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Abstract 
Over millennia, nobody has been able to predict where prime numbers sprout 
or how they spread. This study establishes the Periodic Table of Primes (PTP) 
using four prime numbers 2, 3, 5, and 7. We identify 48 integers out of a pe-
riod 2 3 5 7 210× × × =  to be the roots of all primes as well as composites 
without factors of 2, 3, 5, and 7. Each prime, twin primes, or composite 
without factors of 2, 3, 5, and 7 is an offspring of the 48 integers uniquely al-
located on the PTP. Three major establishments made in the article are the 
Formula of Primes, the Periodic Table of Primes, and the Counting Functions 
of Primes and Twin Primes. 
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1. Introduction 

One of the greatest theorems of mathematics states that a composite integer can 
be represented uniquely as a product of primes. Today primes as roots of integ-
ers are studied and applied widely to data science, cryptography [1], systems re-
liability design [2], etc. For a long time, many said these integer roots grew like 
weeds among natural numbers, and nobody could predict where the next primes 
may sprout [3]. Many believe that primes are unpredictable. Oliver and Sounda-
ranjan [4] investigated the distribution of consecutive primes, while Luque and 
Lacasa [5] reported patterns of the last digit of primes. Wang [6] adopted pic-
tures to search for regularities of some of the primes, but with significant bias. 

Owing to the lack of insight, there is no effective computable formula for 
counting functions of primes and twin primes. Studies published to predict pri-
mality and pattern of primes are ad hoc with tremendous limitations and uncer-
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tainties. 
Some [5] observed that primes located near each other tend to avoid repeating 

their last digits, which indicates that primes are not distributed as randomly as 
theorists often assume. Others such as Tóth [7] found the existence of the primes 
in k-tuple where the difference of two neighboring primes stays the same. How-
ever, few are able to explain what and where these tuple primes occur, nor can 
they predict the longest tuple primes within an interval. 

Initiated by Gauss, there have been studies on counting the total number of 
primes and twin primes within an interval, but only approximations were ob-
tained [8] [9]. Since primes are the roots of integers, can we identify the roots of 
primes? Can we find rules for generating composites; and if possible, may we say 
that, in some aspects, primes are predictable? 

Li et al. [10] used 2, 3 and 5 in building a universal color system C235 to unify 
RGB (a light color frame) and CMYK (a pigment color frame). C235 represents 
colors R(red), G(green), and B(blue) by primes 2, 3, and 5, respectively. Conse-
quently, C(cyan), M(magenta), Y(yellow), and K(key black) are represented by 
3 5 15× = , 2 5 10× = , 2 3 6× = , and 2 3 5 30× × = , respectively. Through this 
transformation, all colors are representable by 7 root numbers of 2, 3, 5, 6, 10, 15, 
and 30. These root numbers encode millions of colors on a color wheel [10]. 

Inspired by C235, we intend to: 
• find a set of integers which serve as the root of primes and twin primes, 
• establish the Formula of Primes and build the Periodic Table of Primes (PTP) 

that allocates primes, and 
• form the Counting Functions of Primes and Twin Primes. 

Also accomplished include predicting within an interval, the largest k-tuple 
primes [8] with the same difference. 

1.1. Steps and Notation Adopted to Build the PTP 

First, we define a concise strategy by selecting the roots of primes greater than 10 
and composites without factors of 2, 3, 5, and 7, and then form the Cyclic Table 
of Composites (CTC) by identifying the locations of such composites, followed 
by advancing the Formula of Primes and building the PTP. The procedures are 
summarized in 4 steps: 

1) Selecting the roots and cycles 
Adopting the first four primes 2, 3, 5, and 7, we take 2 3 5 7 210× × × =  as the 

length of a period. Within the interval [11, 211], we sort out 48 integers of 
primes or composites that do not contain factors of 2, 3, 5, and 7. These 48 in-
tegers, to generate primes and composites, are considered as the roots denoted 
by  1 11r = , 2 13r = , 3 17r = ,  , 23 103r = , 24 107r = ,  , 48 211r = . These 
ris are placed on the left column of a table. 

2) Developing the Cyclic Table of Composites (CTC) 
The CTC consists of multiple 48 × 48 tables ( ),l i j    derived from the posi-

tions of composites without factors of 2, 3, 5, and 7. 
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Within an interval of ( )48 1 1,48θ θ− +   , where Nθ +∈  is considered a 
cycle, there are 48 integers which do not contain factors of 2, 3, 5, and 7. These 
48 θ×  integers are either primes or composites, denoted as 1 1 11q r= = ,

2 2 13q r= = , 3 3 17q r= = ,  , 48 48 211q r= = , for cycle 1; 49 1 210 221q q= + = ,

50 2 210 223q q= + = ,  , 96 48 210 421q q= + = , for cycle 2;  ;  

( ) ( ) ( )148 1 1 48 2 1 210 210 1q q qθ θ θ− + − += + = + − , 

( ) ( ) ( )248 1 2 48 2 2 210 210 1q q qθ θ θ− + − += + = + − ,  , and  

( ) ( )48 4848 1 210 210 1q q qθ θ θ−= + = + − , for cycle θ. We call 1q  to 48q  segments 
of cycle 1, 49q  to 96q  segments of cycle 2,  , and ( )48 1 1q θ× − +  to 48q θ  seg-
ments of cycle θ. The qjs are placed on the top row of a CTC table of θ cycles. 

Formulating the CTC of the first cycle, namely, CTC(1), we observe the dual 
effect existing in ( ),l i j   , where index i refers to ir  and j refers to jq , such 
that in each row of this table, pairs of entries share the same value of elements 
( ),l i j s. We also find for each row in the CTC(1), there is another row comple-

mentary to it, calling it the mirror effect. Specifically, there exist the mirror ef-
fects between the 23 top rows and the next 23 rows as well as between the 47th 
row and the 48th row of CTC(1). We define the basic CTC (CTC(basic)) to be a 
24 × 48 table of ( ),l i j   , 1,2, ,23,47i =   and 1,2, ,48j =  . 

Utilizing the mirror effect, we find the complementary CTC (CTC (comple-
mentary)) a 24 × 48 table made of ( ),l i j    for 24,25, ,46,48i =   and 

1,2, ,48j =  . Combining the CTC (basic) and the CTC(complementary), we 
form CTC(1). 

We observe further an intermedia effect in CTC(1) between different cycles of 
composite tables where each is 48 × 48 in size. 

