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Abstract 

 
For some examples of filters, defined by the "input-output" correspondence, a correspondence that can be 

translated in many cases by linear differential equations (first or second order filters), we specify the notions 

of step response, impulse response, transfer function, frequency response. We also specify the qualities of the 
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filters considered from the point of view of causality, stability and rationality. To avoid any risk of confusion, 

some usual definitions and criteria are repeated below. 

 

 

Keywords: differential equations; step response; impulse response; transfer function; frequency response. 

 

1 Introduction 
 

1.1 Filter concept 
 

Consider a physical system that receives input signals 𝑡 ⟼ 𝑒(𝑡) and delivers output signals:𝑡 ⟼ 𝑠(𝑡). 
 

To represent this correspondence between input signal and output signal, [1]. we can define a mathematical 

operator 𝜙acting on admissible signals, such that for any input 𝑒 and the 𝑠associated output verifies 

 

 𝑠 = 𝜙(𝑒).           (1) 

 

Assuming that the set 𝒜of admissible signals is a vector space of functions or distributions also equipped with a 

notion of convergence for the sequences (convergence in the sense of functions or in the sense of distributions), 

this operator 𝜙can present remarkable properties: 

 

- linearity: the input signal 𝛼𝑒1 + 𝛽𝑒2is transformed into an output signal 𝛼𝜙(𝑒1) + 𝛽𝜙(𝑒2). 

- of continuity in the following sense: if, when 𝑛tends towards +∞,an input signal of type ∑ 𝑒𝑘
𝑛
0 admits a 

limit 𝑒at 𝒜, then the output signal ∑ 𝜙(𝑒𝑘)𝑛
0  also admits a limit 𝑠and 𝑠 = 𝜙(𝑒).4 

 

The same is true when we say that the sum of a converging series of admissible signals is transformed into the 

sum of the series of associated outputs. 

 

- of temporal invariance: if 𝑠 = 𝜙(𝑒)then the translated signal 

 

𝑒𝑡: 𝑡 ⟼ 𝑒(𝑡 − 𝜏)turns into translated 𝑠𝑡: 𝑡 ⟼ 𝑠(𝑡 − 𝜏), in other words𝑠𝑡 = 𝜙(𝑒𝑡) 

 

When a system has these three properties, it is said to be a "filter" or a "linear filter." 

 

1.2 Definition 
 

𝑖)a priori 𝕃1function in 𝜘,or in 𝕃2, response of the staged system𝜘[2]. 
 

𝑖𝑖)Transfer function and frequency response: if, formally, we denote 𝐸and 𝑆the bilateral Laplace transforms of 

the input 𝑒and output, 𝑠the "input-output" relationship in the filter translates to: 

 

𝑄(𝑧)𝑆(𝑧) = 𝑃(𝑧)𝑆(𝑧)               (2) 

 

from where     

 

 𝑆(𝑧) =
𝑃(𝑧)

𝑄(𝑧)
𝐸(𝑧).                       (3) 

 

The function H defined by : 𝐻(𝑧) =
𝑃(𝑧)

𝑄(𝑧)
, to which we possibly associate its domain of validity, is called the 

transfer function of the filter. Often; H is rational, 𝑃 𝑒𝑡 𝑄are then polynomials. We will mainly examine the case 

where deg(𝑃) ≤ deg(𝑄).When, on the axis of imaginary, there is no pole of H, we can define the frequency 

response 𝐺by 

 

𝐺(𝜆) = 𝐻(2𝑖𝜋𝜆).          (4) 
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𝑖𝑖𝑖)a priori transformable ℱ,function or distribution by ℎ,which constitutes the filter response to the input. 𝛿.It is 

also the derivative, in the sense of distributions, of the step response 𝜘and the Fourier transform ℎof the 

frequency response. 
 

𝑖𝑣) Causality: we have seen that this property depends on the class of signals admissible at the input of the filter. 

In all cases, causality is expressed, when it ℎis known, by ∀𝑡 > 0, ℎ(𝑡) = 0;in other words by the causality of 

ℎ.In the case where H is a rational fraction with deg(𝑃) ≤ deg(𝑄), this amounts to saying that H is a unilateral 

transform whose domain of validity contains the axis of imaginaries, therefore that all the poles of H are of 

strictly negative real parts [3]; [4],. When this property is verified, the bilateral Laplace transform of ℎmerges 

with its unilateral transform; it is H whose summability domain is the half-plane to the right of the pole of the 

smallest real part. 
 

