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Abstract 

 
In the last two years the price of oil and its fluctuations have reached levels never recorded in the history of 

international oil markets. The determinants of past, current, and future levels of the price of oil and its 

fluctuations have been the subject of analysis by academics and energy experts, given the relevance of crude 

oil in the worldwide economy. The paper, therefore, model and forecast crude oil production (2002-2022) 

sourced from Central Bank of Nigeria website. The successive least squares estimation and model diagnostics 

are applied. The results affirmed that the self-exciting threshold autoregressive (SETAR(2,2,1)) model 

outperformed autoregressive integrated moving average (ARIMA(3,1,3)) model for crude oil production 

fluctuations based on our diagnostics (AIC, SC, SSR and log-likelihood ratio). The results obtained will 

greatly assist the government and policy makers in planning for economic development since the long-run 

success of any country is closely related to how well management is able to foresee the future and develop 

appropriate strategies. 
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1 Introduction 
     

Crude oil (Oil) has dominated the economy of Nigeria since it was discovered in commercial quantity. In 

Nigeria, oil accounts for more than 90 percent of its exports, 25 percent of its gross domestic product (GDP), 

and 80 percent of its government total revenues, [1]. Thus, a slight oil price fluctuation can have a significant 

impact on the economic activities of the citizenry. For instance, a US$1 increment in the oil price in the early 

1990s increased Nigeria’s foreign exchange earnings by about US$650 million (2 percent of GDP) and its 

public revenues by US$320 million a year. Nigeria’s dependence on oil production for income generation 

obviously has serious consequences for its economy. Secondly, oil is a salient commodity in the economy of any 

country because it is the main source of energy for domestic and industrial use. Different end products of oil are 

kerosene, diesel, gasoline, and others while changes in the prices of either the crude oil or any of the end 

products are expected to have impact on users and the nation at large. Given the incidences of vandalism, oil 

thefts, and other corrupt practices in the upstream enterprise of the sector, the paper is set to model and 

investigate variability in the crude oil production through volatility measures, as it was established in the crude 

oil pricing. In other words, the presence of volatility in crude oil production indicates that the data on crude oil 

is very volatile, indicating a strong similarity and reliance between the two economic variables as co-causes of 

the recent economic crisis in Nigeria. Volatility is a measure of how widely values deviate from the central 

mean value. 

 

Crude oil price fluctuations are affected by global market mechanisms, which include the demand and supply 

equation and market sentiment. The demand and supply premise is straightforward and derived from the 

foundations of economics, however market sentiment occasionally reflects the simple expectation that oil 

demand would either increase or decrease sharply at some point in the future, leading to price changes, [2,3]. 

The recent changes in oil prices in the global economy are so rapid and unprecedented. This is partly due to 

activities of Organization of Petroleum Exporting Countries (OPEC) or increased demand of oil by countries 

like China and India. Some financial and physical reasons contribute to the volatility in oil prices. Physical 

factors include demand and supply mechanisms, weather events, technological advancements, geopolitical 

developments, and supply disruptions (including labour strikes, oil spills, vandalism and oil thefts), while 

financial factors include exchange rates, interest rates, speculations, and financial stress index, [4]. However, the 

current global economy melt down suddenly counteracted the sky-rocketing oil prices. These recessions are 

characterized by rapid decline in economic activity while economic expansions are characterized by a more 

moderate rate of change in economic activity that extends for a longer period of time. At the beginning of the 

crisis, oil price crashed below $40/b in the world market which had serious consequences on Nigeria fiscal 

budget which led to the downward review of the budget oil benchmark price, [5]. Today, oil price is oscillating 

between $60/b and $75/b. This rapid change has become a great concern to everybody including academics and 

policy makers; therefore a study of this kind is timely. It is a rather widely accepted view that the economy is 

nonlinear in the sense that major economic variables have nonlinear relationships, [6,7]. A business cycle with 

such characteristics would be asymmetric and linear models (e.g. autoregressive integrated moving average, 

ARIMA) lack the ability to capture such asymmetric processes and thus might be a less suitable choice for 

modelling macroeconomic time series that follows an asymmetric business cycle.  

 

We observed that in the past decades, crude oil production have shown an extreme volatile, asymmetrical and 

nonlinear behaviours (irreversibility, jumps and limit cycles). These characteristics are collectively referred to as 

nonlinearity, [8]. If the derivative of the mean function with respect to the parameters relies on at least one other 

parameter, the model has a nonlinear mean function. Nonlinear models have been categorized into numerous 

classes: the bilinear models and the threshold models are the two most well-liked classes among them [9,10]. 