3) Advancing the Formula of Primes 
By deleting all composites located by CTC in an interval, we develop the 

Formula of Primes. 
Given a positive integer b with b – 211 being a multiplier of 210, an integer 
[ ]0,bα ∈  without factors of 2, 3, 5, and 7 is a prime if and only if there exists an 
{ }1,2, ,48i∈   such that 210ir kα = + , for some integer k with ( )1 bk L i+ ∉ , 

where ( )bL i  is a set of ( ),l i j s which satisfy some conditions of b and θ de-
scribed in the Results section. 

4) Building the Periodic Table of Primes (PTP) 
Denote PTP( 0 ,k k ′ ) as a periodic table of primes from period 0k  to k ′ , 

0k k N+′< ∈ . PTP( 0 ,k k ′ ) is a ( )048 1k k′× − +  table composed of all primes 
within an interval [ ],a b , for 011 210a k= + ×  and 211 210b k ′= + × . Denote 
PTP+( 0 ,k k ′ ) as a table composed of primes in PTP( 0 ,k k ′ ) plus composites 
without factors 2, 3, 5, and 7 within the interval [ ],a b . 

The steps of building a PTP are depicted in Figure 1. Starting from the CTC 
(initial), we form a CTC (initial dual). By combining the CTC (initial) and the 
CTC (initial dual), we obtain the CTC (basic) which is outlined in the Supple-
ment under Establishing the CTC (basic) by the CTC (initial). Once CTC (1) is 
deduced from CTC (basic), all subsequent CTC (2), CTC (3), …, CTC (θ) are  
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Figure 1. Schematic process of forming the PTP. 

 
readily available. Utilizing CTCs, we generate PTP+( 0 ,k k ′ ), where we delete all 
composites to obtain PTP( 0 ,k k ′ ). The red and green points in Figure 1 
represent the diagonal and intermediate effects, respectively, and also show the 
cyclical pattern on CTC and the periodical pattern on PTP+. 
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1.2. Note 

Lei et al. [11] held that the evolution of Chinese historical dynasties can be 
mapped by the properties of elements’ electrons in the Periodic Table of Chemi-
cal Elements. Wang [12] claimed that irregular primes are the survivors of natu-
ral numbers after regular decimations by primes. 

There are various sieve methods to locate primes. In coming up with a solu-
tion for predicting primes, many have searched for a particular pattern of primes 
distributions. For example, Holt [13] mentioned structure to cycles due to recur-
sion and created exact relative population models for all gaps up to a certain lev-
el. Dastych found a “mirroring” effect of numbers such as 2 × 3, 2 × 3 × 5 and 2 
× 3 × 5 × 7 being represented by a wheel which were already in existence [14]. 
His algorithm originated from playing with Goldbach’s conjecture, but became 
useless when the numbers grew large. Others may have expressed their wishes to 
organize primes listing over the years. Although we tried to be thorough and are 
blessed by many professional colleagues in reaching this unique PTP, we could 
miss non-disclosed endeavors made by individuals beyond the publicly accessi-
ble domain. 

2. Transformation and Observations 

Without loss of generality, discussions in this section on the CTC, the CTC(basic) 
and the CTC(complementary) are referred to cycle 1, namely, CTC(1), unless 
stated otherwise. 

In CTC, consisting of 48 rows and 48 columns, denote ir  as the ith row and 

jq  the jth column. 
Let 

{ }
{

}

1 1 2 23 47

,19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,

8

, , , ,

1

3, 89,

1,13,17

2097,101,103, 9

S r r r r=

=



 

{ }
{

}

2 24 25 46 48, , , ,

107,109,113 127 131 137 139 143 149 151 157 163 167

169 173 17

,121, , , , , , , , , , ,

, , ,181,187,191,193,1979 211,199,

S r r r r=

=



 

and 

{ } { }1 2 1 2 48 1 2 48, , , , , ,S S S r r r q q q= ∪ = =  . 

2.1. Transformation 

Note that ris and qjs are integers in [ ]11, 211  without factors of 2, 3, 5, and 7. 
Let ( ),i j  be at a position in the CTC and ( ),l i j  the corresponding entry of 
point ( ),i j , where 1 , 48i j≤ ≤ , determined by 

( ) ( )ˆ, 1 210j ijl i j q q r= + × − .                        (1) 

Given the ith row and jth column, we observe a unique ĵq S∈  that couples 
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with jq  such that ˆj ijq q r× −  is a multiplier of 210. Both jq  and ĵq  depend 
on ir  or the ith row. 

2.2. Three Statements 

An outline of CTC is shown in Figure 2. Various effects in CTC are described by 
the following statements. Presented in Figure S1(a) along with an illustrative 
example are given in the Supplement under Example for Figure S1(a). Observ-
ing Figure S1(a), note that ( ), 1il i i q= + , 1,2, ,23,47i =  . We identify the di-
agonal effect in CTC in Statement 1 below. 

 

Statement 1 (The Diagonal Effect of the CTC) 
In the CTC, ( ), 1jl j j q= + , for 1,2, ,48j =  . Moreover, ( ) ( ), ,l j j l i j≥  
for , 1,2, ,48i j =   and i j≠ . 

 
Analyzing the distribution of ( ),l i j  in the ith row of Figure S1(a), we find 

the dual effect between ( ),l i j  and ( )ˆ,l i j , described in Statement 2 below. 
 

Statement 2 (The Dual Effect of the CTC) 
In the CTC, for any ( ),l i j , , 1,2, ,48i j =   and i j≠ , there exists a  

{ }ˆ 1,2, ,48j∈   

such that ( ) ( )ˆ, ,l i j l i j= . 

 
Statement 2 implies that given ( ),l i j , we know ( )ˆ,l i j , under which situa-

tion j and ĵ  are dual to each other. Take 1i =  and 1 11r =  for instance, 
( ) ( )1,5 1,8 5l l= = , where ( )5 8 23 37 851 11 210 5 1q q× = × = = + − . Notice that 

when ĵ j= , 2
jq  is a descendant of ir  and ( ),l i j  appears in the ith row only 

once. For instance, ( )48,9 8l =  appears only once and  
( )241 1681 211 210 8 1= = + × − . 

Further elaboration of the dual effect and associated examples are given in the 
Supplement under Elaboration of the Dual Effect of the CTC (basic). Analyzing 
Figure S1(a) and Figure S1(b), we also identify the mirror effect between each 
row of the CTC(basic) and its complementary row in CTC deduced below. 

 
Statement 3 (The Mirror Effect of the CTC) 
The mirror effect in the CTC exists between pairs of all rows such that 

(i) ( ) ( )
1,  if   and 47

47 , ,
2 1,  if   or 47

j

j

q i j i j
l i j l i j

q i j i j

+ ≠ + ≠− + =  + = + =
, 

 for 1,2, ,23i =  , 1, ,48j =   

(ii) ( ) ( )
,  if  1, ,46

47, 48,
2 ,  if  47,48

j

j

q j
l j l j

q j

=+ =  =

   
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Figure 2. An outline of CTC(1). 
 