𝑣)Stability: In the case where H is a rational fraction, we use the condition on the poles, otherwise, in the 

general case, there remains the definition which imposes bounded outputs for bounded inputs. 

𝑣𝑖)Dynamic filter: it is a causal and stable filter whose transfer function is also rational. 
 

1.3 Applications 
 

1. “Time Average” Filter 
 

We consider a system which, for any functional input 𝑡 ⟼ 𝑒(𝑡), [5]corresponds to the output 𝑠defined by: 
 

𝑠(𝑡) =
1

𝐴
∫ 𝑒(𝜃)𝑑𝜃   𝑎𝑣𝑒𝑐 𝐴 > 0

𝑡

𝑡−𝐴
                  (1.1) 

 

a. Let us show that this system has the properties of linearity and time invariance. 
 

From the linearity of the integral on each of the intervals [𝑡 − 𝐴, 𝑡], we show the proof that the system is linear. 

Consider a 𝑒𝑎: 𝑡 ⟼ 𝑒(𝑡 − 𝑎). The corresponding output being provisionally noted 𝑦,we have: 
 

𝑦(𝑡) =
1

𝐴
∫ 𝑒(𝜃 − 𝑎)𝑑𝜃  

𝑡

𝑡−𝐴
                          (1.2) 

 

A simple change of variable provides, 𝑠 as output, the 𝑒,desired result: 
 

𝑦(𝑡) =
1

𝐴
∫ 𝑒(𝑢)𝑑𝑢 = 𝑠(𝑡 − 𝑎),    

𝑡−𝑎

𝑡−𝑎−𝐴
        (1.3) 

 

Let a be the translated index of the output. 𝑒.We conclude that the system is invariant. The system is therefore a 

linear filter [6]; [7],. We do not examine continuity issues for the filters studied here. 

 

b. Let us determine the step response of this filter. Let us deduce its impulse response ℎand then the 

transfer function H. Let us show that h can be extended, by means of a power series, to the entire 

complex field and deduce the frequency response . 𝐺(𝜆)Is this filter causal? 

 

Let's start by using a graphical representation: 

 

This involves calculating the area of a rectangle. We find: 

 

{

𝑠𝑖 𝑡 < 0, 𝑢(𝑡) = 0       

𝑠𝑖 0 ≤ 𝑡 ≤ 𝐴, 𝑢(𝑡) =
𝑡

𝐴
𝑠𝑖 𝑡 > 𝐴, 𝑢(𝑡) = 1        

 

 

This response being causal, the filter studied is causal. The impulse response is the derivative, in the sense of 

distributions, of this step response. [8]; [9]; [10],The function being continuous, it suffices to calculate in the 

sense of functions this derivative which is easily expressed using the step: 

 

ℎ(𝑡) =
1

𝐴
 (𝜘(𝑡) − 𝜘(𝑡 − 𝐴))         (1.4) 
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Fig. 1. Graphical representation of the time averaging filter 
 

 

The Laplace transform of this causal function ℎprovides us 

 

𝐻(𝑝) =
1

𝐴𝑃
(1 − 𝑒−𝑃𝐴)                  (1.5) 

 

This formula is not valid a priori at point 0, but, using the entire series development of the exponential which is 

valid in the entire complex plane, we can extend by the series: 

 

𝐻(𝑝) = ∑
(−1)𝑛−1(𝑝𝐴)𝑛−1

𝑛!
,+∞

𝑛=1       (1.6) 

 

valid everywhere. No difficulty in replacing 𝑝by 2𝑖𝜋𝜆to obtain the frequency response from which: 

 

𝐺(𝜆) =
1−𝑒−2𝑖𝜋𝜆𝐴

2𝑖𝜋𝜆𝐴
                                         (1.7) 

 

It should be noted that the direct calculation of the Fourier transform is not simple since it would involve the 

transformation in unit steps. We would find: 

 

𝐺(𝜆) =
1

𝐴
(1 − exp(−2𝑖𝜋𝐴𝜆)ℱ(𝜘)(𝜆) =

1−exp (−2𝑖𝜋𝐴𝜆)  

𝐴
(

𝛿

2
+

1

2𝑖𝜋
𝑉𝑝 (

1

𝜆
))     (1.8) 