These family of non-linear models seem to capture asymmetries, limit cycles, and jump phenomena in the 

dynamic structure of climatic, economic, and financial time series. The TAR model developed by Tong [9] has 

proven to be a helpful and well-liked nonlinear time series modelling technique. Therefore, standard linear time 

series models, used commonly in econometric analysis, such as autoregressive (AR), autoregressive moving 

average (ARMA) and generalized autoregressive conditional heteroskedastic (GARCH) models fail to capture 

the complex dynamic of commodity markets, in particular future oil prices, [11-13]. Moreover, as this dynamic 

is driven by the economic cycle and seasonal movements, which in turn determine successive contraction and 

expansion of oil demand in the global economy, switching models, [14,15] are in a better position for the 

analysis. Also, from the forecasting point of view, there appears to be no clear conclusion as to whether 

allowing for non-linearity leads to an improvement in forecast performance, [16]. In this paper, we consider the 

fitting of nonlinear models with parameters changing according to a threshold, known as self-exciting threshold 
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autoregressive (SETAR) models to crude oil production in Nigeria. Self-exciting threshold autoregressive model 

is a special example of the threshold autoregressive (TAR) model whereby regime switching is being based 

upon the self-dynamics of the dependent variable(s). It allows greater flexibility in model parameters which 

involves regime switching behaviour. For the TAR model, there is relationship between the threshold value and 

the exogenous variable while for the SETAR model, the relationship exists between the threshold value and the 

endogenous variable. The TAR model assumes that the regime is determined by a variable tq  relative to a 

threshold value (If tq  is equal to the dependent variable, say ty , in an autoregressive regression, the model is 

referred to as self-exciting TAR (SETAR) model, [17].  

 

The threshold technique makes sense because a regime dependent linear model can produce a piecewise linear 

structure that closely approximates nonlinearity. The TAR models enhance linear approximation by using 

threshold space. Threshold models' central concept is the use of thresholds to introduce regimes. Under the 

threshold principle, there exist numerous parametric nonlinear time series models and by breaking down a 

complicated stochastic system into smaller, simpler subsystems, the approach enables the analysis of the system. 

The oil and gas industry use TAR models, which have been effectively used to represent nonlinear time series in 

climate variables like temperature and humidity as well as financial variables like exchange rates, return 

volatility, and arbitrage trading. For instance, a TAR model of currency rates explains an outer regime of mean 

reversion with big deviations and an inner regime of slow adjustment for slight disequilibria or modest 

departures from some long-run equilibrium route or attractor. Handling the asymmetric responses in volatility 

between positive and negative returns is an essential use of TAR models in volatility. Arbitrage trading in index 

features and cash prices can be studied using TAR models. In addition to financial variables, TAR models have 

also been successfully utilized to investigate asymmetries in other macroeconomic variables over the course of 

the business cycle, such as unemployment, gross national product (GNP), etc. For time series systems that 

experience periodic shifts as a result of regime transitions, TAR models are particularly well suited. This 

nonlinear model's distinctive characteristics have made it useful in a variety of application areas. 

 

2   Models 
 

2.1 Autoregressive (AR) models 
 

Autoregressive models are based on the idea that the current value of the series, t , can be explained as a 

function of p past values, pttt   ,,, 21  , that is, a linear combination of past values of the process plus 

random shock. An autoregressive model of order p, (AR(p)), can be written as; 

 

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ··· + ϕpXt−p + εt                      (1) 

 

where t  is an invertible series, p ,,, 21   are parameters and ( 0p ). Unless otherwise stated, we 

assume that εt is a Gaussian white noise series with zero mean and variance  2
w. 

 

2.2 Moving average (MA) model  
      

This is linear combination of past errors of the process plus the current shock. Like the autoregressive 

representation in which the t  on the left-hand side of the equation are assumed to combine linearly, the 

moving average model of order q, defining equation are combined linearly to form the data observed. A series 

t  is said to follow a moving average of order q [M A (q)] if   

 

tqtqttt a   2211           (2) 

 

where  1,  2, . . .,  q , are the MA parameters, MA(q) is a stationary series. 
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2.3 Autoregressive moving average (ARMA) 

 
A general ARMA model can be written as follow: 

 

qtqtttptpttt     22112211   (3) 

 

Equation (3) is stationary and invertible. Re-writing in a backward shift operator B, we obtain 

 

tt )()(           (4) 

 

2.4 Autoregressive integrated moving average (ARIMA) 
       

The autoregressive integrated moving average (ARIMA(p,d,q)) model, where parameters p, d and q are non-

negative integers that refer to the order of the autoregressive, integrated, and moving average parts of the model, 

respectively. ARIMA models form an important part of the Box-Jenkins [6] approach to time series modelling. 

ARIMA model is a generalized model in that when one of the three terms (p,d,q) is zero, it is usual to drop  to 

autoregressive (AR), integrated (I) or moving average (MA), respectively. Following Box and Jenkins [18], this 

can be represented as: 

 

tt

d

t xfx  )()()1)(()(        (5) 

 

Where 

 

)()1()(   d
 is the generalized autoregressive operator; it is a non-stationary operator with d of the 

roots of 0)(   equal to unity. B is a backward shift operator such that 


dtt

d yy  , and d   is a 

nonnegative integer. 

 
p

p  2

211)( , is an autoregressive operator of order p, such that the roots of the 

polynomial 0)(   lie outside the unit circle for stationarity. p ,,, 21   are the autoregressive 

parameters. )( tyf  is the observed time series data. 

 
q

q  2

211)( , is a moving average operator of order q, such that the roots of the 

polynomial 0)(   lie outside the unit circle for invertibility. q ,,, 21   are the moving average 

parameters. t  is normally independently distributed white noise with mean zero and variance 
2

 . 

 

When d = 0, the model (5) represents a stationary process, that is, the autoregressive moving average (ARMA) 

models, [19]. Here, the model for t   is non-stationary because the AR operator on the left hand side has d root 

on the unit circle. If d is 1, we have a random walk (ARIMA (0,1,0)). 