Statement 3 implies that if we know ( ),l i j  for 1 23i≤ ≤ , then we can find 
( )47 ,l i j− . Similarly, if we know ( )47,l j , then we find ( )48,l j . Following 

Statement 3, we form the CTC (complementary), the complementary of the CTC 
(basic). 

CTC (complementary) is presented as Figure S1(b), in the Supplement. 
Merging the CTC (basic) and the CTC (complementary), we obtain the CTC (1) 
as the CTC for cycle 1, referring to Figure 2. 

Consider CTC in Figure 2. There are two red diagonals shown in Figure 2, 
which further elaborates Figure S1(a) and Figure S1(b), The first diagonal is 
( )1,1 12l = , ( )2,2 14l = ,  , and ( )46,46 200l = , and the second one is 
( )46,1 11l = , ( )45,2 13l = ,  , and ( )1,46 199l = . The two cross lines in Fig-

ure 2 are obvious due to the mirror effect. ( )47,l j  and ( )48,l j ,  
1,2,3, ,48j =  , are mirrors with each other. An example is given in the Sup-

plement under An Associated Example for Statement 3. 
Figure S1(a) and Figure S1(b) show another distribution of ( ),l i j  on CTC, 

named the intermedia effect, which happens at some symmetrical columns, de-
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scribed in the Supplement under Statement and Proof on the Intermedia effect 
in the CTC. Both the diagonal effect and the intermedia effect on the CTC are 
helpful in showing how to transfer CTC to PTP. In Figure 2, the red and green 
numbers represent the diagonal and the intermediate effects, respectively. 

Proofs for the above Statements are given in the Supplement under Proofs of 
the Statements. 

3. Results 

This study provides three major results: the Formula of Primes, the Periodic Ta-
ble of Primes, and the Counting Functions of Primes and Twin Primes. 

Given a positive integer * *ˆ211 210b θ θ= + × , * *ˆ, Nθ θ +∈ , for  
{ }1,2, ,48i∈  , define 

( ) ( ) ( ) ( ) ( )( ){

( ) }

* *
ˆ

* *

ˆ ˆ ˆ, 1 1 210 1 1 1

ˆ| 1,2, ,48, with the corresponding defined
ˆ ˆin Expression 1 , 1,2, , and 1,2, ,

b j jL i l i j q q

j j

θ θ θ θ θ θ

θ θ θ θ

≡ + − + − + − − ≤ +

=

= =



 

   (2) 

For the case *ˆ 1θ = , then 

( ) ( )( ){ }* *, 48 1 1| 1,2, ,48, and 1,2, ,bL i l i j jθ θ θ θ≡ + − ≤ + = =    (2’) 

Notice that ( )bL i  is a set consisting of ( ) , 1, il i j θ +≤ ∆ , for 1,2, ,48j θ=  , 
where ( ) ( ) ( ){ }, min , | 48 1 1,48 1 2, ,48i j l i j jθ θ θ θ∆ = = − + − +   for Nθ +∈ , 
and , 1210 i bθ +∆ ≥ . 

Also ( )( ) ( ) ( ) ˆ, 48 1 , 1 jl i j l i j qθ θ+ − = + − , where 
ĵq  is derived from Ex-

pression (1). For any positive integer α containing no factors of 2, 3, 5, and 7, α 
must have a unique root ir S∈  such that irα −  is a multiple of 210. Moreover, 
if α is not a composite number, then it is a prime. 

An example for ( )1bL  where ˆ 1θ =  can be found in Supplement for the Text 
“7. Justification for Establishing ( )1bL  and Figure S2”. 

3.1. The Formula of Primes 

We summarize the Formula of Primes below: 
 

The Formula of Primes 
An integer [ ]11,bα ∈  containing no factors of 2, 3, 5, and 7 is a prime if 
and only if there exists ir S∈  and 0k N∈  such that 210ir kα = + , with 

( )1 bk L i+ ∉ , 1,2, ,48i =  . 

 
A list of ( )1bL  for various b up to 44521 and ˆ 1θ =  is given in Figure S2, 

which is presented in the Supplement. 

3.2. The Periodic Table of Primes 

According to CTC(θ) and the Formula of Primes, we specify the Periodic Table 
of Primes below. 
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The Periodic Table of Primes from period 0k  to period k ′  
For given 0

0k N∈ , k N+′∈ , and 0k k′ > , PTP( 0 ,k k ′ ) is a ( )048 1k k′× − +  

table ( ), 210i kλ +   , where ( )λ ⋅  is an integer such that 

( ) ( )011 211 , 210 211 1ik i k r k kλ ′+ × ≤ = + ≤ + , 

for 0k N∈  with ( )1 bk L i+ ∉  and ( )211 1b k ′= + . 
 

Denote PTP+( 0 ,k k ′ ) as the table composed of primes in PTP( 0 ,k k ′ ) plus 
composites without factors of 2, 3, 5 and 7, within an interval  

( )011 211 , 211 1k k ′+ × +  . 
Figure 3 is an outline of PTP+(0, 210), which includes PTP(0, 210) and com-

posites without factors of 2, 3, 5, and 7 within the interval 211,1 210 +   con-
verted from Figure 2. Figure 3 has 48 rows and 211 columns, for 1,2, ,48i =  , 
and 0,1,2,3, ,210k =  . ( ),i kλ  is an integer of the entry ( ),i k , computed 
from ( ),l i j  of Figure 2. The two dotted red curves in Figure 3 are configured 
from two diagonal red lines of Figure 2, i.e., 12–14–18∙∙∙198–200 and 11–13–17∙∙∙ 
197–199. The two dotted green diamond-shape lines in Figure 3 come from two 
green lines of Figure 2 of 24–75–74∙∙∙29–80 and 84–31–32∙∙∙77–24. 

Figure 4 is a realization of PTP+(0, 10) including primes and composites 
without factors of 2, 3, 5, and 7. Further elaboration is seen in the Supplement 
under Numerical Illustrations for The Periodic Table of Primes. According to 
Gauss [8] [9], the number of primes no more than b is approximately lnb b . 
We find further the exact Counting Function of primes ( )bπ  when b – 211 is a 
multiplier of 210. 

3.3. The Counting Functions of Primes and Twin Primes 

We use ( )bπ  and ( )* bπ  to represent the Counting Function of Primes and the 
Counting Function of Twin Primes in [ ]1,b  for a natural number b, respectively. 

