ..., CTC (6) are
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Note: ®eeeee fordiagonal effect. ®® e e for intermediate effect.

Figure 1. Schematic process of forming the PTP.

readily available. Utilizing CTCs, we generate PTP*(k°,k" ), where we delete all

composites to obtain PTP( k°,k"). The red and green points in Figure 1

represent the diagonal and intermediate effects, respectively, and also show the

cyclical pattern on CTC and the periodical pattern on PTP*.
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1.2. Note

Lei et al [11] held that the evolution of Chinese historical dynasties can be
mapped by the properties of elements’ electrons in the Periodic Table of Chemi-
cal Elements. Wang [12] claimed that irregular primes are the survivors of natu-
ral numbers after regular decimations by primes.

There are various sieve methods to locate primes. In coming up with a solu-
tion for predicting primes, many have searched for a particular pattern of primes
distributions. For example, Holt [13] mentioned structure to cycles due to recur-
sion and created exact relative population models for all gaps up to a certain lev-
el. Dastych found a “mirroring” effect of numbers such as 2 x 3,2 x 3 x 5 and 2
x 3 x 5 x 7 being represented by a wheel which were already in existence [14].
His algorithm originated from playing with Goldbach’s conjecture, but became
useless when the numbers grew large. Others may have expressed their wishes to
organize primes listing over the years. Although we tried to be thorough and are
blessed by many professional colleagues in reaching this unique PTP, we could
miss non-disclosed endeavors made by individuals beyond the publicly accessi-

ble domain.

2. Transformation and Observations

Without loss of generality, discussions in this section on the CTC, the CTC(basic)
and the CTC(complementary) are referred to cycle 1, namely, CTC(1), unless
stated otherwise.

In CTC, consisting of 48 rows and 48 columns, denote 7, as the /” row and
q; the " column.

Let

Sl :{r]:rzs"'arzprﬂ}
= {l 1,13,17,19, 23, 29,31, 37, 41,43,47,53,59,61,67,71,73, 79,
83,89,97,101,103, 209}
S, = {”24”’25:""”46=r48}
= {107, 109,113,121,127,131,137,139,143,149,151,157,163,167,
169,173,179,181,187,191,193, 197,199,211}
and

S:S1 USZ :{ri’rza"'ar48} :{qlﬂq27'“5q48} *

2.1. Transformation

Note that rs and gs are integers in [1 1,21 1] without factors of 2, 3, 5, and 7.
Let (i,j) be at a position in the CTC and l(i,j) the corresponding entry of
point (i, ), where 1<i,j<48, determined by

l(i,j):1+(qj><q]—ri)/210. 1)

Given the /* row and /" column, we observe a unique q; € S that couples
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with ¢; such that g;x q; =1 isa multiplier of 210. Both ¢, and q; depend

on 7, or the /" row.

2.2. Three Statements

An outline of CTC is shown in Figure 2. Various effects in CTC are described by
the following statements. Presented in Figure S1(a) along with an illustrative
example are given in the Supplement under Example for Figure S1(a). Observ-
ing Figure S1(a), note that l(i,i) =q,+1, i=12,---,23,47 . We identify the di-
agonal effect in CTC in Statement 1 below.

Statement 1 (The Diagonal Effect of the CTC)
In the CTC, [(j,j)=q,+1, for j=1.2,--,48 . Moreover, [(j,j)>I(i,})
for i,j=1,2,---,48 and i#j.

Analyzing the distribution of /(i,/) in the /* row of Figure S1(a), we find
the dual effect between [/ (i, j ) and / (i,}), described in Statement 2 below.

Statement 2 (The Dual Effect of the CTC)
In the CTC, for any l(i,j), i,j=1,2,---,48 and i# j, there exists a

je{l,2,,48)
such that /(i, /)= l(i,}).

Statement 2 implies that given / (i, j) , we know [ (i,}') , under which situa-
tion j and j are dual to each other. Take i=1 and 7 =11 for instance,
1(1,5)=1(1,8)=5, where g¢sxgqy=23x37=851=11+210(5-1). Notice that
when j=j, qu. is a descendant of r and l(i,j) appears in the /* row only
once. For instance, /(48,9)=8 appears only once and
417 =1681=211+210x(8-1).

Further elaboration of the dual effect and associated examples are given in the
Supplement under Elaboration of the Dual Effect of the CTC (basic). Analyzing
Figure S1(a) and Figure S1(b), we also identify the mirror effect between each
row of the CTC(basic) and its complementary row in CTC deduced below.

Statement 3 (The Mirror Effect of the CTC)

The mirror effect in the CTC exists between pairs of all rows such that
q;+1,if i# jandi+ j=47

@) 1(47_i’j)+l(i’j):{2q.+1 if i=jori+j=47"
J ’

for i=1,2,---,23, j=1,---,48

q; if j=1,---,46

(id) 1(47,J)+1(4&f'):{2q_ if j=47,48
J? ?
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Note: Numbers in red — for diagonal effect. Numbers in green — for intermediate effect.

Figure 2. An outline of CTC(1).

Statement 3 implies that if we know / (i, j ) for 1<i<23, then we can find
l(47—i,j). Similarly, if we know l(47,j), then we find l(48,j). Following
Statement 3, we form the CTC (complementary), the complementary of the CTC
(basic).

CTC (complementary) is presented as Figure S1(b), in the Supplement.
Merging the CTC (basic) and the CTC (complementary), we obtain the CTC (1)
as the CTC for cycle 1, referring to Figure 2.

Consider CTC in Figure 2. There are two red diagonals shown in Figure 2,
which further elaborates Figure S1(a) and Figure S1(b), The first diagonal is
1(1,1)212 s 1(2,2) =14, -+, and 1(46,46)2200 , and the second one is
1(46,1):11, 1(45,2)213, -+, and 1(1,46)2199. The two cross lines in Fig-
ure 2 are obvious due to the mirror effect. /(47,/) and [(48,),
j=1,2,3,---,48, are mirrors with each other. An example is given in the Sup-
plement under An Associated Example for Statement 3.