 

c. Let us check that this filter is well characterized by the relation: 

 

𝑠 = 𝑒 ∗ ℎ                                                     (1.9) 

 

Let's perform 𝑒. the convolution 𝑒 ∗ ℎ, defined by the classical formula, since these are functions: 

 

(𝑒 ∗ ℎ)(𝑡) =
1

𝐴
∫ 𝑒(𝑡 − 𝑢)(𝜘(𝑢) − 𝜘(𝑢 − 𝐴))𝑑𝑢  

+∞

−∞
                     (1.10) 

 

𝑜𝑢     (𝑒 ∗ ℎ)(𝑡) =
1

𝐴
∫ 𝑒(𝑡 − 𝑢)𝑑𝑢 =

1

𝐴
 ∫ 𝑒(𝜃)𝑑𝜃

𝑡

𝑡−𝐴
 

𝐴

0
                (1.11) 

 

which gives the output 𝑠associated with𝑒. 
 

d. Is this filter stable (in the strict sense, in the broad sense)? Is it a dynamic filter? 
 

Since the function H is not rational, we cannot use the criterion on the poles [11]. However, the definition of 

stability applies since ℎbeing with bounded support is summable. Since the function ℎis bounded, it results in 

stability in the broad sense. Since the function H is not rational, the filter is not dynamic. 
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2. Filter ''translator'' 
 

Let an "input-output" system be such that it 𝑒is linked by 𝑠: 

 

𝑠(𝑡) = 𝑒(𝑡 − 𝑎)                              (2.1) 

where 𝑎is a fixed number > 0. Let's deal with the previous questions for this filter. 

 

a. It is simple to demonstrate the properties of linearity, continuity (while retaining the same notion of 

convergence) and invariance with respect to an integral and the domain of validity. 

b. We take the bilateral transforms of two members of the ''input-output'' relation, we obtain 

 

𝑆(𝑝) = exp(−𝑝𝑎)𝐸(𝑝)                  (2.2) 

 

, therefore 𝐻(𝑝) = exp (−𝑝𝑎)the frequency response is therefore 

 

𝜆 ⟼ exp(−2𝑖𝜋𝑎𝜆).    (2.3) 

 

The impulse response is therefore the Dirac distribution: 𝛿𝑎which is causal only if𝑎 > 0. 
 

c. We note that the filter is stable in the broad sense since it ℎcontains only a Dirac distribution [12]. The 

stability in the strict sense is obvious because if an input is bounded, the output which is a translated 

output is also bounded. Finally, the filter is not dynamic since it is not stable in the strict sense. 

 

3. Filter ''R – C'' 

 

 
 

Fig. 2. Graphical representation of the “R – C” time averaging filter 

 

From this diagram, we are led to the "input-output" relationship which is expressed by the relationships: 

 

{
𝑒(𝑡) = 𝑅𝑖(𝑡) + 𝑠(𝑡)

𝑖(𝑡) = 𝐶 
𝑑𝑠

𝑑𝑡
 (𝑡)

                         (3.1) 

 

a. Let us find the output 𝑠as a function of the 𝑒assumed causality, by expressing it by an integral with one 

of the limits zero and an arbitrary constant. Let us calculate this constant. Let us show that the expression 

of 𝑠as an integral is the translation of a convolution product of by a 𝑒causal function that we will explain. 

Let us deduce the impulse response and the frequency response [13]; [14]. 
 

From this classical scheme we obtain the following differential equation link 𝑒Et 𝑠. 

 

𝑅𝐶 𝑠′ + 𝑠 = 𝑒                                                (3.2) 
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Let us ask ourselves classically: 

 

𝑠(𝑡) = 𝑣 exp (−
𝑡

𝑅𝐶
),                                (3.3) 

The equation deviates 

 

𝑣′(𝑡) =
1

𝑅𝐶
exp (

𝑡

𝑅𝐶
) 𝑒(𝑡),                        (3.4) 

 

from where: 

 

𝑣(𝑡) = 𝐾 +
1

𝑅𝐶
∫ exp (

𝜃

𝑅𝐶
) 𝑒(𝜃)𝑑𝜃

𝑡

0
,          (3.5) 

 

which finally gives 

 

𝑠(𝑡) = exp (−
𝑡

𝑅𝐶
) (𝐾 +

1

𝑅𝐶
∫ exp (

𝜃

𝑅𝐶
)

