
 

Journal of Advances in Mathematics and Computer Science 
  

35(6): 24-34, 2020; Article no.JAMCS.59375 
 

ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science,  Past ISSN: 2231-0851) 

 

 

_____________________________________ 

*Corresponding author: E-mail: fatmasalem718@yahoo.com; 

  

 

Oblateness Effects on Solar Sail in the Restricted Three–body 

Problem 

 
Fatma M. Elmalky

1*
, M. N. Ismail

2
 and Ghada F. Mohamedien

3
 

 
1
Department of Math, Faculty of Science (Girls), Al-Azhar Univesity, Egypt. 

2
Department of Astonomy and Meteorology, Faculty of Science, Al Azhar University, Egypt. 

3
National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt. 

 

Authors’ contributions 

 
The three authors shared together through this work. Author MNI put the idea and the steps of the 

manuscript while authors FME and GFM did the computations, follow up the results and write the 

manuscript. All authors read and approved the final manuscript. 

 

Article Information 
 

DOI: 10.9734/JAMCS/2020/v35i630289 
Editor(s): 

(1) Dr. Raducanu Razvan, Alexandru Ioan Cuza University, Romania. 

Reviewers: 
(1) Xu Deshui, Harbin Engineering University, China. 

(2) Anindita Chakraborty, Bhilai Institute of Technology (BIT), India. 

(3) Biqiao, University of Toronto, Canada. 
Complete Peer review History: http://www.sdiarticle4.com/review-history/59375 

 

 

 

Received: 26 May 2020 

Accepted: 01 August 2020 

Published: 13 August 2020 

_______________________________________________________________________________ 
 

Abstract 

 
In the present work, the equations of motion of the solar sail are derived in the restricted three–body 

system. The dimensionless coordinates are used to obtain the solution of the problem. The Laplace 

transformations are used to solve these systems of equations to obtain the components of the solar sail 

acceleration. The motion about L2, L4 and its stability are studied under obalteness effects. The results 

obtained are in good agreement with previous results in this field. It is remarked that this model has 

special importance in space-dynamics to enabling spacecraft to do some maneuvers depends on the solar 

sail acceleration. 
 

 

Keywords: Dynamical systems; lagrangian points; solar sail acceleration; laplace transforms; stability of 

equilibrium points; restricted three-body problem. 
 

1 Introduction 

 
In space dynamics, there are several systems like two-body, three-body, four- body, and N- body problem 

sunder considerations. It is very important for the dynamics of binary and multiple stars as well as the 
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planetary systems. The restricted three-body problem (RTBP) has been considered as a basic dynamic model 

ever since the scientists have studied the orbital motion of solar sail [1,2]. Solar sail uses sunlight to generate 

propulsions in space by reflecting solar photons flux from a large mirror-like sail made of light weight: 

highly reflective polyimide film material. Solar sailing technology has widely investigated over the past 

decade [3,4]. It appears as a promising form of advanced spacecraft population, which can enable exciting 

new space-science mission concepts such as solar system exploration and deep space observation. 

 

Reena Kumari [5] studied the equilibrium points in the restricted four-body problem with solar wind Drag. 

Solar sailing, an experimental method of spacecraft propulsion, depends on the radiation pressure from the 

Sun as a motive force. The idea of interplanetary travel by light was mentioned by Jules Verne [6]. 

 

There are many methods to treat the problem analytically and numerically one of these methods is the 

Laplace Transformations, it is a tool for solving linear differential equations by reducing the problem to an 

algebraic one [7,8]. Also, it takes care of initial conditions without the necessity of first determining the 

general solution and then obtaining the required solution from it. In this work, effect of the obalteness on the 

acceleration of solar sail is studied. A comparison of this case is done with the case obtained without 

obalteness. 

 

Definition1: The Laplace transform of a function, f(t), for    is defined by             

 
 (t) dt 

 

Where 

 

. The improper integral must convergence (i.e. the limit exists and is finite) f or at least one value of s. 