Figure S1(a) and Figure S1(b) show another distribution of / (i, j ) on CTC,
named the intermedia effect, which happens at some symmetrical columns, de-
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scribed in the Supplement under Statement and Proof on the Intermedia effect
in the CTC. Both the diagonal effect and the intermedia effect on the CTC are
helpful in showing how to transfer CTC to PTP. In Figure 2, the red and green
numbers represent the diagonal and the intermediate effects, respectively.

Proofs for the above Statements are given in the Supplement under Proofs of

the Statements.

3. Results

This study provides three major results: the Formula of Primes, the Periodic Ta-
ble of Primes, and the Counting Functions of Primes and Twin Primes.

Given a positive integer b=211+210x66", 9.0 e N, , for
ie {1,2,---,48} , define

1,(i)={1(./) +4,(8-1)+q;(0-1)+210(0-1)(8-1)< 00" +1
| j=1,2,---,48, with the corresponding j defined (2)
in Expression (1),0=1,2,---,6" and 0 :1,2,---,5*}

For the case 6 =1 , then
Lb(i)s{l(i,j+48(0—1))£ 0 +1|j=1,2,--,48, andazl,z,---,e*} )

Notice that L, (i) is a set consisting of [(i,j)<A,,,,, for j=1,2,--,480,
where A, , =min; {l(i,j) | j=48(0—-1)+1,48(0—-1)+ 2,---,4&9} for OeN, ,
and 210A,,,, 2b.

Also l(i,j+48(t9—1))=l(i,j)+(t9—1)q].. , where g is derived from Ex-
pression (1). For any positive integer a containing no factors of 2, 3, 5, and 7, a
must have a unique root r, €S such that a-r is a multiple of 210. Moreover,
if a is not a composite number, then it is a prime.

An example for L, (1) where =1 can be found in Supplement for the Text
“7. Justification for Establishing L, (1) and Figure 52”.

3.1. The Formula of Primes

We summarize the Formula of Primes below:

The Formula of Primes

An integer a e [1 l,b] containing no factors of 2, 3, 5, and 7 is a prime if
and only if there exists reS and keN, such that a=7 +210k, with
k+le¢L, (i), i=12,-,48.

A list of £, (1) for various b up to 44521 and 6=1 is given in Figure S2,
which is presented in the Supplement.

3.2. The Periodic Table of Primes

According to CTC(6) and the Formula of Primes, we specify the Periodic Table
of Primes below.
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The Periodic Table of Primes from period 4° to period &’
For given k"eN,, k'eN,, and k'>k’, PTP(k’,k') is a 48x(k'—k’+1)
table [l(i,k + 210)] , where ﬁ() is an integer such that
114+ 211 k° < A(i,k) =r, + 210k <211(k" +1),
for ke N, with k+1¢L, (i) and b=211(k"+1).

Denote PTP*(k°,k’) as the table composed of primes in PTP(k",k") plus
composites without factors of 2, 3, 5 and 7, within an interval
[11+211xK°, 211 (K +1) .

Figure 3 is an outline of PTP*(0, 210), which includes PTP(0, 210) and com-
posites without factors of 2, 3, 5, and 7 within the interval [1 1,1+2102] con-
verted from Figure 2. Figure 3 has 48 rows and 211 columns, for i=1,2,---,48,
and £=0,1,2,3,---,210. ﬂ(i,k) is an integer of the entry (i,k) , computed
from [(i,/) of Figure 2. The two dotted red curves in Figure 3 are configured
from two diagonal red lines of Figure 2, i.e., 12-14-18---198-200 and 11-13-17--
197-199. The two dotted green diamond-shape lines in Figure 3 come from two
green lines of Figure 2 of 24-75-74---29-80 and 84-31-32---77-24.

Figure 4 is a realization of PTP*(0, 10) including primes and composites
without factors of 2, 3, 5, and 7. Further elaboration is seen in the Supplement
under Numerical Illustrations for The Periodic Table of Primes. According to
Gauss [8] [9], the number of primes no more than b is approximately b/Inb .
We find further the exact Counting Function of primes 7z(b) when b-211isa

multiplier of 210.

3.3. The Counting Functions of Primes and Twin Primes

Weuse 7(b) and z (b) to represent the Counting Function of Primes and the

Counting Function of Twin Primes in [1,5] for a natural number b, respectively.

The Counting Function of Primes

Given a positive integer b=211+210xk, (3)

ﬁ(b):4+48x(k+1)—§|Lb(i)|.

Currently, few predict the number of twin-prime pairs in an interval [2, b].
For b - 211 as a multiplier of 210, denote 7'(i,i+1) as the set of twin-prime
pairs on PTP(0,[b/211]), i.e,a setof kwith k+1¢L, (i) and k+1gL,(i+1),
where 7and 7+1 are for the /" and the (#+1)* row on the PTP, respectively. Our
study finds the exact 7 (b) below:

The Counting Function of Twin Primes
”*(b):3+2iew|T(i’i+l) 4 (4)
where W ={1,3,6,9,13,16,22,24,30,33,37,40,43,45,47} .
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Figure 3. An outline of PTP*(0,210).
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25| 109 9/ 11x29 23x23 739 13x73 19x61 37x37 1579 A47x47 17x587,
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Note: Numbers in red — for composites

Figure 4. A partial table of PTP*(0,48).
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Elaborations of Expressions (3) and (4) are given in the Supplement under
Elaborations of Expressions (3) and (4), and examples of computing ﬁ(b) and
7 (b) are illustrated in the Supplement under Examples for the Predictions of
Primes by the PTP.

4. Discussions

The unpredictability of prime numbers forms the basis of many applications,
one being encryption called the RSA algorithm [1]. However, neither the ancient
Sieve of Eratosthenes nor the modern Sieve of Atkin’s algorithms [15] have ever
elaborated the physical meaning of finding primes. Torquato, Zhang and Cour-
cy-Ireland [16] claimed that they found a physical structure pattern hidden in
the distribution of prime numbers, but that discovery still didn’t explain the es-
sence of prime numbers.

