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Abstract

Derivative prices such as options and bond prices as well as swaps depend on the distributional assumptions of
the underlying economic variables, normally, interest rates. The risk associated with changes in interest rates
may worsen the value of the contract that depend on it since the values of these assets (derivative contracts)
are affected directly by the fluctuations in interest rates. The distribution of interest rates, therefore, needs
to be well understood to reduce the risks of losses associated with it. The Binomial Option pricing model
assumes that interest rates are constant throughout the life of the option. Another common assumption of the
underlying economic variables is that their returns are normally distributed with constant volatility. These
assumptions have been used in pricing derivatives and currencies and has led to over-pricing and in some cases
under-pricing. The models of the Normal Variance-Mean Mixtures used in this research shows better
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performance than the normal distribution. Weekly 91-day and commercial bank interest rates are used from
1991 to 2021. This study will provide a better model for interest rates to avoid mispricing. We find that
the 91-day Treasury Bills interest rates follow a Generalized Hyperbolic distribution while the Commercial
Bank interest rates follows a Normal Inverse Gaussian distribution. G.A.R.C.H model is then used in
forecasting under each of the above findings. A 99pc Value at Risk is then computed for the two models and
calculates the minimum expected returns in the subsequent months. This research forms a foundation for
the development of advanced pricing models that incorporates the fluctuations of interest rate in the pricing
industry. We conclude that the Normal Inverse Gaussian and Generalized hyperbolic distributions provide
better fits than the assumed normal distribution.

Keywords: Normal variance-Mean mixtures; semi-heavy tail; risk; GARCH; pricing.
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1 Introduction

Interest rates are one of the most common underlying variables in the pricing of financial derivatives such as
options, equity, and bond valuation. They can simply be put as determinant of the prices of other derivatives.
The most common rates according to the central bank of Kenya are the treasury bills’ interest rates and the
commercial bank’s weighted average rates. A treasury bill is a financial instrument which is issued to lenders by
the authority through the central bank (which is a fiscal agent) in order to raise project finances on a short-term
basis. They mature after a period of 91, 182, and 364 days from the beginning of the contract and are sold
at discounted prices to reflect the investor’s return and redeemed at face (par) value. On the other hand, a
weighted average rate is a group of data that analyze the calculated weighted average interest rate of the flow
of transaction of the previous working day of the relevant month.

The risk, as measured by the volatility of interest rates and their Kurtosis, exhibit high frequency fluctuation
over very short time intervals (seconds or minutes). The returns from interest rates exhibit a behavior of fat
tails and peakedness with a skewed distribution curve. This clearly invalidates the assumption that they follow
a normal distribution with constant volatility. They also exhibit common statistical properties such volatility
clustering and non-normality [1],[19] Moreover, the data, as in, [19] are fat tailed, and non-linear, with leptokurtic
empirical distribution, meaning that they are more peaked with heavier tails than the normal distribution. By
the property of semi heavy tails, a risk manager and derivative pricing manager need to use models relative to
the characteristics of the data to bring out the right context and interpretation of the data in question.

These models can capture the semi-heavy tails of the data and other statistical properties. Some studies have
suggested the use of Gaussian assumption in modeling, pricing and forecasting financial derivatives which to
date has been rendered obsolete. The use of the Black-Scholes Option pricing model [18], [40] and [4], the
Random Walk model [45], and the Geometric Brownian Motion [48] have based their assumption on the fact
that the distribution of interest rates is normal [51], while others have assumed a log-normal distribution. This
assumption has been rendered obsolete and invalidated by [29] which confirms that these returns do not follow
the normality assumption.

