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Abstract 

 
In order to assess the performance indexes of some practical systems having fixed channel capacities, 

such as telecommunication networks, power transmission systems or commodity pipeline systems, we 

propose various types of techniques for analyzing a capacitated network. These include Karnaugh maps, 

capacity-preserving network reduction rules associated with delta-star transformations, and a 

generalization of the max-flow min-cut theorem. All methods rely on recognizing the network capacity 

function as a random pseudo-Boolean function of link successes; a fact that allows the expected value of 

this function to be easily obtainable from its sum-of-products expression. This network capacity has 

certain advantages for representation of nonbinary discrete random functions, mostly employed in the 

analysis of flow networks. Five tutorial examples demonstrate the afore-mentioned methods and illustrate 

their computational advantages over the exhaustive state enumeration method. 

 

 

Keywords: Capacitated networks; map method; reduction rule; max-flow min-cut theorem; star-delta 

transformation; pseudo-switching function. 
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1 Introduction 
 
In classical source-to-terminal reliability analysis, a frequently used assumption is that the network under 

study can be modeled by a probabilistic two-state graph, with the network being successful when there exists 

at least one path originating from the source node and ending at the terminal node. According to this point of 

view, reliability is thus taken as being solely a matter of connectivity, a simplification that does not seem to 

reflect, to a reasonable extent, the nature of the problem, or to capture the essence of most real-life networks. 

 

In modern society, we have telecommunication systems, electric power transmission and distribution 

systems, oil/gas production systems and transportation systems, all of which are physical systems that play 

vital roles. These systems, in fact, might be appropriately modeled as being capacitated-flow networks 

having independent edge capacities, that are limited real-valued random variables. Usually, the modelling of 

a network of this type is attained by the use of a stochastic graph G = (V, E) with E and V being sets of 

nodes (vertices) and branches (edges) of G, where we can distinguish a particular set K ⊆ �[1]. 

 

A very important special case arises when the set K is an ordered set of just two nodes: a source node 

represented by s and a terminal node denoted by t. There are two main parameters that are usually used in 

quantifying the network performance. These are (a) Network reliability that basically measures connectivity 

in a probabilistic sense as it equates to the probability of definite connections on directed or undirected 

general or special graphs, with dependent or independent components (nodes or arcs) existing in G among 

the nodes in K (and from s and t in the particular �� case) [1-9]. 

 

Recently, Ching and Hsu [10] proposed a methodology for estimation of the source-to-terminal reliability as 

connectivity in actual networks; with the critical links being ranked. The two extreme situations are those of 

(a) the afore-mentioned �� case when K contains only two nodes, the source s and the destination t, or (b) 

when K contains all nodes of the graph for which (K=V), typically depicted as the overall reliability case 

[11]. 

 

Generally, the desired level of attention is not being given to the capacity constraints in the different links 

and the overall requirements in flow for the network; (b) Network s-t whose capacity is equal to the 

maximum flow that is traversable to the terminal node from source node with no violation of branch capacity 

and assuming all branches are functioning well [12-18]. Under such a scheme of deterministic modeling, 

there is obviously deliberate implicit ignoring of the failure probabilities of both communication links and 

nodes.  

 

Aggarwal [19], Trstensky and Bowron [20], Ramírez and Gebre [21], Yeh [22], Patra and Misra [23], 

Fusheng [24], El Khadiri and Yeh [25], Kabadurmus and Smith [26] and Cancela, et al. [27] suggested 

methods for defining a composite performance index related to any network, that integrates the two afore-

mentioned connectivity and capacity aspects. Moreover, Lin et al. [28,29] presented an algorithm for 

evaluation of capacitated flow network in terms of minimal path sets or minimal cut-sets.  

 

In all methods it is always important to bear in mind that connection between the source and the sink nodes 

is an important condition for ensuring success in communication network operation. This condition, 

however, is not to be taken as a sufficient one. It is also crucial that the s-t capacitated connection success 

should not only establish just a mere s-t connection, but it should also ensure the availability of at least the 

required s-t capacity. 

 

This paper presents a tutorial exposition of various methods for analyzing capacitated networks. The first 

method involves a map procedure resulting into having a simple symbolic expressions of performance 

indexes. However, there can only be a manual application of this technique for cases involving small 

networks [30-42]. 
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The second method involves application of network transformations or reduction rules, which are being 

implemented in such a way as to ensure the preservation of the network capacity function. For the 

application of these rules in series-parallel subnetworks, no appreciable difficulty is encountered. However, 

whenever a network is sp-complex (i.e., irreducible to a series-parallel graph since bridging branches are 

involved), there is significant difficulty that is to be addressed through more involved technique such as a 

function expansion or network decomposition [30,43]. 

 

There is also some possibility for easy analysis of a large class of complex networks when these networks 

are reduced to equivalent series-parallel ones by using the delta-star transformations. Rushdi [44,45] 

presented a set of star-delta and delta-star transformations that are used in flow networks which are given in 

terms of the concept of pseudo-Boolean (switching) functions. The concept presents some advantages with 

regard to the study of discrete random functions that come up when networks are being analyzed. This is in 

addition to where preservation of s-t capacity function for flow network. In a third method, there is 

generalization of “Max-Flow Min-Cut Theorem” [12-18] for network states X in addition to the ideal state 

(X=1). This is believed to be a very fast technique if we have minimal cut-sets [46], and where possibly 

minimal paths [46] have been identified.  

 

The remainder of this paper is structured as follows. Section 2 presents the underlying assumptions for our 

model, the notation used as well as some useful nomenclature.  

 

Section 3 reviews the concept of the algebraic decomposition formula which is a pseudo-switching function 

that used to obtain the general capacity function for the network. 

 

Section 4 shows how the Karnaugh map is conveniently used to represent a pseudo switching function which 

is a very powerful manual tool that provides pictorial insight about the various functional properties and 

procedures. Section 5 explains a reduction rule technique for series-parallel connections and provides 

examples to illustrate this technique. 

 

In Section 6 and Section 7, clarify the general transformation conditions and demonstrate by an example 

delta-star transformation which preserve the source-to-terminal (s-t) capacity function in a flow network. 

Moreover, Section 8 extends this work by presenting one of the crucial and old technique in capacitated 

network which is “Max-Flow Min-Cut Theorem”. One more example, that is given in this section, shows the 

equivalence of the results between this technique and afore-mentioned one. Section 9 concludes the paper. 

 

2 Assumptions, Notation, & Nomenclature 

 
2.1 Assumptions 

 
(1) The physical network considered is modeled as a linear graph consisting of (a) transmission links of 

imperfect reliabilities and limited capacities and (b) nodes which are perfectly reliable and have 

unconstrained capacities.  

 

(2) Originally, each link in the network has two states, a successful state and an unsuccessful one. Link 

successes are statistically independent. This assumption does not extend to ‘equivalent' links to be 

introduced in the network, which can be of multistate natures and statistically dependent. 

 

(3) Certain values are assigned to each link�� , 	 
  for its reliability ��  and capacity   ��   , where 

0 ≤  �� ≤ 1 ,  �� ≥ 0. The link capacity sets an upper bound on link flow in either direction. 