This paper identifies 48 natural numbers between 11 and 211, which do not
contain factors of 2, 3, 5, and 7, to be the roots for generating all primes and
composites without factors of 2, 3, 5, and 7. The locations of such composites
exhibit periodic and cyclic properties, as represented by the CTC, which enable
us to eliminate them for finding primes, as represented by the PTP. Treating the
48 roots as the genes of prime numbers, we can easily find the next prime of any
given prime number and identify the next pair of twin primes. Our findings
provide a platform to study many primes-related problems. No primes, twin
primes or primes-related issues can ever surface if such issues are not rooted to
the 48 integers. After all, prime numbers are not as random as many believe.

We form the CTC, followed by the PTP. All these present the primes effec-
tively and with physical meaning. In addition, we can count the exact numbers
of primes and twin primes within an interval. Discussed below are some further
thoughts.

1) Instead of choosing 2, 3, 5 and 7, one may add 11, 13, or more primes to
generate the roots. By so doing, the PTP will gradually become gigantic, too
complicated, and too difficult to visualize, although likely more effective. If one
is interested in the behaviors of super-large primes, one could find it useful in
such large tables, which may be extended to infinite. On the other hand, one
may choose 2, 3, and 5 to generate 8 roots for a small prime table.

2) The PTP is helpful in understanding many unclear phenomena. For in-
stance, it explains a troublesome observation [5] that for a given prime with the
last digit of 1, the chance of its next prime to have 1 as its last digit is much less
than that of 3 or 7 or 9. From the Formula of Primes, if a given prime is 221 (ie,
0=2, r,=11), then the most possible near primes should be firstly 223 (ie,
6=2, r,=13), followed by 227, 229, 233, 239, and 241.

3) From the 48 roots identified, we find no triplet or higher multiples of
primes existing in the roots. Therefore, there will be no triplet primes found in
future generations. Likewise, all twin primes will appear exactly at the parallel
locations as those appearing in the 48 roots of the PTP. This implies that all

twin-prime pairs are descendants of 15 pairs of twin primes or composites. In
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fact, an equal chance is found in the last digit of the 48 roots for 1, 3, 7, and 9.
Therefore, the last digits for all primes will each have a 25% chance of being 1, 3,
7, and 9 when primes go to infinity.

4) This is the first time that a visualizable prime table is built with proofs us-
ing a manageable set of primes as the basis for making useable influences and
clarifying some questions of interest in existence for years. Just like reported,
openly or not, by Oliver and Soundaranjan [4], Wang [12], Holt [13], Dastych
[14], etc., no conclusion has been drawn on establishing a compact table for
primes of any kind.

In contrast, from building the CTC, we demonstrate that every prime has an
ancestor among 48 integers which include 43 primes and 5 composites, and
every twin-prime pair comes from an ancestor of 15 pairs of these 48 integers.
We develop the algorithms and give illustrating examples in the Supplement us-
ing the PTP from which we draw several inferences and present some useful ap-
plications.

5) Beyond the fundamental investigation, this study is due to part of our ef-
forts in exploring various applications of primes, including systems reliability
design [2], and building a color system C,;; to unify RGB and CMYK and to en-
code millions of colors on a color wheel [10]. The universal color system wins
the Special Prize and the Gold Medal with Congratulations of the Jury at the 49™

International Exhibition of Inventions of Geneva.

5. Conclusions

This paper selected 48 integers as the roots to generate primes and composites
without the factors of 2, 3, 5, and 7. We constructed a composite table, CTC,
further observing the diagonal effect, the dual effect and the mirror effect. Based
on the CTC, this paper introduced the first closed form expressions for the
Formula of Primes and the Periodic Table of Primes. The Counting Functions of
Primes and Twin Primes are then readily deduced. Related mathematical proofs
and computations are exercised to testify the correctness of the above state-
ments.

While there exist proven and unproven concepts, approaches and analysis in
the literature, our study clearly shows that any prime except 2, 3, 5, and 7 can be
uniquely rooted to one of 48 natural numbers between 11 and 220 in cycles of
length 210. Moreover, any twin-prime pair can be uniquely rooted to a pair of
the same 48 roots in cycles of length 210. We show that all composite numbers
with no factors of 2, 3, 5, and 7 appear in cyclic manner. To the best of our
knowledge, these fundamental findings are the first to systematically and con-
cretely address in the open literature. People may have used terminologies simi-
lar to this study, but neither similar results nor close form solutions have ever

been presented.
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Supplement for the Text
1. Establishing the CTC (basic) by the CTC (initial)

Specifically, we adopt the following steps to establish the CTC (basic):

a) From the CTC (basic) of Figure 1, we find 23 x 23 CTC (initial) table for
the first cycle. In the CTC (initial), its entries of [l(i,j)} ,for i=1,2,---,23 and
j=1,2,---,23, are both starting from 11; namely, the left column contains
T, ly,e ooyl and the top row contains g,,q,, ++,¢y; -

b) Applying the dual effect, we form another 23 x 23 CTC (initial dual) table
from CTC (initial). In this new table, its entries of [l(i,j)] , for i=1,2,---,23
and j=24,25,---,46, are the first 23 roots starting from 11 for “/’s and the 24™
to 46" roots for “/’s, respectively. Namely, the left column contains 7,7,,-*,7;,
and the top row contains q,,,¢,s, ", ¢ -

c) Add r,,as the end of the 24™ row and add g,,and g, as the end of the 47"
and the 48" columns. Namely, the left column contains r;; as the last index and
the top row contains ¢,,, g,sas the last two indices.

d) Combine tables developed by a, b, and ¢ steps to complete CTC(basic).

As shown in Figure 1, there are the CTC(initial), the CTC(initial-dual), the
CTC(basic), the CTC(complementary), and CTC(1).

CTC(initial) ={/(i, j)|i =1,2,--,23; j =1,2,---,23},
CTC(initial-dual) = {/(i, j)|i=1,2,-,23; j = 24,---, 46} ,
CTC(basic)={/(i,j)|i=1,2,-+,23,47; j =1,2,---,48},
CTC(complementary) = {/(i, /) |i =24,25,---,46,48; j =1,2,---,48} ,
CTC(1)={1(i,j)|i,j=1,2,+-,48} .
2. Example for Figure S1(a)

Given ¢, =11, compute l(l,l) as follows:

X g, —1, 11xg. —11
Since l(l,l):l+w,and the unique ¢; to let % be an in-
teger is
11x211-11
- =21L0(L1)=1+—=1+11=12.
% ( ) 210

Similarly, we find

1(2,1),1(3,1),1(4,1),1(5,1),1(6,1),-+-,1(23,1),1(47,1) = (10,6,4,11,5,---,8,1).