 

2.5 Threshold autoregressive model (TAR) 
 

Consider a simple AR(p) model for a time series yt which is a linear combination of past values of the process 

plus the current shock. 

 

yt = µ + φ1yt−1 + φ2yt−2 + ··· + φpyt−p + σεt                       (6) 

 

where φi(i = 1, 2, . . . , p) are the AR coefficients of i
th

 regime, pttt   ,,, 21   variables are the ones that 

are believed to influence t  dependent variable in each regime, t  is the error term εt ∼ N(0,1) and σ is the 
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standard deviation of disturbance term. The model parameters Φ = (µ, φ1, φ2, . . ., φp) and σ are independent of 

time t and remain constant. To capture non-linear dynamics, TAR models allow the model parameters to change 

according to the value of a weakly exogenous threshold variable zt:  

 

yt = Xtφ
j
 + σ

(j)
εti;       kjrzr jdtj ,,2,1,1  

     (7) 

 

where ),,,,1( 21 ptttt yyy   ,  d shows the delay parameter, k denotes the number of the regimes in the 

model, dtz   denotes the threshold variable and r denotes a real number )(  r . In essence, the k − 1 

non-trivial thresholds (r1, r2, . . ., rk−1) divide the domain of the threshold variable tz  into k different regimes. In 

each different regime, the time series, ty  follows a different AR(p) model. For example, a two-variable TAR 

model, [20] is:  

 

ttptptt

tptpttt

eq

q









)()(

)()(

1,222,211,20,2

1,122,111,10,1








    (8) 

 

where 1tq  denotes the threshold variable, )(  denotes the indicator function, ),,,( 211 ptttt qq   

denotes the functional structure,   denotes the threshold value or threshold parameter, te  is the martingale 

difference series. The operation flow on the estimation of the model according to Tsay [21] are: 

 

(i) Determine the level of AR process (p), 

(ii) Selecting the d delay parameter,  

(iii) Determining the level of the threshold value in the direction of the obtained p and d values. 

 

2.6 Self-exciting threshold autoregressive model (SETAR) 
 

If the threshold variable dtt yz  , with the delay parameter d being a positive integer, the dynamics or regime 

of ty  is determined by its own lagged value dty    and the TAR model is called a self-exciting TAR or SETAR 

model. For the ease of notation, let SETAR(1) denotes the one regime linear AR model with k = 1, SETAR(2) 

denotes the two-regime TAR model with k = 2, and so on. For the one-regime SETAR(1) model, 

 1r  and the unknown parameters are Φ = (φ
(1)

,σ
(1)

); for the two-regime SETAR (2) model, the 

unknown parameters include the single threshold  2r  and Φ = (φ
(1)

,φ
(2)

,σ
(1)

,σ
(2)

). The two approaches 

for testing threshold non-linearity and estimating the unknown parameters in the associated models of SETAR 

are Tong [9] and Hansen [20], respectively. 

 























11

)2(

1

)2(

0

11

)1(

1

)1(

0

ttt

ttt

t

yy

yy

y                (9)    

 

or equivalently, 

 

tttttt yyy    12112,01,0       (10) 

where  and  are less than one, εt is a white noise process., τ ϵ ℝ, It = 0 if  yt1 ≤ τ; It = 1 if yt1 > τ, 

, τ is called the threshold parameter. This is also a 

“two-regime” SETAR since the value of the autoregressive parameters depend on whether at time t the system is 

in regime l ( 1ty ) or regime 2 ( 1ty ). More generally, we can imagine an r-regime SETAR such that: 
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



























rtrtt

rr

ttt

ttt

t

yify

yify

yify

y







111

)(

1

)(

0

2111

)2(

1

)2(

0

111

)1(

1

)1(

0


      (11) 

 

where − ∞ < τ1 < ··· < τr < ∞ 

 

The SETAR model can also be generalized to p
th

 order autoregressive case 

 





























rdtrtpy

r

pt

rr

dttpypt

dttpypt

t

yifyy

yifyy

yifyy

y







1

)(

1

)(

1

)(

0

21

)2(

1

)2(

1

)2(

0

1

)1(

1

)1(

1

)1(

0









   (12) 

 

where − ∞ < τ1 < ··· < τr < ∞, d ∈ {1, 2, . . ., p}, d is a delay parameter. So the form of the SETAR is 

determined by three parameters which are the lag length(p), the number of regimes (r), and the delay parameter 

d, which is sometimes denoted by SETAR(p,r,d). SETAR model with two regimes are specified in the following 

equation: 

 



















 

 

p

i dttiti

dtt

p

i iti

t

yify

yifyaa

y

10

10




      (13) 

 

where ia  and i  are coefficients; τ is the threshold value; p is the SETAR model order; dty   is the variable of 

threshold; d is the parameter of delay and t  is a sequence of independent and identically distributed (iid) 

random variables with µ = 0 and σ
2
. 