 

(4) Every link in the network is directed. A bidirectional link is replaced by two directed links in 

antiparallel whose failures are completely dependent. These two links have equivalent reliabilities. 

However, they perhaps have different capacities. 
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2.2 Notation  
 
� Number of branches (edges or links) in the logic diagram of the network. The same symbol is used also to 

depict the common node of a star.  

 

�� , ��   Indicator variables for successful and unsuccessful operation of branch �. These are binary random 

variables that take only one of the two discrete real values 0 and 1;  �� = 1 and �� = 0 if � is functioning, 

and �� = 0 and  �� = 1  if � is failed. For a bidirectional branch �	 , the anti-parallel successes are the same 

�� = ��  . 
 

� , �    Indicator variables for successful and unsuccessful operation of the system; called system success and 

system failure, respectively. Successful operation can be equivalent to connectivity, or to the satisfaction of a 

certain flow requirement [19,46,47].  

 

�� , ��  Reliability and unreliability of branch: �� ≡ Pr��� = 1 � , �� ≡ Pr��� = 1� = 1 − ��  . Both   ��  !�" �� 
are real values in the closed real interval [0.0,1.0]. 

  

#, $  Network reliability and unreliability; # = Pr�S = 1� = &��� , $ = Pr��  = 1� = 1.0 − #, 0.0 ≤ # ,
$ ≤ 1.0 . 
 

��   Flow capacity of branch; �� ≥ 0 . 
 

', (, )   n-dimensional vectors of branch successes, reliabilities and capacities:  

 

' = ��*�+ … �-
.; ( = ��*�+ … �-
. ; ) ≡ ��*�+ … �-
.. 
 

0          A superscript that implies the transpose of a matrix. 

 

'1      State k of the network, denoted by a particular value of the n-dimensional vector X,  2 =
 0,1,2, … , 2- − 1 . 
 

4��'
  Capacity function of ��, 	
 which is the maximum flow interconnection from � to 	 in state ' that 

does not violate branch capacities, 4��'
 ≥ 0. For an original  ��, 	
 ∶   4� = ���� . Since ' is a switching 

random vector, 4��'
 is a discrete random variable of a probability mass function (pmf) of no more than 2- 

distinct values.     

 

4�.       Terminal- pair capacity function from node � to node 	 ;   4�. ≥ 0 .    
 

4�678   Maximum Capacity function of the ��, 	
 edge; in the ideal case when all branches are functioning, 

4�678 = 4��1
. 

 

9�       Capacity of interconnection from node � to node 	 in a delta; 9� ≥ 0 . For an original��, 	
 ∶ 9� =
"���  .   
 

��        Capacity of interconnection from node � to node 	 in a star; �� ≥ 0 . For an original   ��, 	
 ∶ �� =
����  . 
 

�� , 	
    A directed branch or edge from node � to node 	 . If two or more such branches exist, they are 

distinguished by superscripts. 

 

�, �        Source, terminal node  
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4��'|1;
, 4��'|0;
  The function 4��'
 when �;  is set to 1 or 0. Meanings of  4��'|1;, 16
, <��. follow 

similarity. 

 

2.3 Nomenclature  

 
A Boolean (Switching) function ��'
:  A mapping �0, 1�-  → �0, 1� , i.e., ��'
  is any one particular 

assignment of the two functional values (0 or 1) for all possible 2- values of ' [32-34,48-50].  

 

Pseudo- Boolean (Switching) function  4�'
:  A mapping �0, 1�-  → #  where  #  is the field of real 

numbers, i.e. 4�'
 is an assignment of a real number for each of the possible 2- values of ' [51-53].  

 

Multiaffine function of n variables ?�(@, (A … , (B
:  An algebraic function which is a first-degree 

polynomial in each of its variables, i.e. if fixed values are given to any �� − 1
 variables, the function 

reduces to a first-degree polynomial in the remaining variable. Examples of multi-affine functions involve:  

 

1. Definite algebraic functions such as 

 

(a) System reliability/unreliability as a function of component reliability/unreliability [54,55]. 

(b) System availability/unavailability [55-57]. 

 

2. Pseudo-Boolean (switching) functions [51-53] such as source-to-terminal capacity or the squared 

capacity as a function of link successes. 

 

3 Capacity and Its Mean 

 
The function 4��'
 as an expression of the source-to-terminal capacity function of element successes is a 

real valued function of binary arguments. Therefore, the function  4��'
  conforms to the rules of the 

algebraic decomposition relation of a pseudo-Boolean (switching) function. 

 

 4��'
 = �; 4��'|C;
 + �;4��'|1;
 

             = �1 − �;
4��'|0;
 + �;  4��'|1;
 

             = 4� �'|C;
 + E 4��'|1;
 − 4��'|C;
F�; , G = 1,2, … , �                                                                 (1) 

 

Equation (1) can be validated through proof by induction of all cases or values of X, viz., �'|0;� and �'|1;�.  
This decomposition relation of 4��'
 can be used to deduce many properties of it as a pseudo-switching 

function, including, in particular, its being a multi-affine function,  and the fact that it can be expressed as a 

sum-of-products form, where the term ‘sum’ here refers to its genuine meaning of real addition. Moreover, 

4��'
  can be viewed as an assignment of a real number for each of the possible 2-  values of ' . 

Subsequently, 4��'
 can be accurately represented in the context of a Karnaugh map or a truth table of the 

usual Boolean combinations of the input domain, but of entries that are real elements rather than binary 

values. The mean (expected) value of the random function 4��'
, when written in sum-of-products form, 

equates to; 

 

  &�4��'
 � = &�4���(
 , 
 

and can be directly obtained (on a one-to-one basis) from 4��'
(s-o-p) by introducing the component means 

�; = E��;� and  �; = &��;�, in place of the corresponding Boolean arguments �; , and �; , namely,  

 

  

 

 

��; , �;� ↔ ��; , �;�  
4��'
(s-o-p)    &�4���(
(s-o-p) 

 

�2
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Another subtle replacement that is implicit in (2) pertains to substituting arithmetic multiplication in the 

R.H.S. for the logical multiplication in the L.H.S., a substitution that is not apparent since both operations 

are represented by juxta-positioning. Equation (2) is an immediate result of the condition that the mean of a 

sum is the sum of means and that the �;J� are statistically independent. It is important to note that the 

capacity 4��'
 and its square 4�+ �'
 are both pseudo-switching functions. Thus, to readily convert  4�+ �'
 

into its mean, 4�+ �'
 can be represented in s-o-p form, namely 

 

 

 

 

 

Equations (2) and (3) show that computing the mean &�4�� and the variance of the capacity 

 

�K#�4�� = &�4�+ � − L&�4��M+
 can be achieved by ensuring that both the capacity itself and its square are 

expressed in s-o-p form. 

 

4 A Map Procedure 

 
A modified Karnaugh map can be used to specify the pseudo-switching (-Boolean) function 4��'
 [30-42]. 