3. Elaboration of the Dual Effect of the CTC (basic)

In the CTC(1), the dual effect made in Statement 2 can be further elaborated
below between /(i,/) and l(i,}’).

(i) For I(i,j)=1(i,]),if 1<j,j<23, then
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. . . A Qa7-;*4dy7_;( 1, . T
1(1347_]):l<l’47_1):1+_qj,x(:](erl(l’])_lj_m'
J j

(ii) For l(i,j)zl(i,]'),for 1< j<23 but not for j,then 24< ;<46 and
r+210[1(i,j)-1]
q; '

q9; =

By utilizing Statement 2, we can generate a new table CTC(initial dual) in the
Introduction from CTC(initial). Taking the first row, Ze. i=1 and 7 =11 as
an example (Figure 2):

(i) Since /(1,2)=1(1,3)=2, we have

11

1(1,47-2):1(1,47—3)=1+M(l+l(1,2)—1j——=182
0, %xq \210 210

Similarly, since 1(1,5) = 1(1,8) =5, we have
G XG5 [ 11 11
1(1,47-5)=1(1,47-8)=1+2—"2 +1(1,5 —-——=155
(’ ) (’ ) " s X gy [210 ( ) ) 210

(ii) For i=1 and ;j=1,6,10,12,---,19,21,22, we do not have 1< ;<23 to

fit l(l,j):l(l,j'),thenwe compute l(l,}) for 24<j<46.
When j=1, ¢ =11 and [(11)=12,

inee T210((L1)-1) 11+210(12-1)
% 11

=211=gq,, we have

=48 and /(1,48)=1(L1)=12

When =6, g,=29 and /(1,6)=16,

i +210(1(1,6)_1) =109 = ¢, , we have
25>

since
9
6=25 and l(l,25)=1(1,6)=16.
Similarly, we can predict /(1,26)=1/(1,15)=3 1(1,28)=1(1,1 )
1(1,29)=1(1,14)=39, 1(1,30)=1(1,10)=29, -, (1 41)= (1,22)=88

4. An Associated Example for Statement 3

Comparing the CTC (basic) with the CTC (complementary) and referring to
Figure S1(a) and Figure S1(b), it is clear that:
Given j=1 and ¢ =11,wehave /(1,1)+/(46,1)=12+11=2¢, +1.
Given j=2 and ¢, =13,wehave /(2,2)+/(45,2)=14+13=2q, +1.
Given j=1 and ¢, =11,for i=2,wehave
1(451)+1(2,1)=2+10=12=¢, +1.
Given j=12 and ¢, =53,for i=1,
1(46,12)+1(1,12)=21+33=54=¢,, +1; for i=23,
1(24,12)+1(23,12) =28 +26=54=¢,, +1; for i=47,
1(47,12)+1(48,12)=26+27=53=gq,, .
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5. Statement and Proof of the Intermedia Effect in the CTC(1)

Figure S1(a) and Figure S1(b) show another distribution of / (i, j) on the
CTC, named the intermedia effect, which happens at some symmetrical columns,

described below.

The intermedia effect in the CTC(1)

In CTC(1), there exists the intermedia effect between columns 23 and 24
such that, for i=1,2,---,48,

@) if 7(i,23)+ l(i,24) =108, then l(i,23) = 1(47 -i,24),

(ii) if l(i,23)+l(i,24) =106, then l(i,23)+ 2= 1(47 - i,24) .

For instances, in the case of green columns 23 and 24 of Figure 2,
1(19,23)=1(28,24)=6, -+, 1(2,23)+2=1(45,24)=77. Other column pairs
also exhibit the intermedia effect. For example, in the case of columns 22 and 25,
if 1(i,22)+1(i,25)=110, then [(i,22)=1(47~i,25).

Proof of the intermedia effect in the CTC

For the case of columns 23 and 24,

(i) From the mirror effect, we have [(i,24)+/(47—i,24)=q,, +1=108.

If 7(i,23)+1(i,24) =108, then [(i,23)=108~1(i,24)=1(47~i,24).

(ii) If 7(i,23)+1(i,24) =106, then [(i,23)+2=108-1(i,24)=1(47-i,24).

For the case of columns 22 and 25, from the mirror effect, we know
1(i,25)+1(47-1,25)=¢,; +1=109+1=110

If 7(i,22)+1(i,25)=110, then [(i,22)=1(47-i,25).

6. Proofs of the Statements

Proof of Statement 1
Foreach i,j=1,2,---,48, notice that in CTC(1),

4;%9; 77

J
210
q,(211-1)
210

1(j,j)=1+

=1+

=1+gq;,

as r; =g, and we choose q; =qus =211

For a given j, r,=q,xq;—(/(i,j)~1)x210 for some ;j.This means that a
fixed 7 is the remainder of ¢, x q; subtracting the maximum multiple of 210
smaller than ¢, x q; - Since q; =qus =211 s the largest q; hence
1(j,j)=1(i,))-

Proof of Statement 2

. . 4,9; — 1 . A
By definition, l(l,j)=l+T, l(l,j)=1+—.

Therefore, we have l(i’j):l(i’j):1+
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Proof of Statement 3

(©): In this proof, we use q; to differentiate q; given different r,.

i

Notice that r,, ,+r =210, Vi=1,---,23,

959 47-1) ~ Tar-i

l(47—i,j)=1+ 510 for some D and
. 495 — i

I(i,j)=1+—2— forsome g, .