Despite the vast research on the financial derivative market and distribution of asset returns in the stock market
and equity prices, very little is known about the risk associated with interest rates, as a financial variable,
and its effect on pricing derivatives and currency options using the Black-Scholes options pricing model, GBM,
and RW financial time series data forecasting models, as underlying variables. These pricing models(Brownian
Motion (Geometric Brownian Motion) [48], n-period Binomial Model and the Cox-Ross-Rubinstein model and
the famous Black-Scholes Option pricing model [18]) assume that the underlying variables such as interest rates
are normally distributed with a constant volatility which in practice is not true. Besides, the normal model
allows for a chance that the interest rates can be negative which is also highly unlikely. As much as the use of
models with normality assumptions has been rampant and considered appropriate, the use of new more flexible,
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and analytically tractable models has been developed but has since not been applied in modeling interest rates
risk. Therefore, modeling the CBK interest rates using semi-heavy tail distributions developed by [47] and used
by [6], [24], [10], [28] and [13] in risk management has so far not been used in modeling interest rate risk. This
study provides a better interest rates model that can be used in place of a normal distribution for the underlying
interest rates as used in derivative pricing models as well as hedging and pricing volatility dependent claims
such as Variance and Volatility Swaps. This will improve accuracy of these models therefore reducing risks of
mis-pricing.

2 Review of Previous Literature

The Geometric Brownian Motion was first developed by Robert Brown to observe the irregular pollen grains
from plants as they move on the surface of a liquid. He admitted that he had no scientific explanation for his
observed phenomena [17]. This was later studied by [3] who proposed the existence of Brownian Motion which
was later proven by [23]. The standard Wiener process can be used to model asset returns but its main weakness
is that its mean is zero, meaning that the growth rate of return is zero which, because of inflation [44], is not
true in practice. With the modern application of Brownian Motion to model financial markets, the GBM was
applied by [26], [49], and others. Later in 1973, Black and Scholes derived an option valuation model [26] which
was extended by [49]. They however assumed that stock returns follow a Brownian Motion process.

Different scholars developed these models with their analysis beginning with the observed market price of financial
instruments or a benchmark instrument, which is fairly priced. These models assume a random process with a
drift term (mean) and volatility (variance) of interest rates. The Ho-Lee model was introduced in 1986 by [33]
to derive a model for the movement of the arbitrage-free interest rate and apply this model to interest rates.
However, the model assumes that the market is friction-less, has discrete points in time, and is complete (a
market with negligible transaction costs and perfect information). In this model, there is no mean reversion
(an assumption that interest rates eventually move back to their average), and volatility is independent of the
level of the short rate. In short, the Ho-Lee model is normal. The Hull-White model was later introduced
by [34] to price interest rate derivative securities by allowing for mean reversion. This model (HW) [34] is a
generalization of the Ho-Lee model [33] and its purpose was to overcome the weakness of [34] but still, it was a
normal model. Kalotay-Williams-Fabozzi model (KWF thereafter) was later introduced by [37] to model bond
rates and embedded options, it did not allow for mean reversion but allowed for changes in short rates to be
modeled by natural logarithms of returns to attain stationarity. The Black-Karasinski model (BK thereafter)
was introduced by Fisher Black and Piotr Karasinski in 1991 [11] to price bonds and options when short rates
are lognormal. The BK was a logarithmic extension of the KWF. Black-Derman-Toy was earlier introduced
by Fischer Black, Emmanuel Derman, and William Toy in 1990 [27] as a one-factor model for interest rates
and Treasury bond options. Later, Heath-Jarrow-Morton (HJM herein) model was introduced in 1997 [20] and
derived by Jeffrey Andrew [5] as a general continuous-time multi-factor model to price bonds and the term
structure of interest rates.

In these models, term structure dynamics are described using fundamental economic variables assumed to affect
interest rates. The Vasicek was introduced in 1977 [53], the Cox, Ingersoll, and Ross in 1985 [20], Brennan and
Schwartz [16], and Longstaff and Schwartz model [38] used economic variables affecting interest rates and used
to price the term structure of interest rates.

In summary, these models have common limitations. They make an assumption that the interest rates follow
a normal distribution which in practice is not true. The Vasicek model and the Hull and White models allows
for a negative interest rates which in reality is not very likely. They also assume that the volatility as shown
by the variance of interest rates is constant, which is also not true in practice. In derivative pricing, the most
commonly used methods of options pricing are the famous continuous-time Black-Scholes Option pricing model
[12], [50] and [19], the discrete time Binomial model [21], the Cox-Ross-Rubinstein model [21], [43] and the
Stochastic models such as the Heston, SABR and ARCH models. These models bear a common assumption
that the volatility and the interest rates are known and constant, which in practice is nearly impossible. The
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true implied volatility (volatility measured using the historical information) is not constant over time. Since the
volatility is a key component in option pricing using these models, ignoring its variability nature by assuming
that it is constant and known poses high risks in pricing process. There is need to incorporate models that have
the capabilities to model the volatility skew and the tails in to the pricing models.