 

.  t is real and called the time variable. 

 

.  s is complex and called frequency variable. 

 

The resulting expression is a function of s, which symbol led by F(s).  

 

Definition2: The Inverse Laplace transform of the function F (s) is given by 
 

   
        

    
 (s) ds 

 

Where the integral is taken over a line in the region of convergence and   is large enough that F(s) is defined 

for real    . 

 

This formula (integration in complex plane) is very difficult to apply directly. So we will use different 

approach. 

 

2 Model of Solar Sail 

 
The motion of the three body is studied, where its mass may vary insignificant compared with the masses of 

the other three-bodies and m1>m2>>m. Fig. 1 illustrates the geometric of the problem, r1and r2 are the 

position vectors from m1  and m2 to m respectively. The origin is considered at the center of mass of m1 and 

m2 which are called the primaries. The system Earth-Moon solar sail is used, where the masses of the Earth 

and Moon in the canonical system are given as  
 
  

  
     

          and  
 
  

  
     

 

         respectively. 

 

The distance between the two primaries is unity. 

 

                 
    ,                        
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Fig. 1. The geometric of the problem 

 

3 Equations of Motion 

 
The vector dynamical equation for the solar sail in a rotating frame about Z-axis is described by:  

 

    
  

  
                                                                                                                                                                    (1) 

 

Where       is the potential function of attraction field of   and    

 

Then, 

 

    
  

  
                                                                                                                                                     (2) 

 

    
  

  
                                                                                                                                                 (3) 

 

Using the Poincare force function       , equations (2) and (3) become: 

 

   
  

  
                                                                                                                                              (4) 

 

   
  

  
                                                                                                                                                          (5) 

 

Where r is the position vector of the solar sail relative to the center of mass of the two primaries 

 

         
                                                                                                                                                  (6) 

 

   is the magnitude of the solar radiation pressure force exerted on the solar sail. The unit normal to the sail 

n and the Sun line direct on are given by: 

 

                                                                                                                                   (7) 
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                                                                                                                                                (8) 

 

Where    is the pitch angle between the normal of the sail and the sun line. 

 

If   and    rotate in their circular orbit with constant angular velocity 

 

          [9], then in time t the angle between the two coordinates system will be    then: 

 

                                                                                                                                                                   (9) 

 

                                                                                                                                                                (9.1) 

 

From equation 9 we get:        

 

                         
 

            =           
 

                                                                                                                                                                                   (10) 

 

From equations (4) and (5) we obtain:       

 

       
  

  
  

  

  
                                                                                                                                          (11) 

 

In the same way we get: 

 
  

  
  

  

  
  

  

  
  

  

  
      

 

                  
    

 

From equation (10) 

 

                                                                                                                                            (12) 

 

Differentiate equation (12) with respect to t twice and substitute in equation (11) we get:  

 

                               
  

  
  

  

  
                                                                             (13) 

 

Then equating the real and imaginary parts 

 

            
  

  
                                                                                                                           (14.1) 

 

            
  

  
                                                                                                                                           (14.2) 

 

Before attempting to solve the differential equation system (14), all quantities must be in dimensionless 

coordinates. To do this let                 and        ,
 

 
       

 

 
   are dimensionless coordinates of 

the body, and   ,
  

 
   

  

 
     are dimensionless masses of the bodies         , 
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Then the nondimensional equations of the system are obtained: 

 

                                                                                                                                                                                                                                 (15.1) 

 

                                                                                                                                                  (15.2)  

 

                                                                                                                                                                          (15.3) 

 

Where  

 

   
 

   
        

 

    
                                                                                                                              (16) 

 

Then the potential under the effect of oblateness is given by: 

 

   
 

 
        

   

  
 

 

  
 

      

  
                                                                                                             (17) 

 

Where      
   
     

 

    
  is the oblateness coefficient of the larger primary,            and             are 

the equatorial and polar radii of the large primary, and              is the distance between the two 

primaries, and 

 
  

 
    

  

 
   are dimensionless of      

 

The solar sail acceleration components are obtained from equations (6), (7), and (8) in the form 

 

                                                                                                                                                (18.1) 

 

                 
                                                                                                                             (18.2) 

 

         
                                                                                                                                          (18.3) 

 

Where the partial derivatives of the gravitational potential evaluated at the collinear libration points 

are           and    

 

We choose a particular solution in the plane as reference to Farquhar [10] and Simo [11]. 