( -]) 210 qj\l

Hence,

N 4dji (%"\(474) + q.}\; ) -210
210

+ 4 (q]|(47—i) + q_ﬂi)
210

1(47-i,/)+1(i,j)=2

9 (q.?\(47—i) + qﬂi)

Since 10 must be an integer, and ¢, has no factors of
2,3,5,7, Da7-) T4, must be a multiple of 210. This happens only
when
210, if j|(47-i)+jli=47
Dia7-0 T4 = A A
JET I 400, if 7|(47—1)or ji=48
Therefore,

g+ ifi# jand47—i# j

l(47—i,j)+l(i,j):{

2q,+1, ifi=jord7—i=j
(i):  Notice that 7, +r, =209 +211=420 . Hence

. Ao —F, . Ao —
1(47,))+1(48, /)= (1 Loty T j+ (1 s drei " ]

210 210

_ dji (qj|47 + qj'|4s)
210
;s if 4T+ ] |48 =47
~|2g,,, if j|470r j|48=48

The 2™ case happens only when j=47,48.

7. Justification for Establishing L,(1) and Figure S2
Starting with ¢ =1, compute ¢,,g; and [(1,/) using Expression (1)

qj.xqj,—ll

1(1,j)=1+ 210

,for j=1,2,---,48.

Then for 2<0<19 and =1, we have:

1(1j+48)=1(L))+q;
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l(l,j+96)=l(1,j)+2q}.

1(1,7+864)=1(1,7)+18¢;

We then list 1(i,j+48(9—1)) for 6=1,2,3,---,19 in Figure S2, corre-
sponding to Expression (2’). The bottom row of Figure S3 demonstrates that
Ay=2, A,=15, A;=28, -, A, =210. Notably,
min  {I(i,j+48(0 1))} <min, {I(i, j+480)} for all 6=12,3:-19 , and
A <A, <A< forall i

For instance, given b=2311=211+210x10, compute L, (1) by applying
Expression (2)to obtain L, (1)={2,5,7,9}.

According to the Formula of Primes, in order for o =11+210k <2311 to be
primes, it requires k+1¢ L, (1)for k e{1,2,---,10} . Therefore, we let
ke {0,2,3,5,7,9,10} and get the following primes: 11, 11+210x2 =431,
11+210x3=641, 11+210x5=1061, 11+210x7=1481,
11+210x9=1901 and 11+210x10=2111. They are all shown in the first row
of Figure 4.

Given b=211+210x28=6091, we get

Loy (1) =12,5,7,9,12,15,16,17,19,23,24,28} .

In order for & =11+210k <6091 to be primes, we let
k€{0,2,3,5,7,9,10,12,13,17,19,20,21,24,25,26) such that k+1le Ly, (1) to
obtain the following primes: 11, 431, 641, 1061, 1481, 1901, 2111, 2531, 2741,
3581, 4001, 4211, 4421, 5051, 5261, 5471.

8. Elaborations of Expressions (3) and (4)

Proof of Expression (3)

The total number of elements in PTP*(0, &) is 48x(k+1), for keN,.
Within the interval [1 1,211° 6’] , the number of different /(i, ) is |Lb (l)| for
b=211+210k . Hence, the total number of composites without 2, 3, 5, and 7
within the above interval is |Lb (l)| Note that 4 primes are less than 10.
Therefore, the number of primes within [2,6] is
7(b)=4+48x(k+1)-Y "|L, (i)

Proof of Expression (4)

For an integer ieW:{1,3,6,9,13,~--,45,47} s (r,r,,) are twin primes for
r,211. If there existsa & ke Ny, suchthat k+1¢L, (i) and k+1eL, (i+1),
then 7 +210k and r,, +210k are twin primes. Since (2, 3), (3, 5), (5, 7) are
the only three twin-prime pairs less than 11. Therefore, the number of twin-
prime pair in interval [2,b] is ﬁ*(b):3+zi€W|T(i,i+l)|, where T(i,i+1)
isaset of ksuchthat k+1¢L, (i) and k+1eL, (i+1).

9. Numerical Illustrations for The Periodic Table of Primes

Let A(i,k) be the integer value of the entry (i,k) in PTP*(0, 210) if Figure 3,
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which is computed based on CTC (1) and the Formula of Primes. For instance,
A(i,k) on the diagonal dotted points (1, 11), (2, 13), (3, 17), (4, 19) and (5, 23)

are computed below:

1(,1)=12, 1(2,2)=14, -, 1(23,23)=104, -+, [(46,46)=200 are con-
verted to A(L11), A(2,13), -+, A(23,17), -+, A(46,103), respectively,

shown by red numbers as

A(L11) =7 +210(1(1,1)-1)=11+210(12-1) = 2321 = 11x 211,

A(2,13)=r, +210(1(2,2)-1)=13+210(14-1) = 2743 =13x211,

Similarly,

2(23,103) =1, +210(/(23,23)~1) =103 +210(104 — 1) = 21733 =103 x 211
A(46,199) =1, +210(1(46,46) —1) =199 +210(200 1) = 41989 =199 x 211

Also, 1(46,1)=11, [(45,2)=13, -+, [(1,46)=199 are converted to A(i,k),
respectively, as

A(46,10) =y +210(1(46,1)~1) =199 +210(11-1) =2299 =11x 209

A(1,198) =7, +210(/(1,46) 1) =11+ 210(199 — 1) = 41591 = 199 x 209

Now return to columns 22 and 25 in Figure 2. We note that (4 23) and (4 24),
for i=1,2,---,48 being the intermediate dotted points. There are two other
green lines 12-10-9-7-6 for column 22, and 6-7-9-10-12 for column 25. Both
are caused by the intermedia effect, with respect to 47. These two lines are also
converted to Figure 4, shown as 11 x 101 - 13 x 101 - 17 x 101 - 19 x 101 - 23
x 101, and 11 x 109 - 13 x 109 - 17 x 109 - 19 x 109 - 23 x 109, respectively.

The above conversions between /(i,;) inthe CTC and A(i,k) in the PTP*
demonstrate that (i) many composites such as the digonal and intermediate
dotted points which allocate cyclically at the CTC are also allocated periodically
at the PTP". (ii) the PTP is obtained by removing all composites periodically
allocated at PTP*. Therefore, we claim that prime numbers are also generated
periodically since they come from removing all periodically distributed
composites.

Figure 4 contains the first 11 columns for the PTP*(0, 210), which is com-
posed of 48 x 11 = 528 elements, represented by A(i,k) and elaborated below.