The development of financial models has since taken a turn when other models were introduced in the literature.
Berndorff-Nielsen in 1977 introduced hyperbolic distributions [47] as a model for wind blown sand and sizes of
grains. The distribution used was derived from the fact that its geometric returns form a hyperbola and hence a
hyperbolic distribution. The distribution was later discussed by other authors, particularly in Physics to model
turbulence. A special case such as NIG was introduced by BN in 1997 [46] and found to have long tails in both
directions. Because of its attractive features and analytical tractability, it has attracted attention of authors in
the investment market [54]. Its tail behavior is seen as semi-heavy to mean that it is heavier than Gaussian but
lighter than Pareto and non-Gaussian stable laws. Other special cases also have similar properties.

3 Research Methodology

3.1 Data used in the research

Secondary data for 91-day Treasury Bills interest rates and Commercial Bank Weighted average interest rates
(Base lending rates) from the Central Bank of Kenya from 1991 to 2021 were used. The log was used to eliminate
the unit root behavior intrinsic to It and therefore achieving stationarity. Maximum likelihood method was used
to estimate the parameters.

3.2 The modified bessel function of the third kind.

Represented as follows (index ν and order ω denoted by Kν(ω))

2Kν(ω) =

∫ ∞
0

xν−1e−
ω
2
(x+ 1

x
)dxω, x > 0

as proposed by [47] and properties analyzed by [2]

3.3 Generalized form of the mixing distributions and properties

The pdf’s of the Generalized form of the mixing distribution (see [30], [9] and [35]) is obtained by substituting
δγ into the equation 3.1. This is then simplified to obtain :

g(z) =
(γ
δ

)λ zλ−1

2Kλ(δγ)
e
− 1

2

(
δ2

z
+γ2z

)
(3.1)

where δ, γ > 0 with the following properties:

the n-th moment is;

E[Zn] =
( δ
γ

)nKλ+n(δγ)

Kλ(δγ)

and the variance:

V ar[Z] =
( δ
γ

)2[Kλ+2(δγ)

Kλ(δγ)
−
(Kλ+1(δγ)

Kλ(δγ)

)2]
For more properties and proofs, see [7].
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3.3.1 Construction of RIG mixing distribution

Suppose λ = 1
2
, and substituting in equation 3.1 above, we obtain;
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δ

) 1
2 z
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2k 1
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− 1
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e
− 1

2

(
δ2
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1
2

δ
1
2
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2√
2π
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δ2

z
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= γ√

2π
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1
2 eδγe−

1
2

(
δ2

z
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)
(3.2)

The expectation, variance, Skewness and Kurtosis are provided. The proofs are simplified through the n-th
moment generator as outlined in 3.1

E(Zn) =
( δ
γ

)nKλ+n(δγ)

Kλδγ

=
(δγ + 1)

γ2

E(Z2) =
(γ
δ

)2 k 5
2
(δγ)

k 1
2
(δγ)

=
δ2

γ2
∗ δ

2γ2 + 3δγ + 3

δ2γ2

=
δ2γ2 + 3δγ + 3

γ4

V ar(Z) =
δ2γ2 + 3δγ + 3

γ4
−
[δ2γ2 + 2δγ + 1

γ4

]
=

δγ + 2

γ4

Sk(Z) =
µ3(Z)

(V ar(Z))1.5

=
3δγ + 8

γ6

( γ4

δγ − 1

)1.5
=

3δγ + 8

(δγ − 1)1.5

Suppose λ = − 1
2

Replacing into the equation 3.1, and going through the same process, we obtain the mixing distribution for the
Normal Inverse Gaussian distribution) as follows;

g(z) =
δ√
2π
z−

3
2 e(δγ)e

− 1
2

(
δ2

z
+γ2z

)
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Properties

The first, second, and third moments are studied here:

E(Zn) =
( δ
γ

)nKλ+n(δγ)

