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Abstract 

 
This research explores the benefits of using fractional Poisson and fractional Gamma models in rainfall 

modeling, highlighting their advantages in handling zero-inflated data, reducing overdispersion, and 

providing greater flexibility and accuracy. 

The second part of this study delves into the dynamic interplay between oceanic ecosystems and global 

climate change. It focuses on the role of phytoplankton in oxygen production and the impact of warming 

waters on this delicate balance. By employing mathematical models integrating differential equations and 

Brownian motion, the study offers a comprehensive framework for understanding how varying rates of 

oxygen production influence the sustainability of oceanic ecosystems. 

Finally, the research incorporates fractional Brownian motion into modeling plankton-oxygen dynamics, 

addressing the limitations of traditional Brownian motion. This approach captures the long-range 
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dependencies and persistent effects critical for predicting the response of marine ecosystems to climate 

change. The findings underscore the need for nuanced mitigation strategies to address the imminent risks 

posed by global warming on marine life and atmospheric oxygen levels. 

 

 

Keywords:  Rainfall modeling; fractional Poisson process; fractional gamma distribution; plankton-oxygen 

dynamics; fractional Brownian motion. 

 

1 Introduction  
 

Climate variables, especially the occurrence and intensity of rainfall, profoundly impact both natural and human 

environments. Understanding the frequency and intensity of rainfall events is vital for effectively planning, 

designing, and managing various water resource systems. This is particularly crucial for rain-fed agriculture, 

where crop production directly depends on the amount and timing of rainfall. Accurate rainfall modeling is 

essential not only for optimizing crop growth but also for developing weather derivatives, enhancing 

hydrological systems, and improving drought and flood management, as well as crop simulation studies (see  

[1]). 
 

Rainfall modeling also plays a critical role in the financial sector, particularly in the pricing of weather 

derivatives. These financial instruments manage risks associated with adverse or unexpected weather conditions, 

providing a safeguard for various stakeholders, including farmers and investors. With the ongoing impacts of 

climate change, predicting rainfall variability for future periods under different climate change scenarios has 

become increasingly urgent (see [1]). Reliable predictions are essential for conducting high-quality climate 

impact studies, which in turn inform policy-making and adaptive strategies. These predictions help understand 

potential changes in rainfall patterns, enabling better preparation and response to the challenges posed by 

climate change. 
 

However, modeling precipitation presents numerous challenges. These include accurately measuring 

precipitation, as rainfall data consists of sequences of zero or positive values (intensity) based on accumulation 

over discrete intervals. Additionally, factors like wind can affect measurement accuracy. Unlike temperature, 

which is highly correlated across regions, rainfall is localized; therefore, a derivative holder based on rainfall 

may face geographical basis risk when pricing weather derivatives. The final challenge is selecting an 

appropriate probability distribution function to describe precipitation data, as its statistical properties are 

complex and require a sophisticated distribution (see [2]). 
 

Rainfall has frequently been modeled using chain-dependent processes, where the occurrence of rainfall on any 

given day depends on whether it rained on previous days. A commonly employed approach for this type of 

modeling is the two-state Markov chain model. In this model, there are two states: one representing the 

occurrence of rainfall (rainy state) and the other representing no rainfall (dry state). The transitions between 

these states are governed by certain probabilities that can be estimated from historical data. To model the 

intensity of rainfall how much it rains when it does rain statisticians fit a suitable probability distribution to the 

observed rainfall amounts. Commonly used distributions include the Gamma distribution (see [3]), the 

exponential distribution, and mixed exponential distributions. These distributions help describe the variability 

and frequency of different rainfall amounts (see [1] and see [4]). 
 

One of the strengths of these models is their simplicity and interpretability. However, despite their advantages, 

these models have certain limitations. They require many parameters to accurately describe the complex 

dynamics of rainfall, which can make the models complicated and computationally intensive. Additionally, 

these models rely on several assumptions about the process, such as the independence of rainfall events from 

day to day and the appropriateness of the chosen distribution to fit the intensity of rainfall. If these assumptions 

do not hold true, the model's accuracy and reliability may be compromised. 
 