(i) Each entry A(i,k) is either a prime or a composite.

(i) If A(i,k) is a prime, then A(i,k)=r+210k, and vice versa. If A(i,k)
is a composite, then thereare ¢, and g; such that

A(ik)=q;xq; =1, +210x(1(i, /) -1).
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Take i=1, r =11 for instance,

A(L1)=11+210x(1(1,2)-1) = ¢, x ¢, =13x17,
A(1,4)=11+210x([(1,5)=1) = g5 x g =23x37..

Then, we have A(1,0)=11, A(1,2)=11x210(3-1)=431,
A(1L,3)=11+210x(4-1)=641, -,
A(1,9)=11+210x(10-1)=1901.

(iii) Primes A(i,k) and A'(i,k)=A(i,k)+1 are twin-prime pairs, if and
onlyif r'=2+r,where A(i,k)=r,+210xk, A'(i,k)=r'+210xk.

For instance, (431, 433), (641, 643), (1061, 1063), (1481, 1483) are twin-prime
pairs.

(iv) The numbers of primes in column k of the PTP*(0, 210) are shown as (43,
35, 32, 31, 31, 28, 28, 30, 26, 27, ---). The sum of primes within interval [11,
2311] is 43 + 35 + 32 + -+ 18 = 329. The number of twin-prime pairs of a
column kare listed as (12, 6, 4, 4, 4, 8, 6, 4, 4, 4, -, 3).The maximum prime gap
for the & column can also be found from Figure 4. For instance, the maximum
prime gap for column 2 is 10, occurring at 409 and 419 of r,; and r,,, respective-
ly.

(v) The PTP(&,k) is useful in predicting primes. Examples are given by Ex-
amples for the Predictions of Primes by the PTP.

In summary, the Formula of Primes, for the case =1 , is checked below:

From Figure S1(a), we know that
L,(1)={2,5.7.9,12,--}

L,(2)= {7,10,12,13,14,...}

L,(3)={3,6,11,12,13,14,--}

From Figure 4, we know that
o =r,+210k isprimefor £=0,2,3,5,7,9,10

a=r,+210k isprimefor £=0,1,2,3,4,5,7,8,10

a=r,+210k isprimefor £=0,1,3,4,6,7,8,9

In general, a=r,+210k isprime,if k+1¢L, (i) and O=1.

10. Examples for the Predictions of Primes by the PTP

Example 1: Prediction of the next prime after 1,951

Since 1951=61+210(10—1), from Figure 4 there are four con-

secutive composites, Ze. 19 x 103, 37 x 53, 13 x 151, and 11 x 179,
right after 1951. We know the prime next to 1951 is 1973.
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Example 2:

Example 3:

Example 4:

Prediction of the 300" prime

From Expression (3), given b = 1891, the number of primes within
[2, 1891] is counted as

48
7[(1891):4+48x(8+1)—;|Lb(i)| =4+432-146=290.

The 290™ prime is 1889, which is located at (i,k)=(47,8) as
shown in Figure 4. Therefore, the 300" prime is counted to be 1987,
at the location of (7,k)=(21,9)-

Prediction of the next twin primes after the twin primes pair (1277,
1279)

The location of 1277 is at (i,k)=(3,6). The twin primes A(i,k)
and A'=A(i,k)+1 areexpressedas A(i,k)=r,+210(7—1).
A'=r/+210(7-1) and 5'=7+2.

Therefore, 7,=29, r'=31,and A(i,k)=1289, A'=1291.
Predicting the longest same-difference primes less than or equal to b

The same-difference in this example means 210.
We can predict the longest same-difference prime series in PTP*(0,

10) from the CTC (basic) by checking all rows of Figure S1(a).
For each row 4, we find L, (i),i=1,2,3,---,48, below:

Ly, (1)=1{2,5,7,9}, Ly, (2)={10,7}, Lyy,, (3) = {11,3,6},

DOI: 10.4236/apm.2024.145023

Ly, (4)={10,11,4}, L5, (5)={11,6,9}, Ly, (6) ={10,5,6},
Ly, (7)={10,3,5,6,8,9}, L,,,(8) ={10,2,4,8,9}, L,;,, (9) = {4},
Ly, (10)={2,8}, Ly, (11)={10,11,8,9}, Ly, (12) ={10,3,5,7},
Ly, (13)={11,4,5,8,9}, Ly, (14) ={3,5,6}, Ly, (15) = {10,11,4,8},
Ly, (16)={10,11,6,7,8,9}, Ly, (17) ={10,11,3,4,5,7},
Ly, (18)=1{10,2,7},
Ly, (19)=1{11,4,5,6,7,9}, L,;,,(20)={11,2,6,7,9},
Ly, (21)={11,3,6,7},
Ly, (22)={10,11,4,9}, L,;,,(23) ={5,7,8}, Ly, (24) = {3,4,6,8},
Ly, (25)=1{11,2,3,5,6,7}, L,;,,(26) =1{2,3,9}, L,,,,(27) ={1,5.,8},
Ly, (28)={11,6,7,9}, L,,,,(29) ={10,11,2,3,7}, L,,,,(30) = {4,7,9},
Ly, (31)={3,5.6,9}, L,,,,(32) ={1,10,7}, L,,,,(33) = {11,4,5,6,9},
Ly, (34)=1{10,2,4,7}, L,,,,(35)=1{10,11,6,7,9},
Ly, (36)={11,3,4,5,8,9},
Ly, (37)={10,2,5}, L,y,,(38) ={1,10,3,4,6,8,9}, L,,,, (39) = {4.8,9},
Ly, (40)={11,8,9}, L,,, (41)={10,2,7,8}, L,,,(42) =1{1,10,4,5},
Ly, (43)={11,3,6,8}, Ly, (44) ={2,6}, L,;,,(45)={2,5,6,7},
Ly, (46)={11}, L,;,,(47) ={1,3,7.8}, L,;,, (48) ={10,4,6,8,9}.
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Example 5:

Example 6:

Apparently, the longest same-difference primes is indicated by

Ly, (46)={11}.
Therefore, ais prime, for «=199+210%, k:{0,1,2,3,4,---,9}.