This Karnaugh map serves as a powerful manual tool that provides pictorial insight about the various 

functional properties, concepts and procedures. The Karnaugh map comprises of � input variables '  acting 

as the map variables and real numbers 4��'1
, denoting the map entries, which represent the flow capacity 

of the network for states '1 . These real numbers can be any numerical values other than 1’s and 0’s. The 

methods demonstrated in sections 7 and 8 can be used to derive these numbers individually or collectively. 

 

To express 4��'
 in its minimal sum-of-products form, it is required that entries other than zero are covered 

by the least number of loops on the map.  The individual loop used ought to be the largest combining factor 

of  2�  �� =  0, 1, 2, … , �� adjacent cells of the map that contains a certain minimum value (so far not 

covered). For such a loop, the contribution to the sum-of-products form for the pseudo switching function 

4��'
  corresponds to the typical loop term multiplied by the value covered by the loop.  

 

In a scenario where the selection of a larger loop is needed, entries in a cell can be divided, creating multiple 

values that can cover more than a few loops. Such a division is viable for entries whose values are integers 

that represent networks of small size. When a portion of loop entry is covered, the entry is substituted by its 

uncovered portion. More precisely, an entry is substituted by zero if it is covered totally. This process ends 

when all entries are exhausted, i.e., when replacement by zero for all entries is completed. 

 

The process outlined above results in an expression of capacity that is less complex than that obtained by the 

direct state enumeration method [19]. The advantage of the map procedure is that it is efficient in cases 

where entries in the map comprise integral values belonging to a small set. This happens, for instance, when 

branch capacities include a few integer values only. The map does, however, suffer limitations in that it is 

capable of dealing with only small networks (usually not more than six branches). This can be remedied by 

extending it using variable-entered Karnaugh maps (VEKMs). That way, the map procedure can manage 

sizeable networks [36,38,54,58-65]. 

  

Example 1  

 

This example applies the map procedure to the network shown in Fig. 1, whose branch capacities are:    

) = N 6  7  4  10  5  3  4 T. 

4�+ �'
(s-o-p)    

��; , �;� ↔ ��; , �;�  
&�4�+ ��(
(s-o-p) 

 

�3
 



Fig. 1. A 7-branch bridge network of a capacity vector 

 

Fig. 2. A variable-entered Karnaugh map for the pseudo

'UVBW 'X corresponding to the two bridging elements in the network of Fig
 

Fig. 3. Karnaugh map representation of the capacity pseudo
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entered Karnaugh map for the pseudo-Boolean function ]^_�'
 with map variables 

corresponding to the two bridging elements in the network of Fig. 

]^_�'
 

 

map representation of the capacity pseudo-Boolean function ]^_
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[ T` 

 

with map variables 

 1 

 

^_�'
 



Fig. 2 shows A variable-entered Karnaugh map for the pseudo

�a !�" �b corresponding to the two bridging elements in the network of Fig

Karnaugh map representation of the capacity pseudo

 

The map has 2c = 128 cells such that eac

Karnaugh map entries are the real numbers, which correspond to the integer values of the capacity pseudo

switching function 4ef�'
 for states '
 

Fig. 4. A 2- Stage Map Procedure to cover the 

 

Fig. 4 demonstrates a 2-stage map procedure to cover entries other than zero in the map representing 

pseudo-switching function 4ef�'
. In stage 1, this procedure covers every cell in the map that possesses an 

entry that is at least 4, i.e., an entry that is either 4 or 7. Therefore, the remaining entry in each of these cells 

will be either 0 or 3, respectively. Therefore, the task in st

remaining non-zero map entry. The minimal sum

4ef�'
 and the corresponding one for its mean are

 

4ef�'
 =
 �a�bN 3 �g�h�* + 4 �c�+  T +  �a�b
�a�b N 4 � c  i �+ + �*�+L�g + �h�g
3 �c�h�+�* +  �*�+M + 4 �cL�+ +   
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entered Karnaugh map for the pseudo-Boolean function 4ef�'
 with map variables 

corresponding to the two bridging elements in the network of Fig. 1. In addition, Fig

Karnaugh map representation of the capacity pseudo-Boolean function 4ef�'
. 

cells such that each one of them depicts a definite state of the flow network. The 

Karnaugh map entries are the real numbers, which correspond to the integer values of the capacity pseudo

'. 

]^_�'
 

 

Stage Map Procedure to cover the s-t capacity function ]^_�'
for nonzero entries

stage map procedure to cover entries other than zero in the map representing 

. In stage 1, this procedure covers every cell in the map that possesses an 

entry that is at least 4, i.e., an entry that is either 4 or 7. Therefore, the remaining entry in each of these cells 

will be either 0 or 3, respectively. Therefore, the task in stage 2 is to cover the map entry 3, which is the only 

zero map entry. The minimal sum-of-product equation for the pseudo-switching function 

and the corresponding one for its mean are 

b  N3 �Y i�+ + �*�+�h�1 + �c
j + 4 �c��+ + �*�+�h�g

gMj + 3 �h�g��+ + �*�+�1 + �c

T + �a�b  N 3 �gL�* +

L  �g�+�*M + �c�g�h�+�* T   

 
 
 

; Article no.JAMCS.59534 
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with map variables 

1. In addition, Fig. 3 shows the 

h one of them depicts a definite state of the flow network. The 

Karnaugh map entries are the real numbers, which correspond to the integer values of the capacity pseudo-

 

for nonzero entries 

stage map procedure to cover entries other than zero in the map representing the 

. In stage 1, this procedure covers every cell in the map that possesses an 

entry that is at least 4, i.e., an entry that is either 4 or 7. Therefore, the remaining entry in each of these cells 

age 2 is to cover the map entry 3, which is the only 

switching function 


 T +
L +

 

�4
 

�5
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The conversion from the pseudo-Boolean function 4ef�'
 to the Boolean function of success �ef�'
 can be 

done by removing all real numbers other than unity and substituting the mathematical operators�+,•� by 

their logic representations, viz., 

 

�ef�'
 = �a�bN �g�h�*⋁ �c�+   T ⋁ �a�b N�Y i�+⋁ �*�+�h�1⋁ �c
j ⋁�c��+⋁�*�+�h�g
 T 
⋁ �a�b N �c  i �+⋁ �*�+L�g⋁ �h�gMj ⋁ �h�g��+⋁�*�+�1⋁�c

T  
⋁ �a�b N �gL�*⋁�c�h�+�*⋁ �*�+M⋁�cL�+⋁  �g�+�*M⋁ �c�g�h�+�* T 
 
The final sum-of-product equation for the capacity squared 4ef+ �'
 can be successfully obtained either by 

squaring expression (4) or by using the map technique in which all the map cell entries are squared for those 

of the Karnaugh map in Fig. 3. The equation for the pseudo-switching function 4ef+ �'
 and its mean are 

 

4ef+ �'
 =  �a�bN 9 �g�h�* + 16 �c�+  T +  �a�b N9 �Y i�+ + �*�+�h�1 + �c
j + 16 �c��+ +
�*�+�h�g
 T + �a�b N 16 �c  i �+ + �*�+L�g + �h�gMj + 9 �h�g��+ + �*�+�1 + �c