 
The Counting Function of Primes 

Given a positive integer 211 210b k= + × , 

( ) ( ) ( )
48

1
4 48 1 b

i
b k L iπ

=

= + × + −∑ . 
(3) 

 
Currently, few predict the number of twin-prime pairs in an interval [2, b]. 

For b – 211 as a multiplier of 210, denote ( ), 1T i i +  as the set of twin-prime 
pairs on PTP( 0, 211b   ), i.e., a set of k with ( )1 bk L i+ ∉  and ( )1 1bk L i+ ∉ + , 
where i and i+1 are for the ith and the (i+1)st row on the PTP, respectively. Our 
study finds the exact ( )* bπ  below: 

 

The Counting Function of Twin Primes 

( ) ( )* 3 , 1i Wb T i iπ
∈

= + +∑ , 

where { }1,3,6,9,13,16,22,24,30,33,37,40,43,45,47W = . 
(4) 
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Figure 3. An outline of PTP+(0,210). 
 

 

Figure 4. A partial table of PTP+(0,48). 
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Elaborations of Expressions (3) and (4) are given in the Supplement under 
Elaborations of Expressions (3) and (4), and examples of computing ( )bπ  and 

( )* bπ  are illustrated in the Supplement under Examples for the Predictions of 
Primes by the PTP. 

4. Discussions 

The unpredictability of prime numbers forms the basis of many applications, 
one being encryption called the RSA algorithm [1]. However, neither the ancient 
Sieve of Eratosthenes nor the modern Sieve of Atkin’s algorithms [15] have ever 
elaborated the physical meaning of finding primes. Torquato, Zhang and Cour-
cy-Ireland [16] claimed that they found a physical structure pattern hidden in 
the distribution of prime numbers, but that discovery still didn’t explain the es-
sence of prime numbers. 

This paper identifies 48 natural numbers between 11 and 211, which do not 
contain factors of 2, 3, 5, and 7, to be the roots for generating all primes and 
composites without factors of 2, 3, 5, and 7. The locations of such composites 
exhibit periodic and cyclic properties, as represented by the CTC, which enable 
us to eliminate them for finding primes, as represented by the PTP. Treating the 
48 roots as the genes of prime numbers, we can easily find the next prime of any 
given prime number and identify the next pair of twin primes. Our findings 
provide a platform to study many primes-related problems. No primes, twin 
primes or primes-related issues can ever surface if such issues are not rooted to 
the 48 integers. After all, prime numbers are not as random as many believe. 

We form the CTC, followed by the PTP. All these present the primes effec-
tively and with physical meaning. In addition, we can count the exact numbers 
of primes and twin primes within an interval. Discussed below are some further 
thoughts. 

1) Instead of choosing 2, 3, 5 and 7, one may add 11, 13, or more primes to 
generate the roots. By so doing, the PTP will gradually become gigantic, too 
complicated, and too difficult to visualize, although likely more effective. If one 
is interested in the behaviors of super-large primes, one could find it useful in 
such large tables, which may be extended to infinite. On the other hand, one 
may choose 2, 3, and 5 to generate 8 roots for a small prime table. 

2) The PTP is helpful in understanding many unclear phenomena. For in-
stance, it explains a troublesome observation [5] that for a given prime with the 
last digit of 1, the chance of its next prime to have 1 as its last digit is much less 
than that of 3 or 7 or 9. From the Formula of Primes, if a given prime is 221 (i.e., 

2θ = , 11ir = ), then the most possible near primes should be firstly 223 (i.e., 
2θ = , 13ir = ), followed by 227, 229, 233, 239, and 241. 

3) From the 48 roots identified, we find no triplet or higher multiples of 
primes existing in the roots. Therefore, there will be no triplet primes found in 
future generations. Likewise, all twin primes will appear exactly at the parallel 
locations as those appearing in the 48 roots of the PTP. This implies that all 
twin-prime pairs are descendants of 15 pairs of twin primes or composites. In 
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fact, an equal chance is found in the last digit of the 48 roots for 1, 3, 7, and 9. 
Therefore, the last digits for all primes will each have a 25% chance of being 1, 3, 
7, and 9 when primes go to infinity. 

4) This is the first time that a visualizable prime table is built with proofs us-
ing a manageable set of primes as the basis for making useable influences and 
clarifying some questions of interest in existence for years. Just like reported, 
openly or not, by Oliver and Soundaranjan [4], Wang [12], Holt [13], Dastych 
[14], etc., no conclusion has been drawn on establishing a compact table for 
primes of any kind. 

In contrast, from building the CTC, we demonstrate that every prime has an 
ancestor among 48 integers which include 43 primes and 5 composites, and 
every twin-prime pair comes from an ancestor of 15 pairs of these 48 integers. 
We develop the algorithms and give illustrating examples in the Supplement us-
ing the PTP from which we draw several inferences and present some useful ap-
plications. 

5) Beyond the fundamental investigation, this study is due to part of our ef-
forts in exploring various applications of primes, including systems reliability 
design [2], and building a color system C235 to unify RGB and CMYK and to en-
code millions of colors on a color wheel [10]. The universal color system wins 
the Special Prize and the Gold Medal with Congratulations of the Jury at the 49th 
International Exhibition of Inventions of Geneva. 

5. Conclusions 

This paper selected 48 integers as the roots to generate primes and composites 
without the factors of 2, 3, 5, and 7. We constructed a composite table, CTC, 
further observing the diagonal effect, the dual effect and the mirror effect. Based 
on the CTC, this paper introduced the first closed form expressions for the 
Formula of Primes and the Periodic Table of Primes. The Counting Functions of 
Primes and Twin Primes are then readily deduced. Related mathematical proofs 
and computations are exercised to testify the correctness of the above state-
ments. 

While there exist proven and unproven concepts, approaches and analysis in 
the literature, our study clearly shows that any prime except 2, 3, 5, and 7 can be 
uniquely rooted to one of 48 natural numbers between 11 and 220 in cycles of 
length 210. Moreover, any twin-prime pair can be uniquely rooted to a pair of 
the same 48 roots in cycles of length 210. We show that all composite numbers 
with no factors of 2, 3, 5, and 7 appear in cyclic manner. To the best of our 
knowledge, these fundamental findings are the first to systematically and con-
cretely address in the open literature. People may have used terminologies simi-
lar to this study, but neither similar results nor close form solutions have ever 
been presented. 
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Supplement for the Text 
1. Establishing the CTC (basic) by the CTC (initial) 

Specifically, we adopt the following steps to establish the CTC (basic): 
a) From the CTC (basic) of Figure 1, we find 23 × 23 CTC (initial) table for 

the first cycle. In the CTC (initial), its entries of ( ),l i j   , for 1,2, ,23i =   and 
1,2, ,23j =  , are both starting from 11; namely, the left column contains 