We then find the longest same-difference prime series in

PTP* [0, 10], or a 10-tuple primes series, to be

(199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089), as shown
on row 46 of Figure 4.

Similarly, we can find the next longest same-difference prime series
in PTP* (0, 10), which is associated with L,;,(9)={4}. Namely, it
happens at row 9, listed to be (881, 1091, 1301, 1511, 1721, 1931,
2141), as shown on row 9 of Figure 4.

How many primes are within the interval [2, 2311]?
From the CTCs, we count to find ZfJLb (z)| =188 for h=2311.
From Expression (3), 7(2311)=4+48(10+1)—188=344.

How many twin-prime pairs are within the interval [11, 2311]?
Referring to Expression (4), let »=2311, from CTC, we compute
T(i,i+1), for ie{1,3,6,9,13,16,22,24,30,33,37,40,43,45,47} to

reach

T(1,2)={klk+1gL,(1).k+1¢L,(2)}={0,2,3,5,7,10}

Similarly, we have
T(3,4)={0,1,4,6,7,8}, T(6,7)={0,1,3,6},and
7(9,10)={0,2,4,5,6,8,9} ,and T(47,48)={0,1,4,10}.

Therefore, the number of twin-prime pairs is

7 (2311)=3+ Y |T(i.i+1)|

=|T(1,2)|+|T(3,4)| +|T(6,7)| +-~~+|T(47,48)|+3
=6+6+---+4+3=068.
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~~~~~ 3 §fﬁé’ﬁf%» 1 2 3 4 5 6 7 8 9 10 11 12 23 24 ... 46 47 48
otiN\ PGl 1113 17 19 23 29 31 37 41 43 47 53 - 1031107 - 199 209 211
1 11 12 2 2 9 5 16 7 5 7 29 24 33 24 84 199 12
2 13 10 14 13 7 12 24 25 36 23 38 41 34 75 31 197 14
3 17 6 12 18 3 3 1 30 24 14 13 28 36 74 32 193 18
4 19 4 11 12 20 10 19 17 18 30 22 45 37 22 86 191 20
5 23 11 9 17 16 24 6 22 6 21 40 32 39 21 87 187 24
6 29 5 6 16 10 22 30 14 25 28 24 36 42 71 35 181 30
7 31 3 5 10 8 6 9 32 19 3 33 6 43 19 89 179 32
8 37 8 2 9 2 4 4 24 38 10 17 10 46 69 37 173 38
9 41 4 13 14 17 18 20 29 26 42 35 44 48 68 38 169 42
10 43 2 12 8 15 2 28 16 20 17 44 14 49 16 92 167 44
11 47 9 10 13 11 16 15 21 8 8 19 48 52 15 93 163 48
12 53 3 7 12 5 14 10 13 27 15 3 5 54 65 41 157 54
13 59 8 4 11 18 12 5 5 9 22 30 9 4 12 96 151 60
14 61 6 3 10 16 19 13 23 3 38 39 26 5 63 43 149 62
15 67 11 13 4 10 17 8 15 22 4 23 30 8 10 98 143 68
16 71 7 11 9 6 8 24 20 10 36 41 17 10 9 99 139 72
17 73 5 10 3 4 15 3 7 4 11 7 34 11 60 46 137 74
18 79 10 7 2 17 13 27 30 23 18 34 38 14 7 i]()l 131 80
19 83 6 5 7 13 4 14 4 11 9 9 25 16 6 1102 127 84
20 89 11 2 6 7 2 9 27 30 16 36 29 19 56 50 121 90
21 97 3 1 16 18 7 12 6 6 39 29 3 23 54 ‘ 52 113 98
22 101 10 9 4 14 21 28 11 31 30 4 37 25 53 53 109 102
23 103 8 8 15 12 5 7 29 25 5 13 7 26 104 107 107 104
47 209 1 7 3 1 8 25 22 3 33 17 15 26 26 , 80 210 210
Note: Numbers in red — for diagonal effect. Numbers in green — for intermediate effect.
()
1 2 3 4 5 6 7 8 9 10 11 12 - 23 24 ... 46 47 48
11 13 17 19 23 29 31 37 41 43 47 53 -+ 103 ‘ 107 - 199 209 211
24 107 4 6 3 8 19 23 3 13 37 31 41 28 103 108 103 108
25 109 2 5 14 6 3 2 21 7 12 40 11 29 51 55 101 110
26 113 9 3 2 2 17 18 26 32 3 15 45 31 50 56 97 114
27 121 1 12 12 13 22 21 5 8 26 8 19 35 48 58 89 122
28 127 6 9 11 7 20 16 28 27 33 35 23 38 98 6 83 128
29 131 2 7 16 3 11 3 2 15 24 10 10 40 97 7 79 132
30 137 7 4 15 16 9 27 25 34 3 37 14 43 44 62 73 138
31 139 5 3 9 14 16 6 12 28 6 3 31 44 95 9 71 140
32 143 1 1 14 10 7 22 17 16 38 21 18 46 94 10 67 144
33 149 6 11 13 4 5 17 9 35 4 5 22 49 41 65 61 150
34 151 4 10 7 2 12 25 27 29 20 14 39 50 92 12 59 152
35 157 9 7 6 15 10 20 19 11 27 4 43 53 39 67 53 158
36 163 3 4 5 9 8 15 11 30 34 25 47 3 89 15 47 164
37 167 10 2 10 5 22 2 16 18 25 43 34 5 88 16 43 168
38 169 8 1 4 3 6 10 3 12 41 9 4 6 36 ‘ 70 41 170
39 173 4 12 9 18 20 26 8 37 32 27 38 8 35 71 37 174
40 179 9 9 8 12 18 21 31 19 39 11 42 11 85 19 31 180
41 181 7 8 2 10 2 29 18 13 14 20 12 12 33 73 29 182
42 187 1 5 1 4 23 24 10 32 21 4 16 15 83 21 23 188
43 191 8 3 6 19 14 11 15 20 12 22 3 17 82 22 19 192
44 193 6 2 17 17 21 11 2 14 28 31 20 18 30 76 17 194
45 197 2 13 10 13 12 6 7 2 19 6 7 20 29 77 13 198
46 199 11 12 16 11 19 14 25 33 35 15 24 21 80 24 11 200
48 211 10 6 14 18 15 4 9 34 8 26 32 27 77 1 27 208 212

Note: Numbers in red — for diagonal effect. Numbers in green — for intermediate effect.