T +
 �a�b N 9 �gL�* + 9 �c�h�+�* +  �*�+M + 16 �cL�+ +   �g�+�*M + �c�g�h�+�* T    
 

 
 

5 Reduction Rules 
 
The analysis of simple networks can be done by merging branches in series and/or in parallel using both 

capacity and connectivity measures. If we let  G  denote a single branch of capacity  4�; ��;
, then for n series 

branches, the capacity function is the minimum branch capacity, namely: 

 

4��'
 = n�� o 4�
�;
��;
p           

 

Dually, for n parallel branches, the capacity function is the sum of branch capacities, namely: 

 

4��'
 =  q 4�
�;
��;
 

 

The minimum and summation operators in (9) and (10) are considered over all possible values of G.The 

combination of parallel branches is less complex in comparison to the combination of series branches in 

cases where the individual branches are defined only by capacity functions depicting multivalued discrete 

random variables. A case like that is common, e.g., when branches are obtained as a result of preceding 

parallel-series reductions. Nonetheless, an individual branch capacity function is initially assumed to be a 

binary random variable, and hence it can be expressed as a product of the algebraic value �;  and the 

switching variable �;  of its successes, i.e., 

 

 4�
�;
��;
 = �; �;  

 

Reduction rules for series and parallel connections reduces respectively in the latter case to   

 

4��'
 = �n�� �;
 ⋀ �;-;s*            

 

4��'
 =  ∑ �; �;-;s*               

 

�6
 

�7
 

�8
 

�10
 

�9
 

�11
 

�12
 

�13
 



Expression (12) shows that the ordered pair of a capacity 

connection of branches can be substituted by a single equivalent branch characterized by a binary capacity 

function denoted by capacity �min �
expression (13), for which there are parallel connections,  because the capacity function becomes non

binary. Assessment of the n�� function is a bit more complicated in (9) than in (12) because relation (9) 

only requires comparison of numerals while relation (12) requires

switching) functions. However, Eq. (9) can be streamlined through the algebraic decomposition formula (1).

 

Example 2  

 

The source-to-terminal capacity function for the 7

the algebraic decomposition rule (1). This rule

capacity-preserving network transformation that replaces the computation of a certain capacity function by 

the computation of several simpler capacity sub

 

The following expression which is a special case of the decomposition formula (1) is readily obtained by 

decomposing the s-t capacity function 

represent the bridging components in the capacitated network of Fig

 

4ef�'
 =  �a�b 4ef��|0a , 0b
 +  �a�
                   +�a�b4ef ��|1a , 1b
         

 

In Eq. (14), sub-function  4ef�'|0a ,
original flow network by opening the keystone branch 3 and 5. This subnetwork is representing a simple 

series-parallel system; thus, its capacity function is expressed through (12) and (13) a

 

 4ef�'|0a , 0b
 = n�� �4,7
 �+�c + n��
 

Fig. 5. Pertaining to the possible failure of a subnetwork with a shorted branch to adequately 

represent a supposedly corresponding subnetwork 

Rushdi and Alsalami; JAMCS, 35(6): 1-23, 2020; Article no.JAMCS.59534

Expression (12) shows that the ordered pair of a capacity �;  , and a success �;  describing each series 

connection of branches can be substituted by a single equivalent branch characterized by a binary capacity 

�;
  and success �⋀ �;-;s* 
. The above observation does not hold for 

which there are parallel connections,  because the capacity function becomes non

function is a bit more complicated in (9) than in (12) because relation (9) 

only requires comparison of numerals while relation (12) requires the comparison of pseudo

switching) functions. However, Eq. (9) can be streamlined through the algebraic decomposition formula (1).

terminal capacity function for the 7-branch bridge network in Fig. 1 can be obtained 

the algebraic decomposition rule (1). This rule is a divide-and-conquer technique that serves as a function

preserving network transformation that replaces the computation of a certain capacity function by 

er capacity sub-functions. 

The following expression which is a special case of the decomposition formula (1) is readily obtained by 

t capacity function 4ef�'
  with respect to the indicator variables �a !�"
e bridging components in the capacitated network of Fig. 1. 

�b 4ef��|0a , 1b
 + �a�b4ef��|1a , 0b
 

          

, 0b
  is the s-t capacity function of the subnetwork derived from the 

original flow network by opening the keystone branch 3 and 5. This subnetwork is representing a simple 

parallel system; thus, its capacity function is expressed through (12) and (13) as: 

n�� �6,10,3
 �*�h�g = 4�+�c + 3�*�h�g 

 

Pertaining to the possible failure of a subnetwork with a shorted branch to adequately 

represent a supposedly corresponding subnetwork ]^_�'|\U , @X
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describing each series 

connection of branches can be substituted by a single equivalent branch characterized by a binary capacity 

The above observation does not hold for 

which there are parallel connections,  because the capacity function becomes non-

function is a bit more complicated in (9) than in (12) because relation (9) 

the comparison of pseudo-Boolean (-

switching) functions. However, Eq. (9) can be streamlined through the algebraic decomposition formula (1). 

1 can be obtained by using 

conquer technique that serves as a function-

preserving network transformation that replaces the computation of a certain capacity function by 

The following expression which is a special case of the decomposition formula (1) is readily obtained by 

!�" �b   which 

t capacity function of the subnetwork derived from the 

original flow network by opening the keystone branch 3 and 5. This subnetwork is representing a simple 

 

Pertaining to the possible failure of a subnetwork with a shorted branch to adequately 

�14
 



On the contrary, the other sub-functions in 

though they might look like series-

generally be derived from the corresponding s

shorting a successful one (Although these subnetworks might happen to give the correct results in the present 

particular case). Fig. 5 Shows four cases for the flow through perfect and imperfect nod

which supposedly represents the sub

existence of a certain limitation on the anticipated flow in each case. The reason for the afore

discrepancy is that we initially assumed nodes to be perfect, so that they are of infinite capacity and might 

sustain unlimited flow. Whenever, a subnetwork is created by shorting a successful branch, the two nodes at 

the ends of this branch are merged into a new type of node 

capacity of the shorted branch. 

 

Example 3  

 
The reduction rules for the series and parallel connections are now applied to the network of Fig. 6 which is 

analogous to the network in [66]. So, the network in

in Fig. 1 via the reduction in which no further series

 

The network has branch capacities:  

 

�*7 = 5 ,  �*x = 2 ,  �*y = 4 ,  �*z = 7
 

�h7 =  6 , �hx =  4 , �b7 =  10 , �bx =
 

 �cz = 10 ,  �c{ = 6. 