 

Or using Hansen [20] approach: 

 

tdtptptt

dtptpttt

e







)()(

)()(

22110

22110








    (14) 

 

where p denotes the autoregressive level,   denotes the threshold parameter. The threshold variable is 

expressed as dt  (d is an integer). Writing Equation (14) in more compact form, we have 

 

ttt e  )(          (15)

  

where )((,)( 10
 p   and )( 10

 p  );   

 

))()(()(    dttdttt . Hence, 
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tdttdttt exx   )()(        (16) 

 

3 Methodology 
       

The paper adapts estimation approaches of Hansen [20], Tong [9] and Tsay [21], where for example, the method 

for estimating the   parameter and for the inclusion is the successive least squares method because the model 

parameters are nonlinear.   

 


















 







n

t

tt

n

t

tt

1

1

1

)()()(ˆ        (17) 

 )(ˆ)()(ˆ   ttte         (18) 

 

and the inclusion variance is  

 





n

t

n e
n 1

22 )(ˆ
1

)(  .          (19) 

 

The minimization of Equation (19) is the best principle in the successive least squares estimation of the 

threshold parameter )( , where   ,),(ˆminargˆ 2  n . The process will then follow an 

algorithmic system for selecting the threshold variable dt  and the threshold parameter which will minimize 

the error variance. Equation (9) is estimated using three steps: (i) It is assumed that d and   values are known. 

Based on these assumptions, the observation values are separated into small sub-groups, the Akaike information 

criterion (AIC) for each sub-group is calculated with ),,2,1( kipi   level, where the maximum level in 

the regimes may be )(
2
1 anL a

. This gives 

  

2,1)],(min[)ˆ(  ikAICpAIC ii        (20) 

 

where ip  value of each regime is obtained using Equation (20) in return for the constant d and   values. (ii) 

The d value is kept constant while the threshold parameters that will minimize the AIC data criterion value are 

tested. That is, the   value that minimizes the )ˆ,( dAIC  value is selected among the other threshold 

parameters. 

 

)],(min[)ˆ,( 00  dAICdAIC         (21) 

 

(iii) Having determined ip  and  , the value of is obtained by minimizing the NAIC(d) as: 

 

dnn

dAIC
dNAIC




)(
)( ,         (22) 

since the value of the variable d will influence the number of the observations (n) in the different regimes. The 

non-linear Akaike information criterion (NAIC) is used instead of the usual AIC. 

        

The linearity tests, likelihood ratio test, Augmented Dickey Fuller and Jarque-Bera tests are performed. 

Afterward, the residuals of the mean equation is used to test for heteroskedasticity effects. If the 

heteroskedasticity effects are statistically significant, a volatility model is specified and then a joint estimation 

of the mean and volatility equations is performed. See more details at Akaul and Ozdemir; Caporale; Chan; 

Dickey and Fuller; Jarque and Bera; Yuehchao and Remya [22-27].  
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In modelling volatility, choosing an appropriate model from various suitable models is essential. The model 

selection principle is a criterion to assess if the fitted model suggests an optimum balancing between parsimony 

and goodness of fit. This paper utilized the frequently used model selection principle, the Akaike Information 

Criterion (AIC) for the fitted models. Hence, the best model has a lower AIC value and the highest log-

likelihood metrics.  

 

4 Results and Discussion 
      

The analysis of the empirical data are performed using JUMPin software and R-Programming language. The 

time plot and dot plot of the monthly barrels of crude oil data series sourced from Central Bank of Nigeria 

(CBN) website are shown in Fig. 1 and Fig. 2 below, the trend showed the non-stationarity of the Nigeria crude 

oil production within the sample period (2002-2022). 

 

  
 

Fig. 1. Time plot of monthly barrels crude oil 

production 

 

Fig. 2. Dot plot of monthly barrels crude oil 

production 

 

 
 

Fig. 3. Histogram of the monthly barrels crude oil productions 

         

The histogram in Fig. 3 also confirms that the crude oil production in Nigeria is not stationary as it is skewed to 

the left with the value of -0.458; kurtosis of crude oil production gives platykurtic result with 2.951 and the 

Jarque-Bera statistic denotes that its errors are not normally distributed with p = 0.012 for crude oil productions. 

The basic statistics characterizes significant variations in the prices. The two economic variables appear to 

disagree with one another when compared to the fundamental statistical metrics in the table. This does not, 

however, rule out the prospect of crude oil production volatility. The theory of volatility clustering in crude oil 

output was proposed because fluctuations were thought to be significant during periods of unrest due to 

operational difficulties brought on by repeated attacks on multinational corporations and low during times of 

peace. The stationarity test (H0: Crude oil production data is non-stationary versus H1: H0 is not true) obtained 
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using Augmented Dicky Fuller (ADF) at 5% level of significance are presented in Table 1. The test shows that 

since the probability value of the ADF is greater than 5% (prob. = 0.8531 > 0.05), there is insignificant ADF 

value. Hence, the crude oil production data in Nigeria is not stationary (has a unit root test), so there is need for 

differencing. 
 

Table 1. Stationary test of the monthly barrels crude oil production 
 

   t-Statistic   Prob.* R
2
 AIC 

Augmented Dickey-Fuller test statistic -0.660371  0.8531 0.0067 11.43 

Test critical values: 1% level  -3.456622    

 5% level  -2.872998    

 10% level  -2.572951    
       
Following [18,28,29], the non-stationary data can be differenced one or more than one time to achieve 

stationary. The data differenced and tested again with ADF indicate that the differenced series reached 

stationarity at the end of the first differenced as presented in Table 2. The probability value of the ADF is lesser 

than 5% (prob. = 0.0000 < 0.05), this implies that crude oil production data is now stationary.  
 