Kλδγ

=
( δ
γ

)K 1
2
(δγ)

K− 1
2
δγ

=
( δ
γ

)
E(Z2) =

(γ
δ

)2 k 3
2
(δγ)

k− 1
2
(δγ)

=
δ2

γ2

δγ + 1

δγ

=
δ(δγ + 1)

γ3

V AR(Z) =
δ(δγ + 1)

γ3
− δ2

γ2

=
δ

γ3

3.3.2 The Normal Variance-Mean Mixtures

When λ = − 1
2

and 3.3, as the mixing distribution and X|Z ∼ N(µ + βz, z) as the conditional distribution,
therefore, by using direct integration we obtain the pdf of the Normal Inverse Gaussian distribution as follows;

f(x) =

∫ ∞
0

1√
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The aim is to simplify the exponential part so we use change of variable technique by letting z =
√

(x−µ)2+δ2
(β2+γ2)

t⇒

dz =
√

(x−µ)2+δ2
(β2+γ2)

dt Note also that; (β2 + γ2) = α2, therefore
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f(x) =

∫ ∞
0

[√
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t
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e
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[√
α2
(

(x− µ)2 + δ2
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with four parameters, α, β, δ, µ We also looked at other mixtures such as the Reciprocal Inverse Gaussia
distribution, The Variance-Gamma, the Asymmetric Student-t and the Hyperbolic distribution and fitted to
the data.

Properties

We can easily obtain the properties of the NIG distribution as follows;

E(X) = µ+ βE(Z)

= µ+ β
( δ
γ

)
(3.3)

V ar(X) = E(Z) + β2var(Z)

=
α2δ

γ3

Sk(X) = 3βV ar(Z) + β3µ3(z) (3.4)

=
3β
(
δ
γ3

)
+ β3

(
3δ
δ5

)
(
δ
γ3

)1.5
=

3β

α(δγ)0.5
(3.5)

Kurt(X) = 3
(1 + 4β2/α2

γδ

)
(3.6)

Through similar approach for λ = 1
2
, we obtain the pdf of the Reciprocal Inverse Gaussian Distribution as follows;

f(x) =
γ√
2π
e(δγ)2K0

(√
δ2 + α(x− µ)2

)
eβ(x−µ) (3.7)

The Generalized Hyperbolic Distribution

The pdf of the hyperbolic distribution is(For proof and properties, see [42]);

fhyp(x;α, β, δ, µ) =

√
(α2 − β2)

2αβK1(δ
√

(α2 − β2))
e[−
√
δ2+(x−µ)2+β(x−µ)] (3.8)

α > 0, δ > 0, µ ∈ R, β ∈ (-α, α)
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3.4 The G.A.R.C.H model

Introduced by [15] to allows for conditional variance to depend on the previous lag unlike the ARCH model. We
will use this model as a forecasting tool for the interest rates.

3.4.1 Definition

Let ηt represent an iid sequence η distributed. εt is a G.A.R.C.H(p,q) process in the sequence ηt iff; εt = σtηt
we can sufficiently say that;

Rt
2 = ω +

q∑
i=1

αiσ
2
t−iη

2
t−i +

p∑
j=1

βjσ
2
t−j (3.9)

where ω, αi, and βj are constants and positive values. η is the distribution of the error term of the hyperbolic
family.

For more properties and proof, see [25] and [15]

3.4.2 Model selection criteria

The models will be evaluated based on the Akaike Information Criterion approximated as follows;

AIC = −2log(H) + 2n (3.10)

where H is the likelihood and n the number parameters in the model.

In some cases, we shall use Goodness-of-fit tests.

4 Analysis of Results and Discussion

4.1 Descriptive statistics

From the table, it is sufficient to conclude that the underlying interest rates used in pricing of bonds and stocks
do not follow the normal distribution as assumed. This is shown by Skewness not equal to zero and Kurtosis
greater than 3 as in the normal distribution.