 

Fig. 6. This network allows further series

 
Several capacity functions are representing a simple series

directly through (12) and (13), e.g., 

obtained via the additional use of the algebraic decomposition formula (1). These are shown by the 

following self- explanatory steps: 

 

4*+. �'
 = �* = min�4*7 �*7 + 4*x  �
                         = min� 5 �*7 + 2 �*x  ,
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functions in Eq. (14) are not representing simple series-parallel systems, 

-parallel networks at first sight. In fact, these sub-functions cannot 

generally be derived from the corresponding subnetworks obtained by opening an unsuccessful branch and 

shorting a successful one (Although these subnetworks might happen to give the correct results in the present 

particular case). Fig. 5 Shows four cases for the flow through perfect and imperfect nodes in the subnetwork 

which supposedly represents the sub-function 4ef�'|0a , 1b
. Fig. 5 also illustrates the existence or non

existence of a certain limitation on the anticipated flow in each case. The reason for the afore

e initially assumed nodes to be perfect, so that they are of infinite capacity and might 

sustain unlimited flow. Whenever, a subnetwork is created by shorting a successful branch, the two nodes at 

the ends of this branch are merged into a new type of node that ceases to be perfect, since it inherits the 

The reduction rules for the series and parallel connections are now applied to the network of Fig. 6 which is 

analogous to the network in [66]. So, the network in this example can be reduced to the equivalent network 

in Fig. 1 via the reduction in which no further series-parallel reduction is possible. 

7 ,  �*{ = 3 ,  �*| = 9 ,  �+7 = 2 ,  �+x = 3 , �+y =  4 , �a7 =

 3 , �g7 = 3 ,  �gx = 4 ,   �gy = 2 , �gz = 5 , �c7 = 7 ,  �cx

 ]@X�'
 

 

Fig. 6. This network allows further series-parallel reduction 

Several capacity functions are representing a simple series-parallel system. These functions can be obtained 

directly through (12) and (13), e.g., 4+h. �'
, 4+a. �'
 and 4ah. �'
. However, other capacity functions are 

use of the algebraic decomposition formula (1). These are shown by the 

�*x  , 4*y  �*y + 4*z  �*z  , 4*{  �*{ + 4*|  �*|� 

4 �*y + 7 �*z  , 3 �*{ + 9 �*|� 
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11 
 
 

parallel systems, 

functions cannot 

ubnetworks obtained by opening an unsuccessful branch and 

shorting a successful one (Although these subnetworks might happen to give the correct results in the present 

es in the subnetwork 

. Fig. 5 also illustrates the existence or non-

existence of a certain limitation on the anticipated flow in each case. The reason for the afore-mentioned 

e initially assumed nodes to be perfect, so that they are of infinite capacity and might 

sustain unlimited flow. Whenever, a subnetwork is created by shorting a successful branch, the two nodes at 

that ceases to be perfect, since it inherits the 

The reduction rules for the series and parallel connections are now applied to the network of Fig. 6 which is 

this example can be reduced to the equivalent network 

5, �ax = 8  , 

= 2,  �cy = 3 , 

parallel system. These functions can be obtained 

. However, other capacity functions are 

use of the algebraic decomposition formula (1). These are shown by the 
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Decomposing the capacity function 4*+. �'
 with respect to the indicator variables �*7 , �*x . The following 

special case of (1) is obtained: 

 

4*+. �'
 =  �*7�*x 4*+. ��|0*7  , 0*x
 +  �*7�*x  4*+. ��|0*7 , 1*x
 + �*7�*x  4*+. ��|1*7 , 0*x
 

                   +�*7�*x  4*+.  ��|1*7 , 1*x
 

 

 4*+. �'|0*7 , 0*x
 = 0 

 

4*+. �'|0*7 , 1*x
 =  min� 2  , 4 �*y + 7 �*z  , 3 �*{ + 9 �*|�  = 2 ��*y + �*z
  L�*{ + �*|M   
 

 4*+. �'|1*7 , 0*x
 =  min� 5  , 4 �*y + 7 �*z  , 3 �*{ + 9 �*|�   
                                 = 3 � �*y + �*z
L�*{ + �*|M + 2 L �*z  �*|M + �*y  �*z  �*|  

 

 4*+.  �'|1*7  , 1*x
 =  min� 7  , 4 �*y + 7 �*z  , 3 �*{ + 9 �*|�  
                                  = 3 � �*y + �*z
L�*{ + �*|M + 4 �*z  �*| + �*y  �*z �*|   
 

4*+. �'
 = �* =   �*7�*x  i2 ��*y + �*z
  L�*{ + �*|Mj + �*7�*xL3 � �*y + �*z
L�*{ + �*|M +
2 L �*z  �*|M + �*y  �*z �*|M  + �*7�*xL3 � �*y + �*z
L�*{ + �*|M + 4 �*z  �*| + �*y  �*z  �*|M 

 

 4*h. �'
 = �+ = min� 4+7 �+7 , 4+x  �+x + 4+y  �+y  �  
                         = min� 2 �+7  , 3 �+x + 4 �+y� =  2 �+7� �+x + �+y
 
 

4+h. �'
 = �a = 4a7 �a7 + 4ax  �ax = 5 �a7 + 8 �ax   
 

4+a. �'
 = �h = min�4h7 , 4hx
 �h7  �hx =   n�� �6 , 4
 �h7  �hx = 4 �h7  �hx  

 

4ah. �'
 = �b = min� 4b7 , 4bx
 �b7 �bx = min� 10 , 3 
 �b7 �bx = 3 �b7  �bx 

 

4ab. �'
 = �g = min  � 4g7 �g7 + 4gx  �gx , 4gy   �gy + 4gz  �gz� 

                      = min  �  3 �g7 + 4 �gx  , 2 �gy + 5 �gz� 
 

4hb. �'
 = �c = min� 4c7 �c7 + 4cx  �cx  , 4cy  �cy + 4cz  �cz + 4c{  �c{� 

                         = min� 7 �c7 + 2 �cx  , 3 �cy + 10 �cz + 6 �c{� 

                         =
7 �c7�cz + 2 �cxL �cz + �cy�cz +  �c7�cy�cz�c{M + 6 �c7�cz�c{ + 3 �c7�cx�cy�cz�c{ +
�c7�cy�czL�cx�c{ + �c{M 

 

6 General Transformation Conditions 

 
According to the “Max-Flow Min-Cut Theorem” [12-18], the function representing the source to the 

terminal capacity of a network is denoted as; 

 

4ef. �'
 = min ∑ �;1�;1�;,1 
∈~�    

 

where �i is the set of links representing the minimal source to terminal cut-set number � for the system. 

Hence, there are two crucial conditions for the preserving star-delta transformation in a capacitated network:  

 

(a) There is preservation of all terminal capacity functions. 

(b) There is no increment of 1-vertex cutset capacity functions [46]. 

 

�15!
 

�15�
 

�15�
 

�15"
 

�15<
 

�15�
 

�15�
 

�16
 



Delta-star and star-delta transformations are portrayed in Fig

with bidirectional branches [44,45]. 

aforementioned conditions might be reduced to the following conditions;

 

(a) These capacity functions 4*+.  , 4+*.
 

4�.  in delta =4�.  in star.  