Table 2. Stationary of the monthly barrels differenced data of crude oil production 
 

   t-Statistic   Prob.* R
2
 AIC 

Augmented Dickey-Fuller test statistic -16.82602  0.000 0.535 11.424 

Test critical values: 1% level  -3.456622    

 5% level  -2.872998    

 10% level  -2.572951    
 

The plot (Fig. 4) shows that the mean is equal to zero, variance approximately constant and presence of 

volatility clustering. The histogram of the differenced series are leptokurtic confirming our choice of self-

exciting autoregressive models for capturing empirical characteristics present in our selected data within the 

sampled period. 
 

 

 

 

Fig. 4. Time plot of monthly barrels differenced 

data 

 

Fig. 5. Histogram of the monthly barrels differenced  

data 

For identification of time domain process, it is more convenient to use the correlogram as model specification 

tools. Table 3 and graph (Fig. 6) of autocorrelation function (ACF) and partial autocorrelation function (PACF) 

are used.  

 

Table 3. Correlogram of the monthly barrels differenced data of crude oil production 

 

Autocorrelation Partial Correlation Lags AC   PAC  Q-Stat  Prob 

       *|.     |        *|.     | 1 -0.070 -0.070 1.2372 0.266 

       *|.     |        *|.     | 2 -0.104 -0.110 3.9985 0.135 
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       *|.     |        *|.     | 3 -0.069 -0.087 5.2220 0.156 

       .|.     |        .|.     | 4 0.049 0.025 5.8336 0.212 

       .|.     |        *|.     | 5 -0.061 -0.073 6.7822 0.237 

       *|.     |        *|.     | 6 -0.073 -0.084 8.1560 0.227 

       .|*     |        .|*     | 7 0.110 0.091 11.294 0.126 

       .|.     |        .|.     | 8 0.013 0.000 11.336 0.183 

       .|.     |        .|.     | 9 -0.055 -0.042 12.119 0.207 

       .|.     |        .|.     | 10 0.023 0.037 12.262 0.268 

       .|.     |        .|.     | 11 -0.033 -0.056 12.551 0.324 

       .|.     |        .|.     | 12 0.010 0.008 12.580 0.400 

       .|*     |        .|*     | 13 0.104 0.128 15.458 0.280 

       .|.     |        .|.     | 14 0.069 0.067 16.719 0.271 

       *|.     |        .|.     | 15 -0.072 -0.041 18.118 0.257 

       .|.     |        .|.     | 16 -0.054 -0.021 18.906 0.274 

       .|.     |        .|.     | 17 0.012 -0.013 18.944 0.332 

       .|.     |        .|.     | 18 -0.053 -0.059 19.706 0.350 

       .|.     |        .|.     | 19 -0.033 -0.019 20.008 0.394 

       .|.     |        .|.     | 20 0.051 0.016 20.726 0.413 

       .|.     |        *|.     | 21 -0.047 -0.091 21.342 0.438 

       .|.     |        .|.     | 22 0.043 0.055 21.855 0.469 

       *|.     |        *|.     | 23 -0.086 -0.086 23.907 0.409 

       .|.     |        .|.     | 24 0.059 0.028 24.861 0.413 

       .|*     |        .|*     | 25 0.105 0.136 27.942 0.311 

       .|.     |        .|.     | 26 0.015 0.011 28.004 0.358 

       .|.     |        .|.     | 27 -0.002 0.006 28.004 0.411 

       .|.     |        .|.     | 28 -0.053 -0.007 28.804 0.423 

       .|.     |        .|.     | 29 0.064 0.060 29.979 0.415 

       *|.     |        *|.     | 30 -0.115 -0.095 33.754 0.291 

       .|.     |        .|.     | 31 0.006 0.037 33.763 0.335 

       .|.     |        *|.     | 32 -0.035 -0.075 34.116 0.366 

       .|.     |        *|.     | 33 -0.020 -0.071 34.234 0.408 

       .|.     |        .|.     | 34 -0.026 -0.026 34.432 0.447 

       .|.     |        .|.     | 35 0.034 0.013 34.777 0.479 

       .|.     |        .|.     | 36 -0.029 -0.065 35.020 0.515 

 

Since the autocorrelation function (ACF) and the partial autocorrelation function (PACF) decay exponentially to 

zero, either autoregressive model (AR) or moving average (MA) is suspected but the grid search table will be 

properly used to determine the order p or q. The spikes after the cut-offs in Fig. 6 indicates that the 

autoregressive moving average (ARMA) model of order p, q should be tried as well.  

 

This gives the estimated parameters of autoregressive (p) and moving average (q) of the model using Akaike 

Information Criterion (AIC) for both self-exciting threshold autoregressive (SETAR) model and autoregressive 

moving average (ARMA) model.  