Table 1. Summary statistics

Rates Mean Skewness Kurtosis

T.R -0.00110384 -0.31146 8.5935
Bank -0.00353 0.137206 18.9425

4.2 Dickey-Fuller test for mean reversion

This method tests the stationarity a property of mean reversed data.In this test, the hypothesis is as follows,
H0: the data is non-stationary
H1: the data is stationary.
The p-value is less that the alpha value. We therefore reject the (H0) and conclude that there is mean reversion
in the data.
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Table 2. Dickey-Fuller test for Commercial Bank and Treasury Bills Interest Rates

Rates Dickey-Fuller p-value

T.B -8.2525 0.01
C.B -12.543 0.01

4.3 Histograms of the interest rates data

Fitting the normal distribution does not capture the peakedness well as seen in the histograms.

4.4 Parameter estimates

In this section, we shall estimate the parameters of some of the distributions studied above using maximum
likelihood method.

From the information in Tables 3. and 4., it is shown that the Asymmetric NIG fits the Commercial bank
interest rates better than the 91-day Treasury Bills interest rates.On the other hand, Asymmetric ghyp fits the
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91-day data. This is due to the fact that it has the lowest AIC and the highest Log-Likelihood.

Table 3. Parameter Estimates of the Asymmetric Normal Inverse Gaussian Distribution

Parameters 91-day Treasury Bills Commercial Bank

α 0.0684618635 0.0173190064
µ -0.0003035624 0.0004143653
δ 0.0719747059 0.0394937758
β -0.0007691234 -0.0007874793

Log-Lik 617.5179 1034.177
AIC -1227.036 -2060.353

Table 4. Parameter Estimates of the Asymmetric G.H Distribution

Parameters 91-day Treasury Bills Commercial Bank

λ 0.1680857588 -0.3313386045
α 0.0435677071 0.0164281275
µ -0.0001157169 0.0002918099
σ 0.0637759052 0.0042322110
γ -0.0009652545 0.0042322110

Log-Lik 625.9611 1033.994
AIC -1241.922 -2057.988

4.5 ARCH L-M test

This is a Chi-squared hypothesis test for the presence of ARCH effect using Lagrange Multiplier (L-M). H0:there
is no ARCH effect while H1: there is ARCH effect.Since P ¡ 0.05, we reject the H0 and conclude that there is
ARCH effect in the data. This means that there is no constant volatility and hence, GARCH (2,0) and ARMA
(1,2) for the Treasury Bills interest rates and GARCH (1,1) with no mean model for the Commercial Bank
interest rates selected because of their least values of the AIC will be used in forecasting.
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Table 5. ARCH L-M test

Chi-squared p-value

91-day Treasury Bill 73.68 6.521e-11
Commercial Bank 68.151 7.092e-10

4.5.1 The forecasted values

The forecasts are as shown in the table below:

Table 6. 6- Month ghyp Forecasts

0-roll Returns, T0 = Sept 2021 VaR(0.99)

T+1 0.03251 0.0867395
T+2 0.03738 0.099733
T+3 0.04159 0.110966
T+4 0.04543 0.1212112
T+5 0.04896 0.1306296
T+6 0.05225 0.139408

Table 7. 6- Month nig Forecasts

0-roll Returns, T0 = Jul 2022 VaR(0.99)

T+1 0.01285 0.0347193
T+2 0.01282 0.0346383
T+3 0.01279 0.0345572
T+4 0.01275 0.0344491
T+5 0.01272 0.0343681
T+6 0.01269 0.034287

5 Conclusions

The objective was to use flexible distributions to understand fluctuations in the returns of interest rates and
contrary to the normality assumption as seen in the literature review, we note that these distribution provide a
better fit than the normal distribution. In addition to that, the data displays special properties that require the
use of GARCH models with special error terms assumption in forecasting the volatility.From the Goodness-of Fit
test and the AIC, we find that these models provide good forecast and are better than under normal assumption.
We therefore recommend that;

a More distributions in this class explored in details and applied to the same data in order to determine the
best performing distribution. This is because, this research did not explore all the distributions but four
of the main ones. It also did not go into details in the properties except for the moments. More studies
should also be done on proof of the properties of the tails.

b Other distributions outside the hyperbolic class should also be studied in details and subjected to the same
conditions and data. Also, other heavy tail distributions and other approaches to model interest rate risk
should be studied and result compared to ensure the best conditions for modeling interest rates.
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