𝑡

0
) 𝑒(𝜃)𝑑𝜃.               (3.6) 

 

The initial condition which is given imposes, 𝑠(𝜃) = 0and by continuity, from where 𝐾 = 0. We can, by sliding 

the exponential under the integral, make a convolution appear: 

 

𝑠(𝑡) =
1

𝑅𝐶
∫ exp (−

𝑡−𝜃

𝑅𝐶
)

𝑡

0
𝑒(𝜃)𝑑𝜃                   (3.7) 

 

=
1

𝑅𝐶
∫ 𝑒(𝜃)𝜘(𝑡 − 𝜃) exp (−

𝑡−𝜃

𝑅𝐶
)

+∞

−∞
𝑑𝜃             (3.8) 

 

We deduce that the impulse response ℎis defined by the causal function: 

 

ℎ(𝑡) =
1

𝑅𝐶
𝜘(𝑡) exp (−

𝑡

𝑅𝐶
)                     (3.9) 

 

The frequency response is then 

 

𝐺(𝜆) =
1

1+2𝑖𝜋𝜆𝑅𝐶
                                   (3.10) 

 

by direct calculation 

 

b. Let us resume the calculation of the transfer function by directly transforming the equations of the 

system. Let us then determine its impulse response. 

 

With our assumptions, we transform the two equations of the circuit by; the capital letters denote the Fourier 

transforms, we have: 

 

𝐸 = 𝑅𝐼 + 𝑆   𝑒𝑡 𝐼 = 2𝑖𝜋𝜆𝐶𝑆,              (3.11) 

 

from where 

 

𝐸(𝜆) = (𝑅𝐶(2𝑖𝜋𝜆) + 1)𝑆(𝜆).    (3.12) 

 

The advantage of this method is to obtain the frequency response immediately. 

 

𝐺(𝜆) =
1

1+2𝑖𝜋𝜆𝑅𝐶
                                       (3.13) 

 

It remains to be shown that this function is indeed a Fourier transform, but it is true, at least in the sense of 

distributions. It is in fact a continuous and bounded function [15]. We use the transformation ℱ̅, we then obtain 

the impulse response above. 
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By transforming the "input-output" link equation using the bilateral transformation, we obtain: 

 
(𝑅𝐶𝑝 + 1)𝑆(𝑝) = 𝐸(𝑝)                   (3.14) 

 

from where 

 

𝐻(𝑝) =
1

𝑅𝐶𝑝+1
                               (3.15) 

 

The only pole of this fraction has the affix −
1

𝑅𝐶
, therefore a strictly negative real number. 

 

We deduce that the filter is causal. The Laplace transform H is then the unilateral transform and we find the 

impulse response. 

 

ℎ(𝑡) = 𝜘(𝑡) exp (−
𝑡

𝑅𝐶
)                                    (3.16) 

 

c. Let's check if the filter is stable and dynamic 

 

In fact, the filter is stable in the broad and strict sense and it is a dynamic filter. 

 

4. Filtered′′𝑹 − 𝑳 − 𝑪′′ 
 

This filter translates the “input-output” relationship into the circuit below: 

 

 
 

Fig. 3. The filter translates the “input-output” relationship in the circuit 

 

This relationship being governed by a second order differential equation: 

 

𝐿𝐶𝑠′′ + 𝑅𝐶 𝑠′ + 𝑠 = 𝑒              (4.1) 

 

From this differential equation we say that the filter is second order. 

 

a. Using the direct method, let us calculate the transfer function and the frequency response. Is the filter 

causal? 

 

Using the 𝑐previous one (3°), the same method leads to the transfer function H. 

 

We find 

 

𝐻(𝑝) =
1

𝐿𝐶𝑝2+𝑅𝐶 𝑝+1
                 (4.2) 

 

negative [16] real parts . . . We deduce that the filter is causal. The frequency response is defined by: 
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𝐺(𝜆) =
𝐸

𝑆
=

1

−4𝜋2𝜆2𝐿𝐶+2𝑖𝜋𝜆𝑅𝐶+1
         (4.3) 

 

b. Let us determine, in all cases, the impulse response. Without doing all the calculations, we will give the 

different forms of this impulse response by passing either by an inverse Fourier transform, or by an 

inverse Laplace transform. 