 

Out of the AIC values generated from the Table 4, it was found that the most appropriate model in this case 

should be SETAR (2, 2, 1) with the threshold variable yt−2 (p = 2), r = 2 and d = 1 in order to compare the non-

linear SETAR model with a linear model which is the best model for crude oil production in Nigeria. 
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Fig. 6. Graphs of the ACF and PACF respectively, for monthly barrels of crude oil production 

 

Table 4. SETAR AIC values of order p 

 

Threshold variable 1 2 3 4 5 6 7 8 

yt-1 11.51 11.54 11.55 11.54 11.53 11.55 11.53 11.54 

yt-2 11.38 11.40 11.42 11.42 11.43 11.42 11.43 11.44 

yt-3 11.42 11.42 11.42 11.43 11.42 11.43 11.44 11.45 

yt-4 11.41 11.42 11.42 11.42 11.43 11.42 11.43 11.45 

yt-5 11.42 11.42 11.43 11.42 11.43 11.42 11.43 11.45 

yt-6 11.43 11.42 11.43 11.42 11.43 11.43 11.4 11.39 

 

Table 5. ARIMA AIC Values of Order p and q 

 

AR(p)                            

                                      MA(q) 

1 2 3 4 5 6 7 8 

1 11.418 11.420 11.43 11.43 11.43 11.43 11.42 11.43 

2 11.419 11.423 11.418 11.425 11.423 11.422 11.417 11.426 

3 11.426 11.420 11.402 11.429 11.428 11.425 11.420 11.432 

4 11.429 11.425 11.428 11.434 11.431 11.429 11.422 11.434 

5 11.427 11.424 11.427 11.431 11.432 11.427 11.423 11.433 

6 11.426 11.423 11.425 11.429 11.427 11.428 11.420 11.431 

7 11.419 11.416 11.417 11.420 11.422 11.418 11.422 11.423 

8 11.430 11.427 11.431 11.434 11.433 11.431 11.425 11.426 

  

Out of the AIC values generated from the Table 5, the minimum values that is stationary and invertible occur at 

the order of AR(3) and MA(3) i.e. ARMA(3,3); equivalently to ARIMA(3,1,3) which is the best model for 

crude oil production in Nigeria. It implies that p = 3, d = 1 and q = 3. 

 

The self-exciting threshold autoregressive (SETAR) model of SETAR (2,2,1) of order 2,2,1 (p, r, d) is given in 

Table 6.  

 

The results and diagnostics of Tables 6 and 7, respectively affirmed the significance of the SETAR model used 

to fit the crude oil production with (p < 0.000) using the threshold variable with the value of 1476.671 which  

conform with the results of Patrick [30]. 

 

Fig. 7 depicts a plot visualizing the relationship between each threshold and the performance metrics: precision, 

recall, location and queue rate, with the addition of a single dominating vertex to the graph. That is, a single 

vertex that is connected to all other vertices of monthly crude oil production within the sample period. 
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Table 6. SETAR model parameters of crude oil production 
 

Variable Coefficient Std. Error t-Statistic Prob 

Threshold Variable (Linear Part) 

C -446.9093 353.5963 -1.263897 0.2076 

COPROD(-1) 0.842056 0.305558 2.755801 0.0064 

COPROD(-2) 0.043863 0.299128 0.146635 0.8836 

COPROD(-3) -0.076106 0.387383 -0.196462 0.8444 

COPROD(-4) 0.405556 0.304951 1.329904 0.1850 

COPROD(-5) -0.312596 0.309182 -1.011044 0.3131 

COPROD(-6) -0.020557 0.355418 -0.057839 0.9539 

COPROD(-7) 0.806654 0.308709 2.612989 0.0096 

COPROD(-8) -0.412668 0.287937 -1.433188 0.1533 

COPROD(-9) -0.107007 0.287937 -0.376932 0.7066 

COPROD(-10) 0.079383 0.377901 0.210064 0.8338 

COPROD(-11) 0.053224 0.248051 0.214570 0.8303 

Threshold Variables (Nonlinear Part) 

C 457.4781 356.6293 1.282783 0.2010 

COPROD(-1) 0.092698 0.313400 0.295782 0.7677 

COPROD(-2) -0.092379 0.314269 -0.293949 0.7691 

COPROD(-3) 0.091436 0.399157 0.229072 0.8190 

COPROD(-4) -0.330413 0.319729 -1.033416 0.3026 

COPROD(-5) 0.299503 0.324947 0.921698 0.3577 

COPROD(-6) 0.010998 0.368688 0.029829 0.9762 

COPROD(-7) -0.743632 0.324134 -2.294215 0.0228 

COPROD(-8) 0.441474 0.304911 1.447882 0.1491 

COPROD(-9) 0.002817 0.301008 0.009358 0.9925 

COPROD(-10) 0.046529 0.390148 0.119261 0.9052 

COPROD(-11) -0.128726 0.258306 -0.498349 0.6188 

Slopes 

Slope 4.661832 74297.69 6.27E-05 0.9999 

Thresholds 

Threshold 1476.671 5245.681 0.281502 0.7786 
 

Table 7. SETAR model diagnostics of monthly barrel of crude oil production 
 

SETAR Model Statistics 

R
2
 0.950866 

Akaike Information Criterion (AIC) 11.38059 

Schwarz Criterion (SC) 11.10883 

Log-likelihood -1390.812 

Sum of Squared Residual (SSR) 1148936 

P-Value 0.00000 
 

 
 

Fig. 7. Graph of threshold smoothing weight 
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Table 8. SETAR model of the monthly barrels of crude oil production with the order of determination 

 

Variable Coefficient Std. Error z-Statistic Prob. 