Figure S1. (a): A basic composite table CTC (basic); (b): A complementary composite table CTC
(complementary).

DOI: 10.4236/apm.2024.145023 417 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2024.145023

H.-L. Liet al.

0=1 9=2 6=3 8=19
J a o Iy | 159 1(1, j+96) 1(1,j+864)
) ! b =l j+a; | =10,)+2q =1(1,j)+18q,
1 m 211 12 223 434 3810
2 | 13 a7 2 19 36 308
3 | 17 13 2 15 28 236
4 | 19 8 9 98 187 1611
5 | 23 37 5 42 79 671
6 | 29 109 16 125 234 1978
7 | 31 @ 7 48 89 745
8 | 37 23 5 28 51 419
9 | a1 3 7 38 69 565
10 | 43 137 29 166 303 2495
1M | 47 103 24 127 230 1878
12 | 53 127 33 160 287 2319
13 | 59 139 40 179 318 2542
14 | 61 131 39 170 301 2397
15 | 67 113 37 150 263 2071
16 | 71 151 52 203 354 2770
17 | 73 167 59 226 393 3065
18 | 79 149 57 206 355 2739
19 | 8 157 63 220 377 2889
20 | 89 19 9 28 47 351
21 | 97 143 67 210 353 2641
22 | 101 181 88 269 450 3346
23 | 103 47 24 71 118 870
24 77107 1637 T84 | 247 7] 410 3018
25 | 109 29 16 45 74 502
26 | 113 67 37 104 171 1243
27 | 121 191 302 493 3549
28 | 127 53 33 86 139 987
29 | 131 61 39 100 161 1137
30 | 137 43 29 72 115 803
31 | 139 59 40 99 158 1102
32 | 143 37 67 104 141 733
33 | 149 79 57 136 215 1479
34 | 1531 71 52 123 194 1330
35 | 157 83 63 146 229 1557
36 | 163 107 84 191 298 2010
37 | 167 73 59 132 205 1373
38 | 169 179 145 324 503 3367
39 | 173 187 155 342 529 3521
40 | 179 169 145 314 483 3187
41 | 181 101 88 189 290 1906
42 | 187 173 155 328 501 3269
43 [ 191 121 232 353 2289
44 | 193 197 182 379 576 3728
45 | 197 193 182 375 568 3656
46 | 199 209 199 408 617 3961
JA7.1209 199 199 | 398 | 597 ) 3781 .
48 | 211 11 12 23 34 210
A, 2 15 28 210

L

A ,=min{l(i, j+48(6-1)}, i=1
j

Figure S2. List of L,s,,(1), corresponding to Expression (2°), for =1, 2, ..., 19.
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Figure S3. The periodic table of primes for various intervals.

97 98 99 100 101 102 103 104 105 106 144
21221 21851
29 | 20173 20593 21433 22063
20177 0807 21227 a5 22067 30047
20389 20599 21649 21859
0091 | 20183 20393 21863 22073
P R 0093 20399 22079 30059
g 20611 21031 21661 21871
rooti \.1. 10099 20407 21247
1 1 10103 | 20201 20411 21881 7209 30071
2| 13 @ 21673 22093
3| 17 10111 20627 21467
4| 19 21683 21893
5| 23 23 20219 e 20849 71059 21269 22109
6| 29 20431 2064 2106 21481 2 3009
7] 31 20857 21067 21277 21487 30097
g| 37 37 | 10133 ' 21701 21911
9| a1 1 20233 2044 21283 9 22123 30103
10| 43 21499 22129 30109
1| 47 47 20663 20873 21503 21713 22133 30113
12| 53 53 [ 10151 | 20249 20879 21089 21929 30119
13| 59 20887 21517 21727 21937 22147
14| 61 10159 1 20261 20681 21101
15| 67 67 (10163 21313 3 21943 22153 30133
16 71 10169 "2'1‘1'65" """"" """""""""" 3
17| 73 @ 10177 120269 20479 20899 21319 21529 21739 013¢
18] 79 10181 20483 20693 20903 21323
19| 83 | 83 |.______| 21121 21751 21961 22171
20| 89 20287 20707 21757
21| 97 20921 21341 30161
22| 101 10193 | 20297 2050 @ 21347 2155% 21767 21977
23] 103 20509 20719 20929 21139 @ 22189 30169
24| 107 21143 21563 21773 22193
25| 109 10211 20939 21149 21569
26| 113 | 113 20521 20731 21991 30181
27| 1 | 1ixn 20947 21157 21577 21787 21997 30187
28| 127 | 127 | 10223 | 20323 20533 20743 21163 22003
29| 131 | 131 20327 % ¥ 21587 30197
30| 137 20749 20959 21169 21379 21589 21799
31| 139 20333 20543 20753 20963 21383 21803 22013 30203
32| 1x13 |11x13 | 10243 @ 20759 21179 % 22229
33| 149 10247 | 20341 2 21391 30211
34| 151 20347 21187 21397 21817 22027
35| 157 | 157 | 10253 20981 21197 21401 21821 22031
36| 163 | 163 | 10259 | 20353 20563 20 0983 2119 3 30223
37| 167 |/167 ¥ 21407 21617 2203y 22247
38| 133 |13x13| 10267 | 30359 22039
39| 173 173 | 1O 20369 20789 ] 21419 ] @ 22259 PTP(97, 144)
40| 179 21001 21211 841 22051 T 30241
41 181 1040/ I
4| 17 |17 10909 (11 11329 11959 gm
43| 191 10289 @ _@ _______ { :3 1 93; PTP(49, 96)
44| 193 0501 1071 I N E 971 20161
AR P O
46| 199 409 829/1039 1249 1459 1669 1879 2089 0069
A7) s *TM‘ ________ 8 3_9_@12_5_9_____________J_%§9_2999 10079| PTP(0,48)
48] 211 211 631 A
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