This study aims to overcome these limitations by expanding upon previous research and utilizing fractional 

Poisson and fractional Gamma models to develop a fractional Poisson-Gamma model that previously given in 

[5]. This model aims to describe rainfall dynamics more accurately by considering the properties of zero-

inflated data and reducing overdispersion. Specifically, the fractional Poisson process models the daily 

occurrence of rainfall, while the intensity is modeled using the fractional Gamma distribution as the magnitude 

of the jumps in the Poisson process. This results in a fractional compound Poisson process known as the 

fractional Poisson-Gamma model. 
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The fractional Poisson gamma model is particularly suitable for capturing the complexities associated with zero-

inflated rainfall data and reducing overdispersion. By providing a more accurate representation of rainfall 

patterns, these models contribute to the development of more reliable climate prediction tools, which are 

essential for addressing the challenges imposed by climate change. 

 

The second part of this study explores the dynamic interplay between oceanic ecosystems and global climate 

change. Oceans, covering nearly two-thirds of the Earth's surface, serve as a critical regulator of climate and 

atmospheric composition. Central to this regulation is phytoplankton, microscopic plants that perform 

photosynthesis, contributing approximately 70% of the Earth's atmospheric oxygen. However, this delicate 

balance is increasingly threatened by climate change, particularly global warming, which alters water 

temperatures and subsequently affects the rate of oxygen production by phytoplankton. The study employs 

mathematical models integrating differential equations to elucidate how varying rates of oxygen production 

influence the sustainability of these vital components (see [6]). 

 

The final part of this research incorporates fractional Brownian motion into the modeling of plankton-oxygen 

dynamics under climate change. This approach offers a powerful tool for capturing the inherent randomness and 

complexity of natural systems. By integrating fractional Brownian motion, the study provides a more 

comprehensive and accurate understanding of the impact of climate change on plankton-oxygen dynamics. This 

approach contributes to the development of effective strategies for preserving marine ecosystems and 

maintaining atmospheric oxygen levels in the face of global warming. 

 

This research underscores the significant implications of climate change on rainfall patterns, marine ecosystems, 

and atmospheric oxygen levels. It calls for a more nuanced understanding and proactive mitigation strategies to 

address the imminent risks posed by global warming. Through advanced modeling techniques, this study aims to 

provide valuable insights and tools for better predicting and managing the future impacts of climate change on 

our planet's vital systems. 

 

The use of fractional Brownian motion to model the complexities of natural systems is particularly 

commendable.  

 

This research offers a significant advancement in the field of climate change modeling by introducing fractional 

Poisson-Gamma models and fractional Brownian motion. These innovative approaches provide deeper insights 

into predicting rainfall patterns and understanding the complex dynamics of oxygen production in oceanic 

ecosystems. The findings of this study have the potential to improve climate models, which are crucial for 

developing strategies to mitigate the impacts of climate change. This insights provided by this study are 

invaluable for developing more accurate models that can guide effective environmental management and policy-

making. 

 

2 Model Description  
 

2.1 Rainfall modeling using fractional Poisson-gamma distribution 
 

Rainfall includes both discrete and continuous components. When there is no rainfall, the amount is discrete 

(essentially zero), whereas during rainfall, the amount is continuous. Traditional approaches often separate the 

modeling of occurrence and intensity of rainfall. Typically, the occurrence is modeled using a first-order or 

higher-order Markov chain process see [4]. Based on this occurrence model, various distributions such as 

Gamma, exponential, mixed exponential, and Weibull are used to model the amount of precipitation see [3]. 

These models rely on several assumptions and include multiple parameters to accurately capture the observed 

temporal dependence in the rainfall process. 

 

However, rainfall data often exhibit overdispersion, attributed to factors such as clustering, unaccounted 

temporal correlation, or the inherent variability from Bernoulli trials with unequal event probabilities. 

Traditional stochastic models tend to underestimate this overdispersion, which can lead to an underestimation of 

the risks associated with low or high seasonal rainfall. 
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In this research, our goal is to find a unified model that simultaneously accounts for both the occurrence and 

intensity of rainfall. We propose using a fractional Poisson-Gamma probability distribution, which is capable of 

modeling both the exact zeros (no rainfall) and the positive amounts of rainfall together. Rainfall will be 

modeled as a fractional compound Poisson process with fractional Gamma-distributed jumps. This approach is 

motivated by the abrupt changes in rainfall amounts from zero to a significant positive value following each 

rainfall event, which are represented as jumps in the fractional compound Poisson process. 

 

We assume that rainfall occurs in the form of storms, which follow a fractional Poisson process. At each arrival 

time, the current rainfall intensity increases by a random amount determined by a fractional Gamma distribution. 