1 2 23, , ,r r r
 and the top row contains 1 2 23, , ,q q q

. 
b) Applying the dual effect, we form another 23 × 23 CTC (initial dual) table 

from CTC (initial). In this new table, its entries of ( ),l i j   , for 1,2, ,23i =   
and 24,25, ,46j =  , are the first 23 roots starting from 11 for “i”s and the 24th 
to 46th roots for “j”s, respectively. Namely, the left column contains 1 2 23, , ,r r r , 
and the top row contains 24 25 46, , ,q q q . 

c) Add r47 as the end of the 24th row and add q47 and q48 as the end of the 47th 
and the 48th columns. Namely, the left column contains r47 as the last index and 
the top row contains q47, q48 as the last two indices. 

d) Combine tables developed by a, b, and c steps to complete CTC(basic). 
As shown in Figure 1, there are the CTC(initial), the CTC(initial-dual), the 

CTC(basic), the CTC(complementary), and CTC(1). 

( ) ( ) }{CTC initial , | 1,2, ,23; 1,2, ,23l i j i j= = =  , 

( ) ( ) }{CTC , | 1ini ,2,tial-d ,23; 24, ,4ua 6l l i j i j= = =  , 

( ) ( ) }{CTC basic , | 1,2, ,23,47; 1,2, ,48l i j i j= = =  , 

( ) ( ) }{CTC complementary , | 24,25, ,46,48; 1,2, ,48l i j i j= = =  , 

( ) ( ) }{CTC 1 , | , 1,2, ,48l i j i j= =  . 

2. Example for Figure S1(a) 

Given 1 11q = , compute ( )1,1l  as follows: 

Since ( ) ˆ1 111,1 1
210

q q r
l

× −
= + , and the unique 1̂q  to let 1̂11 11

210
q× −

 be an in-

teger is 

( )1̂

11 211 11211, 1,1 1 1 11 12.
210

q l × −
= = + = + =  

Similarly, we find 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2,1 , 3,1 , 4,1 , 5,1 , 6,1 , , 23,1 , 47,1 10,6,4,11,5, ,8,1l l l l l l l =  . 

3. Elaboration of the Dual Effect of the CTC (basic) 

In the CTC(1), the dual effect made in Statement 2 can be further elaborated 

below between ( ),l i j  and ( )ˆ,l i j . 

(i) For ( ) ( )ˆ,,l i j l i j= , if ˆ1 , 23j j≤ ≤ , then 
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( ) ( ) ( )4 47 ˆ

ˆ

7,47 ,47 1 ,ˆ 1
210 210

jj i i

j j

j
q q r rl i j l i l i j

q q
− −×  − = − = + + − − ×  

. 

(ii) For ( ) ( )ˆ,,l i j l i j= , for 1 23j≤ ≤  but not for ĵ , then 24 4ˆ 6j≤ ≤  and 

( )
ˆ

210 , 1i
j

j

r l i j
q

q
+ −  = . 

 
By utilizing Statement 2, we can generate a new table CTC(initial dual) in the 

Introduction from CTC(initial). Taking the first row, i.e. 1i =  and 1 11r =  as 
an example (Figure 2): 

(i) Since ( ) ( )1,2 1,3 2l l= = , we have 

( ) ( ) ( )45 44

2 3

11 111,47 2 1,47 3 1 1,2 1 182
210 210

q ql l l
q q
×  − = − = + + − − = ×  

 

Similarly, since ( ) ( )1,5 1,8 5l l= = , we have 

( ) ( ) ( )42 39

5 8

11 111,47 5 1,47 8 1 1,5 1 155
210 210

q ql l l
q q
×  − = − = + + − − = ×  

 

(ii) For 1i =  and 1,6,10,12, ,19,21,22j =  , we do not have 1 2ˆ 3j≤ ≤  to 
fit ( ) ( )1, 1, ˆl j l j= , then we compute ( )ˆ1,l j  for 24 4ˆ 6j≤ ≤ . 

When 1j = , 1 11q =  and ( )1,1 12l = , 

since 
( )( ) ( )1

48
1

210 1,1 1 11 210 12 1
211

11
r l

q
q

+ − + −
= = = , we have 

1̂ 48=  and ( ) ( )1,48 1,1 12l l= =  

When 6j = , 6 29q =  and ( )1,6 16l = , 

since 
( )( )1

25
6

210 1,6 1
109

r l
q

q
+ −

= = , we have 

6̂ 25=  and ( ) ( )1,25 1,6 16l l= = . 

Similarly, we can predict ( ) ( )1,26 1,15 37l l= = , ( ) ( )1,28 1,12 33l l= = , 
( ) ( )1,29 1,14 39l l= = , ( ) ( )1,30 1,10 29l l= = ,  , ( ) ( )1,41 1,22 88l l= = . 

4. An Associated Example for Statement 3 

Comparing the CTC (basic) with the CTC (complementary) and referring to 
Figure S1(a) and Figure S1(b), it is clear that: 

Given 1j =  and 1 11q = , we have ( ) ( ) 11,1 46,1 12 11 2 1l l q+ = + = + . 
Given 2j =  and 2 13q = , we have ( ) ( ) 22,2 45,2 14 13 2 1l l q+ = + = + . 
Given 1j =  and 1 11q = , for 2i = , we have  
( ) ( ) 145,1 2,1 2 10 12 1l l q+ = + = = + . 
Given 12j =  and 12 53q = , for 1i = ,  
( ) ( ) 1246,12 1,12 21 33 54 1l l q+ = + = = + ; for 23i = ,  
( ) ( ) 1224,12 23,12 28 26 54 1l l q+ = + = = + ; for 47i = ,  
( ) ( ) 1247,12 48,12 26 27 53l l q+ = + = = . 
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5. Statement and Proof of the Intermedia Effect in the CTC(1) 

Figure S1(a) and Figure S1(b) show another distribution of ( ),l i j  on the 
CTC, named the intermedia effect, which happens at some symmetrical columns, 
described below. 

 
The intermedia effect in the CTC(1) 
In CTC(1), there exists the intermedia effect between columns 23 and 24 
such that, for 1,2, ,48i =  , 
(i) if ( ) ( ),23 ,24 108l i l i+ = , then ( ) ( ),23 47 ,24l i l i= − , 

(ii) if ( ) ( ),23 ,24 106l i l i+ = , then ( ) ( ),23 2 47 ,24l i l i+ = − . 