 

The denominator is factored into a product of two factors, and the impulse response is easily obtained using a 

dictionary of Fourier images [17]. The residue theorem can also be used to compute Fourier transforms of 

rational fractions. For two distinct roots, we obtain a function of the type: 

 

ℎ(𝑡) = 𝜘(𝑡)(𝐴𝑒𝑥𝑝 (𝑧1𝑡) + 𝑏 exp(𝑧2𝑡);          (4.4) 

 

in the case of a double root, a function of the type: 

 

ℎ(𝑡) = 𝐴𝑡 𝜘(𝑡) exp (−
𝑅

2𝐿
)                             (4.5) 

 

c. Let's study stability in the strict and broad sense. Is it a dynamic filter? 

 

Based on our above assumptions and results, the filter is stable and it is a dynamic filter. 

 

5. Study of another second order filter 

 

Given that 𝑎 > 0,we consider the system in which 𝑒and 𝑠are related by: 

 

−𝑎2𝑠′′ + 𝑠 = 𝑒                       (5.1) 

 

 

We place ourselves in the conditions given in the definitions of the preamble. 

 

a. Let us formally calculate the transfer function and deduce that, under these conditions, the filter is not 

causal. 

 

After calculations, we find for the transfer function: 

 

𝐻(𝑝) =
1

−𝑎2𝑝2+1
= −

𝑤2

𝑝2−𝑤2                  (5.2) 

 

The roots of the denominator being opposite (𝑤, −𝑤), the condition of causality is therefore not verified. 

 

b. By solving, in an elementary way, to the left, then to the right of 0, the differential equation −𝑎2𝑢′′ +
𝑢 = 𝜘where 𝜘is the unitary step, we determine the continuous solution, with continuous derivative 

which in 𝕃1(a unique solution which is therefore the response to a step. We can pose: 𝑤 =
1

𝑎
).We find 

this result using the bilateral transformation [18]; [19]. . Let us deduce the impulse response. 

 

To do this, let's start by solving the equation −𝑎2𝑢′′ + 𝑢 = 0.on . ]−∞, 0[We find the following solution: 

 

𝑢(𝑡) = 𝐴 exp(𝑤𝑡) + 𝐵 exp(−𝑤𝑡)                    (5.3) 

 

while on ]0, +∞[, where we have to solve:−𝑎2𝑢′′ + 𝑢 = 1, 
 

we obtain: 

 

𝑢(𝑡) = 𝐴′ exp(𝑤𝑡) + 𝐵′ exp(−𝑤𝑡) + 1.          (5.4) 

 

The condition that the solution must be summable requires: 
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𝐴′ = 𝐵 = 0 

 

The condition of continuity at point 0 then imposes: 

 

−𝐵′ = 𝐴 

Finally, the solution 𝑢 is defined by: 

 

∀𝑡 > 0, 𝑢(𝑡) = 1 −
1

2
exp(−𝑤𝑡)                 (5.5a) 

 

∀𝑡 < 0, 𝑢(𝑡) =
1

2
exp(𝑤𝑡)                         (5.5b) 

 

The impulse response is then given by the derivative: 

 

ℎ(𝑡) =
𝜔

2
exp(−𝑤𝑡)                                     (5.6) 

 

confirming non-causality. 

 

The transfer function being H, we must consider the domain of H as being that which contains the axis of 

imaginaries. [20]; [21]; [22],Using the bilateral transformation and its inverse, we are led to decompose H. the 

transform of ℎ+is 
𝑤

2
.

1

𝑝+𝑤
, the causal part of ℎis therefore 

 

𝑡 ⟼
𝑤

2
exp(−𝑤𝑡)                     (5.7) 

 

The transformation of ℎ−is 

 

−
𝑤

2
.

1

−𝑝−𝑤
=

𝑤

2
.

1

𝑝+𝑤
                   (5.8) 

 

Which brings us to the anti-causal part: 

 

𝑡 ⟼
𝑤

2
exp(−𝑤𝑡)                        (5.9) 

 

We find the previous results. 

 
[23], [24]. Let us determine, elementary for example, the causal solution 𝑢of −𝑎2𝑢′′ + 𝑢 = 𝜘and show that the 

solution found is no longer transformable by ℱ, which explains why, in the classical framework, this solution 

must be rejected. However, if we take as admissible signals exponential type signals which remain in the space 

E, this solution becomes acceptable, the filter becomes causal. Is it stable? 

 

To solve this application, we consider a modification of the admissible signals. 