The jumps in this process represent the arrival of storm events, each generating a random jump size. Each storm 

consists of cells that also arrive according to another fractional Poisson process. 

 

2.2 Plankton-oxygen dynamics modeling under climate change 
 

To explore the dynamics of plankton and oxygen under the influence of climate change, we incorporate a 

mathematical model based on a set of differential equations that describe the interactions between oxygen, 

phytoplankton, and zooplankton. The key components of the model are as follows see [6]: 

 

1. Oxygen Dynamics: The concentration of oxygen (c) is influenced by its production through 

photosynthesis by phytoplankton (u) and its consumption through respiration by both phytoplankton and 

zooplankton (v). The rate of oxygen production is modeled as a function of the phytoplankton density and 

environmental factors such as water temperature. 

2. Phytoplankton Dynamics: Phytoplankton density (u) changes due to growth, which is dependent on the 

available oxygen and light for photosynthesis. Phytoplankton also consume oxygen for respiration, and 

their growth is limited by intra-specific competition. 

3. Zooplankton Dynamics: Zooplankton density (v) changes due to predation on phytoplankton and their 

own respiration, which consumes oxygen. The growth of zooplankton is influenced by the availability of 

phytoplankton as a food source. 

 

In this study, incorporating Brownian motion into the modeling of plankton-oxygen dynamics under climate 

change provides a robust framework for capturing the inherent randomness and complexity of natural systems. 

Brownian motion is utilized to model the random fluctuations in environmental factors such as water 

temperature, which directly affect the rate of oxygen production by phytoplankton. This approach allows for the 

simulation of small-scale variability and randomness in nutrient availability and other environmental conditions, 

influencing phytoplankton growth and respiration. 

 

2.3 Enhanced modeling with fractional Brownian motion 
 

We describe the integration of fractional Brownian motion into our existing plankton-oxygen dynamics model. 

The equations presented leverage the unique properties of fractional Brownian motion to better represent the 

stochastic behavior of the system components. Fractional Brownian motion introduces long memory and self-

similarity into the modeling framework, capturing the persistent dependencies and complex temporal 

correlations observed in ecological systems. 

 

By incorporating fractional Brownian motion, we can more accurately simulate and understand the intricate 

dynamics of plankton and oxygen interactions in a changing climate. This enhanced modeling approach allows 

for better predictions of long-term impacts and provides deeper insights into the potential ecological 

consequences of global warming on marine ecosystems. 

 

3 Mathematical Formulation 
 

3.1 Rainfall modeling using fractional Poisson-gamma distribution 
 

Let  be the total numbers of rainfall event per day, following a fractional Poisson process see [7] and see 

[8] such that: 

 

( )N t
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                                                                                                             (1) 

 

Adapting equation (1) to become 
 

 , 

 

Hence, we have 
 

                                                                                                                                                   (2) 

 

The total rainfall accumulation is calculated as the cumulative sum of individual rainfall events, denoted as 

 Assuming each follows a symmetric and independently fractional Gamma distribution. Moreover, 

these distributions are assumed to be independent of the rainfall timing occurrences. 

 

                                                                                                             (3) 

 

Such that Fractional Gamma distributed with probability density function 

 

                                                                                          (4) 

 

After integrating the previous formula with respect to y, , we have 

. 

 

Lemma 1: 
 

The compound fractional Poisson process (1) has a cumulant function given by 
 

                                                         (5) 

 

where, is the moment generating function of the fractional gamma distribution. 

 

Proof: 

 

The moment generating function of is given by: 
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So, the cumulant function takes the form  

 

, 

 

that can be adapted to take the final form 

 

  

 

When monitoring rainfall across n periods, then we have the sequence  which are independent and 

identically distributed. 

 

Result 1: 

 

If there is no rainfall on a specific day, then we have: 

 

                                                                         (6) 

 

Lemma 2: 

 

The probability density function of L is: 

 

                                       (7) 
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Proof: Let ,  is given by (6), the probability that it rained. Hence for  we have 

 

 
 

The previous formula can take the form: 
 

  
 

Using the value     to have:          

   

                               
 

If we let and  ,  we have 

 

                                                       (8)  
 

We can express the probability density function in terms of a Dirac function as 
 

 
 

Using the values of , we have  
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The formula (9) represents a random sample of size n of with the probability density function. 