 
For instances, in the case of green columns 23 and 24 of Figure 2, 
( ) ( )19,23 28,24 6l l= = ,  , ( ) ( )2,23 2 45,24 77l l+ = = . Other column pairs 

also exhibit the intermedia effect. For example, in the case of columns 22 and 25, 
if ( ) ( ),22 ,25 110l i l i+ = , then ( ) ( ),22 47 ,25l i l i= − . 

Proof of the intermedia effect in the CTC 
For the case of columns 23 and 24, 
(i) From the mirror effect, we have ( ) ( ) 24,24 47 ,24 1 108l i l i q+ − = + = . 
If ( ) ( ),23 ,24 108l i l i+ = , then ( ) ( ) ( ),23 108 ,24 47 ,24l i l i l i= − = − . 
(ii) If ( ) ( ),23 ,24 106l i l i+ = , then ( ) ( ) ( ),23 2 108 ,24 47 ,24l i l i l i+ = − = − . 
For the case of columns 22 and 25, from the mirror effect, we know 
( ) ( ) 25,25 47 ,25 1 109 1 110l i l i q+ − = + = + =  
If ( ) ( ),22 ,25 110l i l i+ = , then ( ) ( ),22 47 ,25l i l i= − . 

6. Proofs of the Statements 

Proof of Statement 1 
For each , 1,2, ,48i j =  , notice that in CTC(1), 

( )

( )

ˆ

8ˆ 4

, 1
210
211 1

1
210

1 ,

as and we choose 211.

j j

j

j

jj j

jq q r
l j j

q

q

r q q q

× −
= +

−
= +

= +

= = =

 

For a given j, ( )( )ˆ , 1 210i j jr q q l i j= × − − × ,for some ĵ .This means that a 
fixed ir  is the remainder of ˆj jq q×  subtracting the maximum multiple of 210 
smaller than ˆj jq q× . Since ˆ 48 211jq q= =  is the largest ĵq  hence 
( ) ( ), ,l j j l i j≥ . 
Proof of Statement 2 

By definition, ( ) ˆ, 1
210

ijjq q r
l i j

−
= + , ( ) ˆ

2
ˆ, 1

10
j j ijl i

q q r−
= + . 

Therefore, we have ( ) ( ) ˆ, , ˆ 1
210

j j iq q r
l i j jl i

× −
= = +  
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Proof of Statement 3 
 

(i): In this proof, we use ˆ|ijq  to differentiate ĵq  given different ir . 

Notice that 47 210i ir r− + = , 1, ,23i∀ =  , 

( ) ( )ˆ| 4747|47 , 1
210

jj i iiq q r
l i j

−− −
− = +   for some 4ˆ 7| ijq −

 and 

( ) ˆ| |, 1
210

i ij ijq q r
l i j

−
= +   for some ˆ|ijq . 

Hence, 

( ) ( ) ( )( )

( )( )

ˆ ˆ| | |

ˆ ˆ| |

47

47 |

210
47 , , 2

210

1
210

i i i

i i i

j j j

j j j

q q q
l i j l i j

q q q

−

−

+ −
− + = +

+
= +

 

 
Since ( )( )47ˆ ˆ| | |

210
j ji i ijq q q− +

 must be an integer, and |ijq  has no factors of 

2, 3, 5, 7, ( )ˆ ˆ| |47 ij ijq q− +  must be a multiple of 210. This happens only 

when 

 

( )
( )
( )4ˆ ˆ| |7

ˆ ˆ| |210, if 47 47

4 ˆ20, if 47 or ˆ| | 48ij j i

ij j

j j

i
q q

i i−

 − + =+ = 
− =

 

Therefore, 

( ) ( ) |

|

1, if and 47
47 , ,

2 1, if or 47
j

j

i

i

q i j i j
l i j l i j

q i j i j

+ ≠ − ≠− + =  + = − =
 

(ii): Notice that 47 48 209 211 420r r+ = + = . Hence 

( ) ( )

( )

ˆ ˆ|47 | |

ˆ ˆ| | |

47 48 4847 48

47 4

|

8

|
ˆ ˆ| |

ˆ ˆ|

47, 48, 1 1
210 210

210
, if 47 48 47

2 , if 47 or 48 48|

j j

j j ji

j

j

i

j

j

i

q q r q q r
l j l j

q

j

j

q

q

q j

q

j

− −   
+ = + + +      

   

+
=

 + == 
=

 

 The 2nd case happens only when 47,48j = . 

7. Justification for Establishing Lb(1) and Figure S2 

Starting with 1θ = , compute ˆ,j jq q  and ( )1,l j  using Expression (1) 

( ) ˆ 11
1, 1

210
j jq q

l j
× −

= + , for 1,2, ,48j =  . 

Then for 2 19θ≤ ≤  and ˆ 1θ = , we have: 

( ) ( ) ˆ1, 48 1, jl j l j q+ = +  
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( ) ( ) ˆ1, 96 1, 2 jl j l j q+ = +  

  

( ) ( ) ˆ1, 864 1, 18 jl j l j q+ = +  

We then list ( )( ), 48 1l i j θ+ −  for 1,2,3, ,19θ =   in Figure S2, corre-
sponding to Expression (2’). The bottom row of Figure S3 demonstrates that 

1,1 2∆ = , 1,2 15∆ = , 1,3 28∆ = ,  , 1,19 210∆ = . Notably, 
( )( ){ } ( ){ }min , 48 1 min , 48j jl i j l i jθ θ+ − < +  for all 1,2,3, ,19θ =  , and 

,1 ,2 ,3i i i∆ < ∆ < ∆ < , for all i. 
For instance, given 2311 211 210 10b = = + × , compute ( )2311 1L  by applying 

Expression (2)to obtain ( ) { }2311 1 2,5,7,9L = . 
According to the Formula of Primes, in order for 11 210 2311kα = + ≤  to be 

primes, it requires ( )23111 1k L+ ∉ for { }1,2, ,10k∈ 
. Therefore, we let  

{ }0,2,3,5,7,9,10k∈  and get the following primes: 11, 11 210 2 431+ × = , 
11 210 3 641+ × = , 11 210 5 1061+ × = ,  11 210 7 1481+ × = ,   
11 210 9 1901+ × =  and 11 210 10 2111+ × = . They are all shown in the first row 
of Figure 4. 

Given 211 210 28 6091b = + × = , we get 

( ) { }6091 1 2,5,7,9,12,15,16,17,19,23,24,28L = . 

In order for 11 210 6091kα = + ≤  to be primes, we let  
{ }0,2,3,5,7,9,10,12,13,17,19,20,21,24,25,26k∈  such that ( )60911 1k L+ ∈  to 

obtain the following primes: 11, 431, 641, 1061, 1481, 1901, 2111, 2531, 2741, 
3581, 4001, 4211, 4421, 5051, 5261, 5471. 