 

Or 

 

9� + n�� L9�1 , 91M = min���- , �-
 

Fig. 7. (a) The delta and (b) the star

cut-set of node 1 is shown dotted in (a) and (b)
 

(b) For a delta-star transformation 

 

�-� ≤ 9� + 91�                 ��- ≤ 9� + 9
 

and for a star-delta transformation  

 

9� + 91� ≤ n�� L�-� , �- + �1-M 

 

9� + 9�1 ≤ n�� ���- , �- + �-1
 

 

7 Delta-Star Transformation

 
A delta-star transformation [44,45] presents a situation where the six 

Consequently, the six � functions of the star have to be derived via eqn. (18) subject to eqn. (19) and the 

non-negativity constraints � ≥ 0 . The required solutions for the six 
 

�-� = 9� + 91�               ��- = 9� + 9
 

The preservation of the node cut-set capacity functions asserts that the terminal pair capacity functions in a 

delta-star transformation are preserved (i.e., eqn. (22) 

a solution that is accurate. 
 

Given that delta branches are original,

 

�-� = "� �� + "1�  �1�       ��- = "�  �

(a)
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delta transformations are portrayed in Fig. 7, which demonstrates both a star and a delta, 

44,45]. The preservation of  4ef. �'
 in the transformations according to the 

aforementioned conditions might be reduced to the following conditions; 

+*.  , 4*a.  , 4a*. , 4+a.  !�" 4a+.  will be preserved, viz., 

-
 

 
 

 

the star, used in star-delta and delta-star transformations. The 

set of node 1 is shown dotted in (a) and (b) 

9�1  

M

Star Transformation 

presents a situation where the six 9 functions of the delta are known. 

functions of the star have to be derived via eqn. (18) subject to eqn. (19) and the 

. The required solutions for the six � functions are [44] 

9�1  

set capacity functions asserts that the terminal pair capacity functions in a 

star transformation are preserved (i.e., eqn. (22) implies eqn. (18) in that case), and therefore (22) gives 

Given that delta branches are original, (i.e., if 9� = "���), then its equivalent star is denoted by 

�� + "�1  �1�  

(a) (b) 
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7, which demonstrates both a star and a delta, 

in the transformations according to the 

star transformations. The 1-vertex 

functions of the delta are known. 

functions of the star have to be derived via eqn. (18) subject to eqn. (19) and the 

set capacity functions asserts that the terminal pair capacity functions in a 

eqn. (18) in that case), and therefore (22) gives 

), then its equivalent star is denoted by  

�17
 

�18
 

�19
 

�20
 

�21
 

�22
 

�23
 



Equation (23) Suggests that both ��-
�� and �1�. 
 

Example 4  
 

The network is shown in Fig. 8 has branch capacities 

10 , �ah = �ha = 5 , �ab = 3 !�" �hb =
�h+ = �a , �+a = �a+ = �h , �ah = �ha
 

We will apply in this network two steps of delta

the 2-3-4 delta to a star, which results in the equivalent star network shown in Fig
 

Fig. 8. A graph representing a 7
 

Fig. 9. A graph, equivalent to that of 
 

Then, we apply a second delta-star transformation of the 4

which results in the equivalent series-
 

Fig. 10. Equivalent graph of Fig

Rushdi and Alsalami; JAMCS, 35(6): 1-23, 2020; Article no.JAMCS.59534

 and �-�  are pseudo-switching functions of the two indicator variables 

8 has branch capacities �*+ = 6 , �*h = 7 , �+h = �h+ = 4
= 4 . In addition to the indicator variables  �*+ = �*, �*h
ha = �b, �ab = �g , �hb = �c .  

We will apply in this network two steps of delta-star transformations. The first step is the transformation of 

results in the equivalent star network shown in Fig. 9. 

 
 

Fig. 8. A graph representing a 7-branch bridge network and a two-area power system

 
 

Fig. 9. A graph, equivalent to that of Fig. 8, resulting from transformation of 2-3-4 delta to star

star transformation of the 4-5-6 delta in Fig. 10 after getting 

-parallel network in Fig. 11. 

 
 

Fig. 10. Equivalent graph of Fig. 9, after getting ]@Y`  VBW ]YX`  
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switching functions of the two indicator variables 

4 , �+a = �a+ =
*h = �+,  �+h =

star transformations. The first step is the transformation of 

area power system 

4 delta to star 

10 after getting 4*g.  !�" 4gb.   



Fig. 11. A graph, equivalent to that of Fig

 

The s-t capacity function 4*b. �'
 is obtained via eqn. (1) and eqn. (23), and the series

rules, as shown by the following self-
 

�+g = �g+ =  10�h + 4�a 
 

�ag = �ga =  10�h + 5�b  
 

�hg = �gh =  5�b + 4�a  

 

4*g. = min�6�*, 10�h + 4�a
  
        = 4�h�a�* + 6�h�*  
 

4gb. = min�3�g , 10�h + 5�b
 

        = 3�h�g + 3�b�h�g  
 

�cb = 4gb. + 4�c = 3�h�g + 3�b�h�
 

�gc = �cg =  4gb. + �hg = 3�h�g + 3
 

�hc = �ch =  4�c + �hg = 4�c + 5�b
 

4*c+ = min�4*g.  , �gc
 

  minL 4�h�aX* + 6XhX* , 3XhXg + 3
   =  6�g�*�a�h + 4�g�*�a�h + 2�b
             +5�b�g�*�a�h + 4�g�*�a�
 

4*ca = min�7�+  , �hc
 = min�7X+ , 4�
        = 7�b�c�+ + 4�b�c�+ + 3�a�b
 

4*c. = 4*c+ + 4*ca
 

       =  6�g�*�a�h + 4�g�*�a�h + 2�
         +5�b�g�*�a�h + 4�g�*�a�h +
         +5�b�c�+ + 2�a�b�c�+ + 4�a
 

4*b. = min �4*c.  , �cb
 

        = min� 6�g�*�a�h + 4�g�*�a�
         +5�b�g�*�a�h + 4�g�*�a�h +
         +5�b�c�+ + 2�a�b�c�+ + 4�a

Rushdi and Alsalami; JAMCS, 35(6): 1-23, 2020; Article no.JAMCS.59534

 
 

A graph, equivalent to that of Fig. 10, resulting from the transformation of the 4-

star 

is obtained via eqn. (1) and eqn. (23), and the series-parallel reduction 

-explanatory steps:  

�g + 4�c  

3�b�h�g + 5�b + 4�a  

b + 4�a 

3XbXhXg + 5Xb + 4XaM 

�b�g�*�a�h + 3�g�*�a�h + 3�b�g�*�a�h  

�h + 4�g�*�a�h  
�c + 5�b + 4�a
 

b�c�+ + 5�b�c�+ + 2�a�b�c�+ + 4�a�b�c�+  

�b�g�*�a�h + 3�g�*�a�h + 3�b�g�*�a�h  

+ 4�g�*�a�h +  7�b�c�+ + 4�b�c�+ + 3�a�b�c�+ 

a�b�c�+  

�h + 2�b�g�*�a�h + 3�g�*�a�h + 3�b�g�*�a�h  

+ 4�g�*�a�h +  7�b�c�+ + 4�b�c�+ + 3�a�b�c�+ 

a�b�c�+ , 3�h�g + 3�b�h�g + 4�c
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-5-6 delta to a 

parallel reduction 
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The decomposition relation (1) is used to obtain the general capacity function 4*b.  for the bridge network 