Regime 1 

COPRODD(-1) 0.416993 0.356376 1.170093 0.2420 

COPRODD(-2) -1.380890 0.223692 -6.173176 0.0000 

Regime 2 

COPRODD(-1) 0.253228 0.091775 2.759229 0.0058 

COPRODD(-2) -0.161217 0.075517 -2.134836 0.0328 

Common 

AR(1) -0.442841 0.106210 -4.169501 0.0000 

LOG(SIGMA) 4.114600 0.052856 77.84559 0.0000 

Probabilities Parameters 

P1-C -2.879446 0.429554 -6.703331 0.0000 

 

From the Table 8, the AR(1) model can be written as:  

 

ttt  1442841.0114600.4  with p < 0.05. 

 

The autoregressive integrated moving average (ARIMA) model of order 3, 1, 3 (p, d, q) i.e. ARIMA(3,1,3) is 

given in Table 9.  

 

Table 9. ARIMA model of order determination of the monthly barrels of crude oil production 

 

Variable Coefficient Std. Error t-Statistic Prob. 

AR(1) -0.478424 0.262331 -1.823739 0.0694 

AR(2) -0.468634 0.244870 -1.913808 0.0568 

AR(3) 0.328620 0.231780 1.417813 0.1575 

MA(1) 0.434781 0.238146 1.825688 0.0691 

MA(2) 0.391479 0.241679 1.619831 0.1066 

MA(3) -0.573021 0.233765 -2.451270 0.0149 

ARIMA Model Diagnostics 

R-squared 0.601596  AIC 11.36118 

SSR 1270749  SC 11.44668 

Log likelihood -1391.425    

 

From the Table 9, the model can be written as:  

 

321321 573021.0391479.0434781.0328620.0468634.0478424.0   tttttttt 
 

 

Here, adapting [31], model comparison is based on how to establish the better model between the self-exciting 

threshold autoregressive (SETAR) model and autoregressive integrated moving average (ARIMA) via checking 

the Akaike Information Criterion (AIC), Schwarz Criterion (SC), Sum of Square Residual (SSR) and Log-

likelihood.  

 

Table 10. Comparison of SETAR and ARIMA models 

 

Models AIC SC SSR Log-likelihood Remark 

SETAR 11.38059 11.10883 1148936 -1390.812 Better 

ARIMA 11.36118 11.44668 1270749 -1391.425 Good 

 

It can be affirmed from the Table 10 that the SETAR Model outperformed the ARMA model since the model 

SETAR(2,2,1) had the least values of AIC, SC and sum of squares residual except the Log-likelihood which 

favoured the ARIMA(3,1,3). The iterative procedure are used to assess model adequacy by checking the basic 

assumption that t ’s are uncorrelated random shocks (errors) with zero mean and constant variance. 
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Fig. 8. Graph of crude oil production normality test 

 

 From Fig. 8, histogram of normalized residuals (εt/σ
2

ε) is established and compared with the normal distribution 

statistics using the Jarque-Bera test of the probability value of 0.000. For normality of the error terms, histogram 

of normalized residuals established and compare with the normal distribution using Chi-square (χ
2
) goodness of 

fit test. The hypothesis is stated below: 

 

0 :H there isnoserial correlation  

1 :H there is serial correlation
 

 

Table 11. Serial correlation test of the monthly barrels of crude oil production with setar model 

 

Breusch-Godfrey Serial Correlation LM Test 

F-statistic 0.759949     Prob. F(2,211) 0.4690 

Obs*R-squared 1.709279     Prob. Chi-Square(2) 0.4254 

 

The results give the Breusch-Godfrey Test of serial Autocorrelation. Since P-values (0.4690, 0.4254) >

(0.05) , there is no enough evidence to reject the null hypothesis. We therefore conclude at 5% level of 

significance that there is no serial correlation up to order p of the SETAR model. The test results for 

heteroskedasticity are presented on Table 12 using the hypothesis: 

 
2 2

0 : iH     Versus 
2 2

0 : iH  
 

 

Table 12. Test of heteroskedasticity of the monthly barrels crude oil production with SETAR model 

 

Heteroskedasticity Test: ARCH 

F-statistic 1.482140 Prob. F(11,227) 0.1392 

Obs*R-squared 16.01517 Prob. Chi-Square(11) 0.1406 

 

Since the P-values (0.1392 and 0.1406) > (0.05) , it implies that there is no enough evidence to reject the 

null hypothesis and therefore we conclude that the error variances are homoskedastic at 5% level of 

significance. The model evaluation on crude oil production data using SETAR model showed that none of the 

time series analysis assumptions is violated at 5% level of significance. Therefore, we move on to forecast 

future monthly crude oil production values for the next 5 years.  
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Table 13 gives forecast values of the crude oil production using SETAR (2,2,1) and ARIMA(3,1,3) 

 

Table 13. Predicted monthly barrels of crude oil production in Nigeria 

 

  Forecast Crude Oil Production 

Years Months SETAR (2,2,1) ARIMA(3,1,3) 