8. Elaborations of Expressions (3) and (4) 

Proof of Expression (3) 
The total number of elements in PTP+(0, k) is ( )48 1k× + , for 0k N∈ . 

Within the interval 211, 211 θ   , the number of different ( ),l i j  is ( )bL i  for 
211 210b k= + . Hence, the total number of composites without 2, 3, 5, and 7 

within the above interval is ( )bL i .  Note that 4 primes are less than 10. 
Therefore, the number of primes within [ ]2,b  is  

( ) ( ) ( )1
484 48 1 bib k L iπ
=

= + × + −∑ . 

Proof of Expression (4) 
For an integer }{1,3,6,9,13, ,45,47i W∈ =  , ( )1,i ir r +  are twin primes for 

11ir ≥ . If there exists a k, 0k N∈ , such that ( )1 bk L i+ ∉  and ( )1 1bk L i+ ∉ + , 
then 210ir k+  and 1 210ir k+ +  are twin primes. Since (2, 3), (3, 5), (5, 7) are 
the only three twin-prime pairs less than 11. Therefore, the number of twin- 
prime pair in interval [ ]2,b  is ( ) ( )* 3 , 1i Wb T i iπ

∈
= + +∑ , where ( ), 1T i i +  

is a set of k such that ( )1 bk L i+ ∉  and ( )1 1bk L i+ ∉ + . 

9. Numerical Illustrations for The Periodic Table of Primes 

Let ( ),i kλ  be the integer value of the entry ( ),i k  in PTP+(0, 210) if Figure 3, 
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which is computed based on CTC (1) and the Formula of Primes. For instance, 
( ),i kλ  on the diagonal dotted points (1, 11), (2, 13), (3, 17), (4, 19) and (5, 23) 

are computed below: 
 

( )1,1 12l = , ( )2,2 14l = ,  , ( )23,23 104l = ,  , ( )46,46 200l =  are con-
verted to ( )1,11λ , ( )2,13λ ,  , ( )23,17λ ,  , ( )46,103λ , respectively, 
shown by red numbers as 

( ) ( )( ) ( )11,11 210 1,1 1 11 210 12 1 2321 11 211r lλ = + − = + − = = × , 

( ) ( )( ) ( )22,13 210 2,2 1 13 210 14 1 2743 13 211r lλ = + − = + − = = × , 

⋮ 
Similarly,  

( ) ( )( ) ( )2323,103 210 23,23 1 103 210 104 1 21733 103 211r lλ = + − = + − = = ×  

( ) ( )( ) ( )4646,199 210 46,46 1 199 210 200 1 41989 199 211r lλ = + − = + − = = ×  

Also, ( )46,1 11l = , ( )45,2 13l = ,  , ( )1,46 199l =  are converted to ( ),i kλ , 
respectively, as 

( ) ( )( ) ( )4646,10 210 46,1 1 199 210 11 1 2299 11 209r lλ = + − = + − = = ×  

⋮ 

( ) ( )( ) ( )11,198 210 1,46 1 11 210 199 1 41591 199 209r lλ = + − = + − = = ×  

 
Now return to columns 22 and 25 in Figure 2. We note that (i, 23) and (i, 24), 

for 1,2, ,48i =   being the intermediate dotted points. There are two other 
green lines 12–10–9–7–6 for column 22, and 6–7–9–10–12 for column 25. Both 
are caused by the intermedia effect, with respect to 47. These two lines are also 
converted to Figure 4, shown as 11 × 101 – 13 × 101 – 17 × 101 – 19 × 101 – 23 
× 101, and 11 × 109 – 13 × 109 – 17 × 109 – 19 × 109 – 23 × 109, respectively. 

The above conversions between ( ),l i j  in the CTC and ( ),i kλ  in the PTP+ 
demonstrate that (i) many composites such as the digonal and intermediate 
dotted points which allocate cyclically at the CTC are also allocated periodically 
at the PTP+. (ii) the PTP is obtained by removing all composites periodically 
allocated at PTP+. Therefore, we claim that prime numbers are also generated 
periodically since they come from removing all periodically distributed 
composites. 

Figure 4 contains the first 11 columns for the PTP+(0, 210), which is com-
posed of 48 × 11 = 528 elements, represented by ( ),i kλ  and elaborated below. 

(i) Each entry ( ),i kλ  is either a prime or a composite. 
(ii) If ( ),i kλ  is a prime, then ( ), 210ii k r kλ = + , and vice versa. If ( ),i kλ  

is a composite, then there are  jq  and ĵq  such that 

( ) ( )( )ˆ, 210 , 1j j ii k q q r l i jλ = × = + × − . 
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Take 1i = , 11ir =  for instance, 

( ) ( )( ) 2 31,1 11 210 1,2 1 13 17l q qλ = + × − = × = × , 

( ) ( )( ) 5 81,4 11 210 1,5 1 23 37l q qλ = + × − = × = × . 

Then, we have ( )1,0 11λ = , ( ) ( )1,2 11 210 3 1 431λ = × − = , 

( ) ( )1,3 11 210 4 1 641λ = + × − = ,  , 

( ) ( )1,9 11 210 10 1 1901λ = + × − = . 

(iii) Primes ( ),i kλ  and ( ) ( ), , 1i k i kλ λ′ = +  are twin-prime pairs, if and 
only if 2i ir r′= + , where ( ), 210ii k r kλ = + × , ( ), 210ii k r kλ′ ′= + × . 

For instance, (431, 433), (641, 643), (1061, 1063), (1481, 1483) are twin-prime 
pairs. 

(iv) The numbers of primes in column k of the PTP+(0, 210) are shown as (43, 
35, 32, 31, 31, 28, 28, 30, 26, 27, ⋯).  The sum of primes within interval [11, 
2311] is 43 + 35 + 32 + ⋯+ 18 = 329.  The number of twin-prime pairs of a 
column k are listed as (12, 6, 4, 4, 4, 8, 6, 4, 4, 4, ⋯, 3).The maximum prime gap 
for the kth column can also be found from Figure 4. For instance, the maximum 
prime gap for column 2 is 10, occurring at 409 and 419 of r46 and r47, respective-
ly. 

(v) The PTP(k0,k') is useful in predicting primes. Examples are given by Ex-
amples for the Predictions of Primes by the PTP. 

In summary, the Formula of Primes, for the case ˆ 1θ = , is checked below: 
From Figure S1(a), we know that 

( ) }{1 2,5,7,9,12,bL =   

( ) }{2 7,10,12,13,14,bL =   

( ) }{3 3,6,11,12,13,14,bL =   

⋮ 

From Figure 4, we know that 

1 210r kα = +  is prime for 0,2,3,5,7,9,10k =  

2 210r kα = +  is prime for 0,1,2,3,4,5,7,8,10k =  

3 210r kα = +  is prime for 0,1,3,4,6,7,8,9k =  

⋮ 

In general, 210ir kα = +  is prime, if ( )1 bk L i+ ∉  and ˆ 1θ = . 