(�a , �b). So, Decomposing the capacity function 4*b.  with respect to the indicator variables �a , and �b that 

represent the bridging elements in the network of Fig. 8, we obtain the following special case of (1) (which 

replicates (14) and repeated for convenience)    

 

4*b. �'
 =  �a�b 4*b. ��|0a , 0b
 +  �a�b 4*b. ��|0a , 1b
 + �a�b 4*b. ��|1a , 0b
 

                   +�a�b 4*b.  ��|1a , 1b
 

 

4*b. �'|0a, 0b
 = min �3�g�*�h + 4�c�+  , 3�g�h + 4�c
  
 

                          =   �h min�3�g�* + 4�c�+ , 3�g + 4�c
 +  �hmin �4�c�+ , 4�c
 
 

                         = �h��* min� 3�g + 4�c�+ , 3�g + 4�c
 +  �*min � 4�c�+, 3�g + 4�c
� 

                            +�h��* min�4�c�+, 4�c
 + �* min�4�c�+, 4�c
� 
 

                         = �h��*N �g min�3 + 4�c�+ , 3 + 4�c
 + �g min�4XcX+ , 4Xc
F 

                           +X*NXg min�4XcX+ , 3 + 4Xc
 + Xg min�4�cX+ , 4Xc
T�  
                           +�h��*N�g min�4�c�+ , 4�c
 �g min�4�c�+ , 4�c
T 

                           + �*N�g min�4�c�+ , 4�c
 + �g min�4�c�+ , 4�c
T� 

 

 
 

 
 

=  �h  o  �*��gE�+�3 + 4�c
 +  �+�3
F +  �gN�+�4�c
T�  +   �*��gN �+�4�c
T +  �gN�+�4�c
T�p   
                          + �h o �*��gN�+�4�c
T + �gN�+�4�c
T� +  �*��gN�+�4�c
T +   �gN�+�4�c
 T�p  

 
   = 3�g�h�* + 4�c�+   
 

4*b. �'|1a, 1b
 = 3�gL�* + 3�c�h�+�* +  �*�+M + 4�cL�+ + �g �+�*M + �c�g�h�+�*     
 

4*b. �'|0a, 1b
 = 3�Y i�+ + �*�+�h�1 + �c
j + 4�c��+ + �*�+�h�g
  
 

4*b. �'|1a, 0b
 = 4�c L �+ + �*�+��g + �h�g
M + 3�h�g��+ + �*�+�1 + �c

  
 

4*b. �'
 =  �a�bN 3�g�h�* + 4�c�+  T +  �a�b N3�Y i�+ + �*�+�h�1 + �c
j + 4�c��+  

                    +�*�+�h�g
 T + �a�b N 4�c  i �+ + �*�+L�g + �h�gMj + 3�h�g��+ 

 

    +�*�+�1 + �c

T  + �a�b N 3�gL�* + 3�c�h�+�* +  �*�+M + 4�cL�+ + �g�+�*M + �c�g�h�+�* T    

 
Expression (24) for 4*b. ��
  is equivalent to equation (4) and equation (33) in the generalized cutset 

procedure. 

 

 

�24
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8 A Generalized Cutset Procedure 
 
Calculating the maximum flow is one of the most critical problems in a capacitated network. The complex 

part in this calculation is to ensure that the branch capacity is not violated when determining the maximum 

number of flow units from the source node to the terminal node. An inherent postulation in that issue is that 

not a single network branch is failed, i.e., ' =  1 represents the network state, and 4ef�@
 represents the 

maximum flow. The maximum flow algorithm of Ford & Fulkerson can thus be introduced to compute the 

maximum flow problem. The upshot of the application is the celebrated "Max-Flow Min-Cut Theorem," 

This approach can be put in a general form that accounts for all network states as follows 

 

4ef�'
 = min� ∑ �;�;;∈�� � , 
 

where �i is the set of links representing the minimal source to terminal cut-set number � for the system [46]. 

Equation (25) includes as special cases the series-parallel reduction rules, which were shown in the previous 

section. 

 

To apply (25) in the calculation of 4ef�'
, we note that  4ef�'
 = 0 for all cases where the state X is an s-t 

cutset. This holds if a connection between s and t does not exist. On the other hand,  4ef�'
 ≠ 0 whenever 

state X denotes a path between s and t. Thus, we let ��� denote a (preferably minimal) set of s-t paths that 

are exhaustive and disjoint [30], i.e., if 

 

�ef =  ⋁ �  ,-�
s*   

 

� ⋀ �1 = 0 , ��� !GG 	 ≠ 2 ,   
 

where �ef is the indicator variable for successful operation of the flow network which can be equivalent to 

connectivity [46,47,52,54,55], then 4ef�'
 is: 

 

4ef�'
 =  ∑ �  4ef�� |� = 1
.-�
�s*  

 

Repeated application of the algebraic decomposition formula (1) can be used to prove equation (28). 

Through substituting �' | � = 1 � for X in (25), the sub-function 4ef�' |� = 1
 in (28) can be derived. 

 

Example 5  

 

The problem of Examples 2 and 4 is now revisited by applying the “Max-Flow Min-Cut Theorem”. The 

capacitated network of Fig. 1 has 6 minimal cut-sets, whose capacities are given by 

 

4* = �6�* + 7�+�  ,    4+ = � 3�g + 4�c�  ,   4a = �10�h + 4�a + 7�+� , 4h = �10�h + 5�b + 4�c�,    
 4b = �6�* + 4�a + 5�b + 4�c� and  4g = �7�+ + 4�a + 5�b + 3�g�  

 

Thus, expression (25) takes the form:  

 

4ef�'
 = min � �*�* + �+�+  , �g�g + �c�c , �h�h + �a�a + �+�+  , �h�h + �b�b + �c�c  , �*�* + �a�a +
�b�b + �c�c  , �+�+ + �a�a + �b�b + �g�g 
     
 

              = min� 6�* + 7�+  , 3�g + 4�c , 10�h + 4�a + 7�+  , 10�h + 5�b + 4�c , 6�* + 4�a + 5�b +
4�c , 7�+ + 4�a + 5�b + 3�g 
    
 

Expression (29) can be streamlined through the algebraic decomposition rule (1). We now employ (14) for 

decomposing the capacity function  4ef�'
 with respect to the indicator variables  ��a , �b
 that represent the 

bridge elements in the network of Fig. 1. The sub-functions in (14) are obtained via (29) as:  

�25
 

�26
 

�27
 

�28
 

�29
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4ef�'|1a, 1b
 =  n�� � 6�* + 7�+ , 3�g + 4�c , 10�h + 4 + 7�+ , 10�h + 5 + 4�c , 6�* +  9 + 4�c  ,
7�+ + 9 + 3�g 
   
 

                      = �* n��� 6 + 7 �+ , 3 �g + 4 �c , 10 �h + 4 + 7 �+ , 10 �h + 5 + 4 �c , 15 + 4 �c  , 7 �+ +
                          9 + 3 �g
 +  �* n��� 7 �+ , 3 �g + 4 �c , 10 �h + 4 + 7 �+ , 10 �h + 5 + 4 �c, 9 +
                          4 �c , 7 �+ + 9 + 3 �g
  