2022 November 1060.1 1087.48 

 December 1067.16 1061.87 

2023 January 1073.04 1048.05 

 February 1079.04 1079.27 

 March 1084.93 1063.24 

 April 1090.77 1047.98 

 May 1096.53 1072.26 

 June 1102.23 1063.21 

 July 1107.87 1048.08 

 August 1113.44 1066.32 

 September 1118.95 1062.14 

 October 1124.39 1048.13 

 November 1129.78 1061.3 

 December 1135.1 1060.37 

2024 January 1140.36 1047.99 

 February 1145.57 1057.06 

 March 1150.71 1058.14 

 April 1155.8 1047.58 

 May 1160.83 1053.44 

 June 1165.8 1055.63 

 July 1170.72 1046.89 

 August 1175.58 1050.31 

 September 1180.38 1052.97 

 October 1185.13 1045.92 

 November 1189.83 1047.54 

 December 1194.47 1050.25 

2025 January 1199.06 1044.7 

 February 1203.6 1045.05 

 March 1208.09 1047.54 

 April 1212.52 1043.25 

 May 1216.91 1042.74 

 June 1221.25 1044.88 

 July 1225.53 1041.61 

 August 1229.77 1040.57 

 September 1233.96 1042.28 

 October 1238.11 1039.83 

 November 1242.2 1038.47 

 December 1246.25 1039.75 

2026 January 1250.26 1037.92 

 February 1254.21 1036.42 

 March 1258.13 1037.3 

 April 1262 1035.93 

 May 1265.82 1034.4 

 June 1269.61 1034.91 

 July 1273.35 1033.88 

 August 1277.04 1032.38 

 September 1280.7 1032.59 

 October 1284.31 1031.78 

 November 1287.89 1030.36 

 December 1291.42 1030.31 
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  Forecast Crude Oil Production 

Years Months SETAR (2,2,1) ARIMA(3,1,3) 

2027 January 1294.91 1029.65 

 February 1298.36 1028.34 

 March 1301.78 1028.08 

 April 1305.15 1027.5 

 May 1308.49 1026.3 

 June 1311.79 1025.88 

 July 1315.05 1025.35 

 August 1318.27 1024.24 

 September 1321.46 1023.72 

 October 1324.61 1023.2 

 November 1327.73 1022.18 

 December 1330.81 1021.57 

 

It can be affirmed from Table 13 that crude oil production in Nigeria will maintain steady increment from late 

2022 to 2027 with the SETAR model while there seem to be fluctuation from late 2022 to 2027 with the 

ARIMA model. In that regards, SETAR model outperformed the ARIMA model in terms of forecasting with the 

available data. Therefore, there will be a great increment in the Nigeria crude oil production at gradual process 

in the next five years. 

 

  
 

Fig. 9. Forecasting with SETAR model 

 

Fig. 10. Forecasting with ARIMA model 

 

Figs. 9 and 10 affirmed that forecast of SETAR model performs better than ARIMA model for the years of 

forecasting, all other things being equal. Importantly, the authors submit that the forecast results will be of 

immense assets to the government, policymakers and citizenry in general if and only if the government will step 

up in eradicating or minimizing the activities of pipeline vandalism, crude oil theft and corruptions among 

workers and executives in oil sector. 

 

5 Conclusion 
      

The paper was consciously designed to achieve the following objectives: to fitting the univariate time series 

models for crude oil production, modelling the linear and asymmetries of crude oil production behaviour, 

comparing SETAR and ARIMA models and to forecast crude oil production for the next five years. To 

demonstrate the relationship and pattern between the crude oil production, exploratory data analysis (time plots 

and descriptive statistics), stationarity test via Augmented Dickey Fuller (ADF), model specification tools 

(autocorrelation function and partial autocorrelation function), Akaike information criterion (AIC), Schwarz 

criterion (SC), SETAR model, ARIMA model, normality test, serial correlation test, heteroskedasticity and 

forecast evaluation were carried out. The results affirmed that the best model for crude oil production is SETAR 

(2,2,1) based on our disgnostics (AIC, SC, SSR and log-likelihood). There is no co-integration on the series 

since the crude oil production series is stationary at integration order d = 1, from the Augmented Dickey-Fuller 

1,050

1,100

1,150

1,200

1,250

1,300

1,350

IV I II III IV I II III IV I II III IV I II III IV I II III IV

2023 2024 2025 2026 2027

CO_PRODF

0

400

800

1,200

1,600

2,000

2,400

IV I II III IV I II III IV I II III IV I II III IV I II III IV

2023 2024 2025 2026 2027

CO_PRODF ± 2 S.E.



 

 
 

 

Onyeka-Ubaka and Ebiringa; Asian J. Prob. Stat., vol. 22, no. 1, pp. 1-18, 2023; Article no.AJPAS.97967 
 

 

 
17 

 

unit root test for the series. The output of this study will be beneficial to government, policymakers and citizenry 

in general. Setting and attaining the macroeconomic goals of the government requires accurate projection of the 

future behaviour of crude oil output. The benchmarking of crude oil production, which has an impact on price in 

the budgeting process, is one of the primary issues that Nigeria policymakers must deal with. Although 

benchmarking crude oil output and prices have been incorporated as a budgetary tool to protect the government 

from the ambiguities in the volatile international crude oil market knowing fully well that benchmarking could 

have different effects on the economy. 
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