 

3.2 Plankton-oxygen dynamics modeling under climate change 
 

Let  be a filtered probability space and let be a standard Wiener process adapted 

to the filtration ( ), where , i =1,2,3 is independent see ([9] and see [10]). 

 

Consider the following stochastic system see [6]: 

 

Zooplankton Density (v) Equation: 
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Here, η is the feeding efficiency of zooplankton, and μ represents the natural mortality rate of zooplankton. The 

Brownian term models the stochastic movement and distribution of zooplankton due to turbulent mixing. 
 

Phytoplankton Density (u) Equation: 
 

                                               (11) 

Here, B is the maximum per capita growth rate of phytoplankton, and  represents the natural mortality rate 

of phytoplankton. The Brownian term accounts for random environmental variations affecting phytoplankton 

growth. 
 

Oxygen Concentration (c) Equation: 
 

                                    (12) 

 

Here, A represents the rate of oxygen production, δ and ν are the respiration rates of phytoplankton and 

zooplankton, respectively, and mmm is the natural oxygen loss rate. The Brownian term represents the 

stochastic fluctuations due to environmental randomness. 

 

The equations (10) – (12) can be reformulated as follows: 

 

 , Where                                     (13) 

 

  , Where                                 (14) 

 

   , Where                                        (15) 

 

Note: All parameters are nonnegative due to their biological significance. 
 

Consider the following stochastic differential equations: 
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Where, the solution of these two stochastic differential equations are given by (see [11]): 
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Now to solve equation (13):  by using equation (16) (at i=1), we set  and applying the 

formula of Ito, to get: 
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(After integrating, we have)      

 

 (by taking expectation) 

  

                                                                                                                                  (20) 

 

Now: If  ,  then.    

 

 

 

After taking the limit as t → 0, the physical meaning of the model’s results emphasizes the immediate impact of 

initial conditions and the relationship between growth and mortality rates on the zooplankton population. The 

findings underscore the sensitivity of the system to initial disturbances and highlight the rapid response of the 

population dynamics to environmental variability. This understanding is crucial for predicting and managing the 

immediate effects of environmental changes on marine ecosystems. 

 

To solve equation (14):  by using equation (16) , (at i=2), we set  and applying the formula 

of Ito, to get: 
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Now: If , then     

                                                                                            

 

 

After taking the limit as t → 0, the physical meaning of the model’s results indicates that when the intrinsic 

growth rate of phytoplankton is lower than the intensity of environmental fluctuations, the phytoplankton 

population is expected to decline to zero initially. This highlights the critical impact of environmental 

disturbances on phytoplankton sustainability and the broader implications for marine ecosystem health and 

stability. 

 

The solution of equation (15) by using equation (21) given by: 

 

 

 

 By taking expectation: - 

 

 

 

The above equation is adapted in the form: 

 

 

 

Rearrange the equation: 

 

 

 

Differentiate the equation with respect to t: 

 

 

 

Now, we have a first order linear differential equation, we will apply the integrating factor: 

 

 

 

 

By integrate with respect to t: 
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Finally, we have 

 

                                                 (23) 

 

By taking limit   

 

After taking the limit as t → , the physical meaning of the model’s results indicates that the modeled oxygen 

concentration increases indefinitely over time, suggesting continuous and unbounded oxygen production. These 

highlights potential oversimplifications in the model and underscores the importance of incorporating realistic 

feedback mechanisms and limiting factors to ensure a more accurate representation of ecological dynamics. 

Understanding these dynamics is crucial for predicting the long-term stability and sustainability of marine 

ecosystems. 

 

3.3 Enhanced Modeling with Fractional Brownian Motion 
 

Let be the fractional Brownian motion defined in [12], [13] and [14]. 

 

Consider the previous stochastic system equations (13) to (15). To solve it in view of fractional Brownian 

motion, we consider the following stochastic differential equations: 

 

Zooplankton Density (v) Equation: 

 

By using equation (13) but in fractional form:  

 

 , Where                                    (24) 

 

We consider the stochastic differential equations:  

 

                                                                                   (25) 

 

                                                                                 (26) 

 

Where i=1,2,3, 0 < α < 1, is Gamma function. 

 

The solution of these two stochastic differential equations are given by: 
 

                                                                                                                                (27)  

 

                                                                                                                                   (28)      

 

Where i =1,2,3.  
 