10. Examples for the Predictions of Primes by the PTP 

Example 1: Prediction of the next prime after 1,951 

 
Since ( )1951 61 210 10 1= + − , from Figure 4 there are four con-
secutive composites, i.e. 19 × 103, 37 × 53, 13 × 151, and 11 × 179, 
right after 1951. We know the prime next to 1951 is 1973. 
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Example 2: Prediction of the 300th prime 

 

From Expression (3), given b = 1891, the number of primes within 
[2, 1891] is counted as  

( ) ( ) ( )
48

1
1891 4 48 8 1 4 432 146 290b

i
L iπ

=

= + × + − = + − =∑ . 

The 290th prime is 1889, which is located at ( ) ( ), 47,8i k =  as 
shown in Figure 4. Therefore, the 300th prime is counted to be 1987, 
at the location of ( ) ( ), 21,9i k = . 

 
Example 3: Prediction of the next twin primes after the twin primes pair (1277, 

1279) 

 

The location of 1277 is at ( ) ( ), 3,6i k = . The twin primes ( ),i kλ  
and ( ), 1i kλ λ′ = +  are expressed as ( ) ( ), 210 7 1ii k rλ = + − .  

( )210 7 1irλ′ ′= + −  and 2i ir r′= + . 
Therefore, 29ir = , 31ir′= , and ( ), 1289i kλ = , 1291λ′ = . 

Example 4: Predicting the longest same-difference primes less than or equal to b 

 
The same-difference in this example means 210. 
We can predict the longest same-difference prime series in PTP+(0, 
10) from the CTC (basic) by checking all rows of Figure S1(a). 

 

For each row i, we find ( )2311 , 1,2,3, ,48L i i = 
, below: 

( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }

2311 2311 2311

2311 2311 2311

2311 2311 2311

2311 2311 2311

1 2,5,7,9 , 2 10,7 , 3 11,3,6 ,

4 10,11,4 , 5 11,6,9 , 6 10,5,6 ,

7 10,3,5,6,8,9 , 8 10,2,4,8,9 , 9 4 ,

10 2,8 , 11 10,11,8,9 , 12 10,3,5,7 ,

L L L

L L L

L L L

L L L

= = =

= = =

= = =

= = =

 

( ) { } ( ) { } ( ) { }
( ) { } ( ) { }
( ) { }
( ) { } ( ) { }
( ) { }
( ) { } ( ) { }

2311 2311 2311

2311 2311

2311

2311 2311

2311

2311 2311

13 11,4,5,8,9 , 14 3,5,6 , 15 10,11,4,8 ,

16 10,11,6,7,8,9 , 17 10,11,3,4,5,7 ,

18 10,2,7 ,

19 11,4,5,6,7,9 , 20 11,2,6,7,9 ,

21 11,3,6,7 ,

22 10,11,4,9 , 23 5,7,8 ,

L L L

L L

L

L L

L

L L L

= = =

= =

=

= =

=

= = ( ) { }2311 24 3,4,6,8 ,=

 

( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }
( ) { } ( ) { }
( )

2311 2311 2311

2311 2311 2311

2311 2311 2311

2311 2311

2311

25 11,2,3,5,6,7 , 26 2,3,9 , 27 1,5,8 ,

28 11,6,7,9 , 29 10,11,2,3,7 , 30 4,7,9 ,

31 3,5,6,9 , 32 1,10,7 , 33 11,4,5,6,9 ,

34 10,2,4,7 , 35 10,11,6,7,9 ,

36 11,3,

L L L

L L L

L L L

L L

L

= = =

= = =

= = =

= =

={ }4,5,8,9 ,  

( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }

2311 2311 2311

2311 2311 2311

2311 2311 2311

2311 2311 2311

37 10,2,5 , 38 1,10,3,4,6,8,9 , 39 4,8,9 ,

40 11,8,9 , 41 10,2,7,8 , 42 1,10,4,5 ,

43 11,3,6,8 , 44 2,6 , 45 2,5,6,7 ,

46 11 , 47 1,3,7,8 , 48 10,4,6,8,9 .

L L L

L L L

L L L

L L L

= = =

= = =

= = =

= = =
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Apparently, the longest same-difference primes is indicated by 

( ) { }2311 46 11L = . 
Therefore, α is prime, for 199 210kα = + , { }0,1,2,3,4, ,9k = 

. 

 

We then find the longest same-difference prime series in  
PTP+ [0, 10], or a 10-tuple primes series, to be  
(199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089), as shown 
on row 46 of Figure 4. 

 

Similarly, we can find the next longest same-difference prime series 
in PTP+ (0, 10), which is associated with ( ) { }2311 9 4L = . Namely, it 
happens at row 9, listed to be (881, 1091, 1301, 1511, 1721, 1931, 
2141), as shown on row 9 of Figure 4. 

Example 5: How many primes are within the interval [2, 2311]? 
From the CTCs, we count to find ( )48

1 188bi L i
=

=∑  for 2311b = . 

From Expression (3), ( ) ( )2311 4 48 10 1 188 344π = + + − = . 

Example 6: How many twin-prime pairs are within the interval [11, 2311]? 
Referring to Expression (4), let 2311b = , from CTC, we compute 
( ), 1T i i + , for { }1,3,6,9,13,16,22,24,30,33,37,40,43,45,47i∈  to 

reach 

( ) ( ) ( ){ } { }1,2 | 1 1 , 1 2 0,2,3,5,7,10b bT k k L k L == + ∉ + ∉  

Similarly, we have 

( ) { }3,4 0,1,4,6,7,8T = , ( ) { }6,7 0,1,3,6T = , and 

( ) { }9,10 0,2,4,5,6,8,9T = , and ( ) { }47,48 0,1,4,10T = . 

Therefore, the number of twin-prime pairs is 

( ) ( )

( ) ( ) ( ) ( )

* 2311 3 , 1

1,2 3,4 6,7 47,48 3

6 6 4 3 68.

i w
T i i

T T T T

π
∈

= + +

= + + + + +

= + + + + =

∑




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(a) 

 
(b) 

Figure S1. (a): A basic composite table CTC (basic); (b): A complementary composite table CTC 
(complementary). 
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Figure S2. List of L44521(1), corresponding to Expression (2’), for θ = 1, 2, …, 19. 
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Figure S3. The periodic table of primes for various intervals. 
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