 

First, if we impose that the solution 𝑢is causal, the solution satisfies zero initial conditions at point 0. Using the 

general form of the solution on ]0, +∞[, namely: 

 

𝑢(𝑡) = 𝐴′ exp(𝑤𝑡) + 𝐵′ exp(−𝑤𝑡) + 1,             (5.10) 

 

We obtain: 

 

𝐴′ + 𝐵′ + 1 = 0  𝑒𝑡  𝑤(𝐴′ − 𝐵′) = 0 

 

The step response is therefore: 

 

𝑢(𝑡) = 𝜘(𝑡)(1 − 𝑐ℎ(𝑤𝑡)).                                  (5.11) 

 



 
 

 

 
TAMBA et al.; Asian Res. J. Math., vol. 20, no. 10, p. 118-129, 2024; Article no. ARJOM.123604 

 

 

 
127 

 

We deduce the impulse response, which we could have obtained by the unilateral Laplace transform: 

 

ℎ(𝑡) = −𝑤 𝜘(𝑡)𝑠ℎ(𝑤𝑡)                          (5.12) 

 

Second, with admissible signals in the space E, the filter is causal, but the criterion of stability on the poles is no 

longer verified, this filter is unstable in the strict sense nor even in the broad sense, moreover the function ℎis 

neither integrable nor bounded [25]; [26]. 
 

6. “Resonator” filter 

 

Let's go back to the previous questions for the filter governed by: 

 

𝑎2𝑠′′ + 𝑠 = 𝑒                                  (6.1) 

 

Let us determine the transfer function and show that the filter is not causal. Let us place ourselves in the 

conditions where the admissible signals are in E (original Laplace space). Let us then calculate by elementary 

methods the step response and then the impulse response (we can also use ℒthe transformation directly to find 

ℎ)a frequency response). 

 

a. Considering this differential equation, the transfer function is defined by: 

 

𝐻(𝑝) =
1

𝑎2𝑝2+1
=

𝑤2

𝑝2+𝑤2                  (6.2) 

 

Its poles are located on the imaginary axis. There is no causality. This case is much more delicate than the 

previous one. If we solve the index equation by elementary methods, we find sinusoidal functions which are not 

Fourier transformable in the sense of functions [27]; [28]. . . 
 

b. If we impose that the solution 𝑢 is causal, the function 𝑢 being continuous at point 0, the initial 

conditions are zero at this point. 
 

The solution being, on ]0, +∞[: 
 

𝑢(𝑡) = 𝐴𝑐𝑜𝑠 (𝑤𝑡) + 𝐵 sin(𝑤𝑡) + 1         (6.3) 
 

we deduce: 
 

𝑢(𝑡) = 𝜘(𝑡)(1 − cos(𝑤𝑡))                      (6.4) 
 

and its derivative which provides the impulse response: 
 

ℎ(𝑡) = 𝑤 𝜘(𝑡) sin(𝑤𝑡)                              (6.5) 
 

We could just as well have used ℒto find this function directly. ℎ.We note that this function is not summable, 
[29]; [30]. which confirms that it does not admit a Fourier transform in the sense of functions. Its Fourier 

transform in the sense of distributions is calculated using that of 𝒰(use of the relation of the function ''sign 

([𝑠𝑔𝑛])and the unit step 𝒰)and the properties of multiplications by exponentials. We would thus find a 

principal value associated with the function. 
 

𝐻(2𝑖𝜋𝜆) =
1

1−4𝜋2𝜆2𝑎2 ,                         (6.6) 

 

Which verifies, a posteriori, the calculations made above. 
 

2 Conclusion 
 

The notion of stability, in the study of systems, particularly in that of linear filters and in that of servo-controlled 

systems, is one of the most important. Generally speaking, a system is said to be stable if, far from its 
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equilibrium position, it tends to return to it; it is unstable if it tends to move away from it. The notion of transfer 

function for systems governed by linear differential equations with constant coefficients makes it possible to 

translate this stability by algebraic conditions (the transformation of place) or graphical conditions. 

 

It will often be necessary to go beyond this simple framework when the function of the second member is not 

continuous and in particular when this function is replaced by a distribution. In both cases, it will be imperative 

to modify the definition of the solutions of a differential equation while knowing that many filters are governed 

by such differential equations where the unknown function models the output of the filter, the second member 

representing the input signal. 
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