Now to solve equation (24):  by using equation (25) (at i=1), we set and applying the 

formula of Ito, to get: 
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        (After integrating, we have) 

 

                 (by taking expectation) 

 

                                                                          (29) 

 

Phytoplankton Density (u) Fractional Equation: 

 

By using equation (14) but in fractional form: 

 

, Where                                     (30) 

 

Now to solve equation (30):  by using equation (25) (at i=2), we set and applying the 

formula of Ito, to get: 
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                           (by taking expectation) 

                                                                         (31) 

 

Oxygen Concentration (c) Fractional Equation: 

 

By using equation (15) but in fractional form: 

 

  , Where                                          (32) 
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4 Data Analysis 
 

4.1 Analysis of fractional Poisson gamma model 
 

Analysis of the effect of on fractional Poisson process 

 

In this analysis, we will compare two different definitions of the function used in the fractional Poisson 

process equation (1): 

 

First Definition of is given by: 

 

 
 

Where and is gamma function. 

 

Second Definition of is given by: 

 

 
 

Where this definition involves the Mittag-Leffler function.  

 

Now, by using the first definition of , Fig. (1) shows the probability distribution changes subtly with 

variations in the value of λ at time t=0.001. 

 

 
 

Fig. 1. The effect of on fractional Poisson process for different values of using first zeta 

 

As the number of events n increases, the probabilities tend to stabilize at low values. This indicates that the 

fractional Poisson distribution tends to converge towards a stable distribution as the number of events increases. 

 

With increasing α values, the probabilities for fewer events are higher, reflecting a wider and more dispersed 

distribution, although the probabilities for fewer events are higher with larger α values, as n increases, the 

probabilities tend to stabilize at low values. 

 

The effect of λ is noticeable, as increasing λ leads to higher concentration of probabilities for fewer events, 

despite this concentration, with increasing n, the distribution stabilizes at low values, indicating a combined 

effect of λ and α in shaping the probability distribution. 
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Overall, the graph shows that the fractional Poisson distribution tends to stabilize with increasing n, where 

probabilities for larger events decrease significantly and stabilize at low values. Both λ and α are important 

factors influencing the probability distribution, and the graphs illustrate how the dynamics can change based on 

these parameter values. 

 

Now, by using the second definition of , Fig. (2) shows the probability distribution changes subtly with 

variations in the value of λ at time t=0.001.  

 

 
 

Fig. 2. The effect of on fractional Poisson process for different values of using second zeta. 

 

Stabilization with Increasing n: All graphs show that the distribution stabilizes at low values with increasing n, 

indicating that the fractional Poisson distribution converges towards a stable distribution as the number of events 

increases. 

 

Effect of α: In all graphs, higher α values lead to higher probabilities for fewer events, reflecting a wider and 

more dispersed distribution. As n increases, the probabilities stabilize at low values. 

 

Effect of λ: Increasing λ leads to a more concentrated distribution for fewer events. The probabilities for larger 

events decrease significantly and stabilize at low values, indicating a combined effect of λ and α in shaping the 

probability distribution. 

 

By comparing the two definitions of , we can observe that both approaches exhibit similar trends in the 

fractional Poisson process. 

 

Analysis of the cumulant function: Fig. (3) demonstrates the behavior of the cumulant function given in 

equation (4), where , P = 0.5,  = 0.5 and s in range from 0.1 to 5. 

 

 
 

Fig. 3. The effect of  on the cumulant function 

( )


 

 

( )


 

0 1  





 
 

 

 
El-Nadi et al.; Asian J. Prob. Stat., vol. 26, no. 9, pp. 39-60, 2024; Article no.AJPAS.122072 

 

 

 
54 

 

 

The cumulant function  exhibits a strong dependence on the parameter α. For smaller α values, the 

function is initially higher and decreases more rapidly, indicating a higher sensitivity to s. As α increases, the 

initial value of the function decreases, and the curve becomes flatter, showing less sensitivity to changes in s. 

This behavior highlights the importance of the parameter α in controlling the shape and characteristics of the 

cumulant function . 

 

Analysis of the rainfall timing occurrences  

 

Fig. (4) shows the effect of different α values on equation (8) over the range of L values from 0.1 to 2, with 

λ=0.5, p=0.5 and .  