 

 = �* ��+ n��� 13 , 3 �g + 4 �c , 10 �h + 11 , 10 �h + 5 + 4 �c, 15 + 4 �c, 16 + 3 �g
 +
�+ n��� 6 , 3 �g + 4 �c , 10 �h + 4 , 10 �h + 5 + 4 �c , 15 + 4 �c, 9 + 3 �g
� +
�* � �+n��� 7 , 3 �g + 4 �c, 10 �h + 11 , 10 �h + 5 + 4 �c, 9 + 4 �c , 16 + 3 �g
�  

 

 =
�* � �+ ��h n��� 13 , 3 �g + 4 �c , 21 , 15 + 4 �c , 15 + 4 �c , 16 + 3 �g
 +
                            �h n��� 13 , 3 �g + 4 �c  , 11 , 5 + 4 �c , 15 + 4 �c, 16 + 3 �g
� +
                            �+ ��h n��� 6 , 3 �g + 4 �c, 14  , 15 + 4 �c , 15 + 4 �c , 9 + 3 �g 
 +
                            �h n��� 6 , 3 �g + 4 �c, 4 , 5 + 4 �c , 15 + 4 �c , 9 + 3 �g 
 � � +
                            �*  o �+ � �h n��� 7 , 3 �g + 4 �c, 21 , 15 + 4 �c, 9 + 4 �c, 16 + 3 �g
 +
                            �h n��� 7 , 3 �g + 4 �c , 11 , 5 + 4 �c  , 9 + 4 �c , 16 + 3 �g 
�p   

 

                       = �* �� � +   � �h E �g � 3 + 4 �c 
 + �g �4 �c
 F +  �h E �g  � 3 + 4 �c 
  +   �g�4 �c
F � � +
                           �+ � �h E �g� 3 + 3 �c  
 +  �g� 4 �c
F  +  �h E �g  � 3 + �c 
 +   �g� 4 �c 
F �  �            

                         + �*  � �+ � �h E �g� 3 + 4 �c 
 +  �g� 4 �c
 F +  �hE �g � 3 +   4 �c 
 +  �g � 4 �c
 F � � 
 

                       =  3�gL�* + �c�h�+�* + �*�+M + 4�cL�+ +  �g �+�*M + �c�g�h�+�*     
 

4ef�'|0a, 1b
 = 3�Y i�+ + �*�+�h�1 + �c
j + 4�c��+ + �*�+�h�g
  
 

4ef�'|1a, 0b
 = 4�c  L �+ + �*�+��g + �h�g
M + 3�h�g��+ + �*�+�1 + �c

  
 

4ef�'|0a, 0b
 = 3�g�h�* + 4�c�+  
 

These sub-functions can be substituted into (14) to get the equivalent form (4). They can also be used to fill 

in the map entries in Fig. 2 and Fig. 3. 

 

On the other hand, (29) can be successfully simplified by using eq. (28). A set of exhaustive and disjoint s-t 

paths for the network is:  
 

�* = �+�c ,   �+ = �+�a�h�b�g�c ,  �a = �+�b�g�c ,  �h = �*�+�a�h�b�g�c  , 
�b = �*�+�a�h�g ,   �g = �*�+�a�h�b�g�c ,   �c = �*�+�a�b�g�c , 

   �� = �*�+�a�c   ,   �� = �* �+�a�h�b�g�c  
 

Therefore, the sub-functions in (28) are obtained via (29) as 
 

4ef � ' |�* = 1 
 = 4ef � � |1+ , 1c 
  
 

= n�� � 6�* + 7 , 3�g + 4 , 10�h + 4�a + 7  , 10�h + 5�b + 4 , 6�* + 4�a + 5�b + 4  ,
7 + 4�a + 5�b + 3�g 
  

                                =  4 + 3 �g  i �b + �h  �b  L 1 + �*�a Mj        

 

4ef� ' |�+ = 1 
 = 4ef� � |1+, 1a, 1h, 0b, 1g, 0c 
                                             
                               = n��� 6 �* + 7  , 3 , 21 , 10 , 6 �* + 4 , 14  
 =  3   

�30!
 

�30�
 

�30�
 

�30"
 

�31!
 

�31�
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4ef � ' | �a = 1
 = 4ef � � |1+ , 1b , 1g , 0c 
   
                             = n��� 6 �* + 7  , 3 ,   10 �h + 4 �a + 7 , 10 �h + 5 , 6 �* + 4 �a  +    5 ,� 7 + 4 �a + 8 
 = 3        
 

4ef � '|�h = 1 
 = 4ef� � |1* , 1+ , 0a , 1h , 0b , 1g , 0c 
   =   3 

 

4ef� ' | �b = 1 
 = 4ef� � |1* , 0+ , 0a , 1h , 1g
  =  3 + 3 �b�c         

 

4ef� ' | �g = 1 
 = 4ef� � | 1*, 0+, 0a, 1h, 1b, 0g, 1c
   =   4   
 

4ef� ' | �c = 1 
 = 4ef� � | 1*, 0+, 1a, 1b, 1g, 0c
   =   3       

 

4ef� ' | �� = 1 
 = 4ef� � | 1*, 0+, 1a, 1c
  
= n�� � 6 , 3�g + 4 , 10�h + 4  , 10�h + 5�b +  4 , 14 +   5�b , 4 + 5�b + 3�g 
  

=  4 + 2�h�g       

 

4ef� ' | �� = 1 
 = 4ef� � | 1*, 0+, 1a, 1h, 0b, 1g, 0c
 =   3        

 

These sub-functions, can together with the condition 4ef�' |�ef = 0
 = 0,  be used to fill in the map entries 

in Fig. 2 and Fig. 3. Moreover, they can be substituted into (28) to get the expression: 

 

4ef�'
 = �+�c  i 4 + 3 �g  i �b + �h �b  L 1 + �*�a Mj j + 3 �+�a�h�b�g�c + 3 �+�b�g�c +
3 �*�+�a�h�b�g�c + �*�+�a�h�g� 3 + 3 �b�c 
 + 4 �*�+�a�h�b�g�c + 3 �*�+�a�b�g�c +
�*�+�a�c� 4 + 2 �h�g
 + 3 �*�+�a�h�b�g�c 

 

Expression (32) can be shown to be an equivalent to expression (4) obtained by the map procedure and 

expression (24) obtained by the delta-star transformation procedure. 

 

9 Conclusions 
 
This paper presents several kinds of methods for analyzing a capacitated flow network such as 

telecommunication networks, power transmission systems or oil or water pipeline systems. These methods 

include Karnaugh maps, network reduction rules associated with delta-star transformations that preserve the 

source to terminal capacity function, and a generalization of the min-max cut theorem. The network capacity 

is a pseudo-Boolean function of the link successes; thus, its mean value is easily obtainable from its sum-of-

products expression. To demonstrate the presented methods applicability, five demonstrative inter-related 

examples are given with sufficiently explanatory details.  
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