 

4. Laplace Transformations 

 
Equations (15.1) and (15.2) can be solved by Laplace transforms, by putting 

 

L                                                                                                                                             (19) 

 

                         ]                                                                                                                    (20) 

 

Equations (15.1) and (15.2) yield to 

 

                              
 

 
                                                                                                 (21) 

 

                              
 

 
                                                                                                (22) 
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Using Mathematica to solve this system of equations (15.1) and (15.2), it is more convenient to consider 

                   ,          ,         
  

 
, 

 

                is the oblateness coefficient       ,           , Then the solution will be: 

 

      
                            

        
                                                                                                      (23.1) 

 

      
                            

        
                                                                                                      (23.2) 

 

We take the inverse Laplace transforms.  

 

                                                                                  
                                                               
                                                          
                     

 

                                                                               
                                                                         
                                                                                                                    (24) 

 

5 Results and Discussion 

 

From the results at     (0.8, 
  

 
). Figs. 2, 3 and 4 show the behavior of the solar sail acceleration versus 

time           and illustrate that there is periodicity. 

 

 
 

Fig. 2. The    acceleration derived from the solar sail about L4 

 

 
 

Fig. 3. The acceleration    derived from the solar sail about L4 
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Fig. 4. The total acceleration derived from the solar sail about L4 

 

Figs. 5 and 6 show that the motion of a spacecraft around the libration point appears at the plane of motion. 

See Fig. 7 which illustrates the trajectory of a spacecraft about the L4. Fig. 8 shows the phase space of a 

spacecraft revolves in an ellipse around the L4. 

 

 
 

Fig. 5. Trajectory near the point L4 with  –axis 

 

 
 

Fig. 6. Trajectory near the point L4 with  -axis 

 

 
 

Fig. 7. Trajectory of a spacecraft about L4 
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Fig. 8. The phase space of the body about L4 
 

From the results at    (1.2,  ). Figs. 9, 10 and 11 show the behavior of the solar sail acceleration versus 

time           , and it illustrates that there is periodicity. Figs. 12 and 13 show that the motion of a 

spacecraft around L2 for          on the  –axis and the -axis, where the effect of oblateness appears at the 

plane of motion, is stable and escape after     . Fig. 14 illustrates the trajectory of a spacecraft about the 

L2. Fig. 15 shows the phase space of a spacecraft revolves in an ellipse around the L2. 

 

 
 

Fig. 9. The acceleration    derived from the solar sail about L2 

 

 
 

Fig. 10. The acceleration    derived from the solar sail about L2 
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Fig. 11. The total Acceleration derived from the solar sail about L2 

 

 
 

Fig. 12. Trajectory near the point L2 with  –axis 

 

 
 

Fig. 13. Trajectory near the point L2 with  -axis 

 

 
 

Fig. 14. Trajectory of aspacecraft about L2 
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Fig. 15. The phase of the body about L2 

 

6 Conclusion 

 
Through this work the behavior of a body about the L2 and L4 are studied by Laplace transformation. The 

results obtained by Laplace transformations were very interesting to specify this study. Through this work 

the effect of oblateness due to the bigger primary playing a greet rule in the space missions. So, that the 

oblateness effect is considered when any missions designed. An application has done for the motion of 

spacecraft near the equilibrium points of the Earth-Moon system and the results obtained was in a good 

agreement with the previous work [12]. 
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