 

 
 

Fig. 4. The effect of alpha on rainfall occurrence 

 

The analysis shows that α significantly influences the behavior of the function . Higher α values result 

in a more stable and positive , while lower α values cause to decrease more rapidly. 

Understanding this relationship is crucial for applications that rely on tuning the parameter α to achieve desired 

outcomes. 

 

4.2 Analysis of plankton-oxygen dynamics modeling under climate change 
 

Analysis for zooplankton: To examine the scenario where the feeding efficiency (η) of zooplankton is less than 

their natural mortality rate (μ), we will base our analysis on scientific parameters derived from where the 

maximum feeding efficiency η for zooplankton is typically less than 1.0. Specifically, we will consider the 

following values: feeding efficiency (η = 0.2). and the natural mortality rate for zooplankton is (μ = 0.3). 

 

If η < μ, this means the natural mortality rate of zooplankton is greater than their feeding efficiency. In this 

scenario, the population of zooplankton is expected to decline over time. The exponential term (η − μ) becomes 

negative, leading to an exponential decay of the population. Therefore, equation (20) describes a decreasing 

exponential function. As t increases, approaches zero, causing the zooplankton population  to 

decrease toward zero.  Fig. (5) shows zooplankton decay over time. 
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Fig. 5. Zooplankton decay over time 

 

Fig. (5) shows the simulated zooplankton population over time when the natural mortality rate is greater than the 

feeding efficiency. The population starts from an initial value of = 1.0 and declines exponentially over 

time due to the negative difference between feeding efficiency and mortality rate. 

 

Analysis for phytoplankton: When B < σ2, the system modeled by the equation (22) will exhibit exponential 

decay. This scenario is important for understanding how systems respond to high variability or noise, where the 

maximum per capita growth rate of phytoplankton B = 0.1, and the natural mortality rate of phytoplankton 

σ2=0.5. 

 

 
 

Fig. 6. Phytoplankton decay over time 

 

Fig. (6) shows When B < σ2, the phytoplankton population modeled by equation (22) exhibits exponential 

decay. This scenario highlights the impact of high environmental variability or stress, leading to a damping 

effect that reduces the population over time. Such insights are critical for managing and predicting the behavior 

of phytoplankton populations in the face of significant environmental fluctuations. 
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Analysis for Oxygen Dynamics: The equation (23) modeling the expected value illustrates how the 

concentration of oxygen changes over time, influenced by the initial concentration and other parameters.       

     

Fig. (7) shows that the expected value models the change in oxygen concentration over time, 

influenced by the initial concentration and parameters such as, the rate of oxygen production (A = 2.05), The 

maximum per capita growth rate of phytoplankton (B = 1.8), ( =0.1). 

 

 
 

Fig. 7. The concentration of oxygen changes over time 

 

The exponential growth of  with the given constants demonstrates how oxygen concentration in an 

ecosystem can increase rapidly over time, driven by initial conditions and influencing parameters. This model 

underscores the importance of understanding and managing oxygen dynamics to maintain the health and 

stability of aquatic ecosystems. 

 

4.3 Analysis of enhanced modeling with fractional brownian motion 
 

Fig. (8) shows the effect of the parameter α on the expected values , , and  at t = 

0.001. The differences in the curves reflect the different parameters used for each expected value. 

 

Blue Curve :This curve shows the expected value of as α changes. The constants used are = 

0.1, = 0.7, and =0.1. 

 

Orange Curve :This curve shows the expected value of as α changes. The constants used are 

=0.2, =0.6 , and =0.15. 

 

The orange curve is higher than the blue curve, indicating higher expected values due to the different 

parameters. 
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Green Curve : This curve shows the expected value of as α changes. The constants used are 

=0.15, = 0.65, and =0.2. 

 

The green curve is the highest, indicating the highest expected values among the three due to its specific 

parameters. 

 

 
 

Fig. 8. Comparison between the equations 

 

All three curves exhibit a steep decline initially as α increases from 0. This suggests that all three expected 

values are highly sensitive to α when α is small. As α approaches 1, the expected values for all three variables 

level off and change more slowly. The graph clearly shows how different parameters (μ, η, and σ1) affect the 

expected values , , and .The relative positions of the curves indicate that with 

higher values for η and σ1, the expected values tend to be higher. 

 

5 Summary 
 

The study makes a strong connection between its modeling techniques and important facets of climate change, 

especially when considering oceanic ecosystems.  

 

It is especially admirable that fractional Brownian motion is being used to simulate the intricacies of natural 

systems. 

 

The study aids in the creation of better-informed and potent countermeasures against the negative effects of 

climate change. 

 

Related works: Previous research in climate change modeling has extensively utilized various stochastic 

models to capture the dynamics of rainfall and its broader environmental impacts. Wilks [11] employed a two-

state Markov process combined with a mixed exponential distribution to model rainfall occurrence and intensity, 

finding that this approach provided a better fit compared to the traditional Gamma distribution. Leobacher and 

Ngare [3] extended this approach by introducing a Markov-Gamma model to capture seasonal variations in 

monthly precipitation. 

 

Onof [15] explored the challenges associated with Poisson cluster models in rainfall modeling, while Carmona 

and Diko [16] developed a time-homogeneous jump Markov process to describe rainfall dynamics, modeling 

rainfall as storms consisting of cells, with changes in intensity represented by a Poisson process. Dzupire, 

Ngare, and Odongo [5] refined these approaches by introducing a Poisson-Gamma model that addresses both 

the occurrence and intensity of rainfall, effectively handling zero-inflated data and reducing overdispersion. 

 

Despite the advancements in these traditional models, they often fall short in adequately addressing the issues of 

overdispersion and zero-inflation in rainfall data, which are crucial for accurate climate modeling. To overcome 
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these limitations, this research has introduced fractional Poisson and fractional Gamma models, which provide a 

more robust framework for rainfall modeling and enhance the understanding of climate-related phenomena. 

 

In the context of marine ecosystems, Sekerci and Petrovskii [6] developed a model to examine the impact of 

global warming on oxygen production by phytoplankton. This study offered foundational insights into how 

plankton-oxygen systems might respond to ongoing climate change, emphasizing the importance of accurate 

modeling to predict potential ecological disasters. 

 

Building on these foundational studies, my research donates two key advancements: Incorporating Brownian 

Motion: To introduce stochastic variability into the plankton-oxygen model, I integrated Brownian motion, 

enhancing the model’s ability to simulate random environmental fluctuations and providing a more realistic 

representation of natural systems. 

 

Applying Fractional Brownian Motion: Addressing the limitations of previous models, I incorporated fractional 

Brownian motion to better capture long-term dependencies and nonlinear fluctuations that characterize 

environmental changes in natural ecosystems. 

 

This research contributes to a deeper understanding of the complex interactions between environmental and 

biological factors in ecosystems, offering new insights and opening avenues for future research in plankton-

oxygen dynamics. 

 

6 Conclusion 
 

This research addresses advanced modeling techniques to tackle the significant challenges posed by climate 

change, focusing specifically on rainfall modeling and oxygen dynamics in oceanic ecosystems. 

 

Rainfall Modeling: The study introduces the fractional Poisson-Gamma model to enhance the understanding and 

prediction of rainfall patterns. The model effectively handles datasets with many zero values and reduces 

overdispersion. It provides a flexible and accurate framework for predicting rainfall, which helps in improving 

agricultural production, developing weather derivatives, and enhancing hydrological systems. 

 

Oxygen Dynamics in Oceans: The second part of the research focuses on the complex relationship between 

oceanic ecosystems and climate change, particularly the role of phytoplankton in oxygen production.  

 

Integrated mathematical modeling offers a comprehensive understanding of how changes in oxygen production 

rates impact the sustainability of oceanic ecosystems. 

 

Fractional Brownian Motion: Incorporating fractional Brownian motion in the modeling provides a powerful 

tool for capturing randomness and complexity in natural systems. This approach offers a more detailed 

understanding of the dynamics of phytoplankton and oxygen, aiding in the development of effective strategies 

for preserving marine ecosystems. 

 

Impact on Climate Change Mitigation Policies: The research highlights the urgent need for advanced and 

proactive mitigation strategies to address the risks posed by climate change. The advanced modeling techniques 

presented in this study provide valuable tools for improving predictions and managing the impacts of climate 

change on vital systems, including rainfall patterns, marine ecosystems, and atmospheric oxygen levels. 

 

In conclusion, this study contributes to the field of climate change research by presenting innovative modeling 

approaches that enhance our understanding of complex environmental processes. The insights gained from this 

research are essential for developing informed strategies to mitigate the adverse effects of climate change and 

ensure the sustainability of natural and human environments. See [17] and [18]. 
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