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Abstract

A deterministic mathematical model of typhoid fever incorporating unprotected humans is formulated in
this study and employed to study local and global stability of equilibrium points. The model incorporating
Susceptible, unprotected, Infectious and Recovered humans which are analyzed mathematically and also
result into a system of ordinary differential equations which are used for interpretations and comparison
to the qualitative solutions in studying the spread dynamics of typhoid fever. Jacobian matrix was
considered in the study of local stability of disease free equilibrium point and Castillo-Chavez approach
used to determine global stability of disease free equilibrium point. Lyapunov function was used to study
global stability of endemic equilibrium point. Both equilibrium points (DFE and EE) were found to be
local and globally asymptotically stable. This means that the disease will be dependent on numbers of
unprotected humans and other factors who contributes positively to the transmission dynamics.

Keywords: Basic reproduction number; invariant region,; positivity of solution; mathematical model;
unprotected humans; disease free equilibrium; endemic equilibrium point; global stability.
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1 Introduction

Typhoid fever is an endemic infectious disease that can be classified as enteritis diseases, and it is caused by
presence of bacterium called Salmonella Typhi in the human body [1]. The disease is a common infectious
disease in human beings and it’s transmitted through food and water contaminated with faeces and urine of
an infected person [2,3,4,5]. The disease is endemic in developing countries where it continuously causes
illness and death. This is brought about by unsafe water supply, poor food hygiene and also wanting
environmental sanitation.

Incubation period is 7 to 14 days [2,5]. General symptoms and effects of typhoid are the following;
headache, stomachache, Joint ache, backache, muscle pain, loss of appetite, vomiting, diarrhea, rashes and
fever. According to World Health Organization an estimated 17 million illness cases of typhoid fever are
reported per year worldwide resulting to 0.6 million deaths annually [6,7]. A lot of research has so far been
done the last two decades, different researchers have come up with different mathematical models for
instance[8,9,10] on other diseases among others and [2,7,11,12,3,4,1,5] for typhoid fever . Authors in [11]
model considers four compartments: susceptible, infective, asymptomatic carries and recovered. According
to their model they investigated that infectious humans was responsive to treatment as well changes in levels
of carries. Treatment was also very effective on reduction of typhoid cases when effect of carries was not
much and treatment not effective if effect of carriers was high.

Authors in [12] developed a PSITR model, which consisted of five compartments: vaccinated, Susceptible,
Infective, treated and recovered. There is an extension to the work done by author [6,7]. According to the
author their model does not considers recovered compartment as an important key in the spread dynamics of
typhoid fever and had put into consideration that all the treated humans recovered then with time
loses immunity. They laid their interest in vaccination against typhoid and according to their model
findings typhoid disease spread largely depends on contact rate with the infectious human .Therefore
this lead to their suggestion that this typhoid burden can be reduced by reducing the effective
contact rate with infectious humans. Further author in [3,4] incorporated protection against typhoid using
differential equation, it was a SPIT model which represent susceptible, protected, infected and finally
treated. Their model was based on assumption that once treated no more disease. They found out that with
successful protection, the infection decreases over time; however with low protection infection is high and
will persist in the population.

In reference to [3,4] the author considered global stability of equilibrium points of typhoid fever model with
protection, in their SPIT model they found out the disease transmission can be kept minimal or manageable
when protection is involved. Motivated by this work by the author [3,4], who disregarded the unprotected
humans in the spread dynamics, we considered a SEIR model incorporating the unprotected humans in the
spread dynamics instead of protection basing our argument that the unprotected humans are key in the
spread dynamics and contributes in spreading the infection when they interact with other population
subclasses and also the environment.

2 Description and Model Formulation

We formulated a deterministic model for spread dynamics of typhoid fever that considers human population
at time t. The model framework is divided into four compartments as follows. Susceptible (S), Unprotected

(E), Infective (I) and Recovered (R).The model has the following procedure S - E —>1 >R —> S .

We have used the following parameters in our model.(i) £ is the natural death rate ( ii) & is the disease
induced death rate. (iii) A Human recruitment rate (birth). (iv) J Disease interaction rate. (v) (2

unprotected symptoms showing rate (vi) ¥ Infective recovery rate and finally (vii) O this is the rate at
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which recovered humans loses temporary immunity obtained through treatment and get the disease back
again.

Since we are dealing with a population; all population compartments is positive V¢ >0 in the feasible

region @ = {S, E, I, R} epcC R4+ . It can be shown that all the solutions are bounded in¢g , V¢ >0

A

such that 0 < N <— . This makes the model to be epidemiologically well posed in the region ¢ and is
y7,

justified to be analyzed.

Fig 1. Compartmental diagram for an SEIR model of spread of typhoid fever with unprotected human
compartment

From the above model the transition between compartments can now be expressed into four non-linear
differential equations defined as follows [13]

i)§=A+5R—ﬁSI—ﬂS
dt

iz‘)‘LE:/;s[—QE—ﬂE ()
dt
dI

jii)—=QF —yl —al —ul

’”)dz 7 H

dR
jv)— =yI —SR—uR
W)dt b4 u

Whereby N(¢)=S()+E(t)+1(¢)+ R(2)

The model equations are non- linear and they describe the following. (i) Describes dynamics of
susceptible humans. (ii) Describes dynamics of unprotected humans. (iii) Describes dynamics of
infected humans. (iv) Describes dynamics of recovered humans.

3 Disease free equilibrium point (DFE)

At disease free equilibrium point given by (E; ) =(S"E"I"R") ; there is no disease in the population which

implies absence of infective, unprotected and recovered humans. In our model is obtained by setting
dynamical system of equations in 1 to zero as done by authors in [14]. At this point E=[=R=0, therefore

(E*=0,I" =0andR" = 0) while S# 0 in all the differential equations.
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Using the first equation of system 1, equating it to zero and making S the subject gives

A+SR—BSI—uS =0.

A—uS=0
g=2
u

The disease free equilibrium becomes (S'E'I'R) = (ﬁ 0.0 Oj

4 Basic Reproductive Number

The basic reproductive number ( R ) which is average number of secondary infections caused by one

infectious individual introduced in a completely susceptible population is obtained using next generation
matrix according to [15, 16, 13] as indicated here using the infected compartment E and I, their rate of
change equations and considering the partial derivatives of m and n with respect to E and I leading to square
matrices F and V respectively described as

e~ (as o) =" (i)

Finding inverse of V and multiplying it with F

1 Q
. (Q+u) (Q+u)(a+u+]f)
1
0 -
(a+p+7)
0 0
Fr'=| pBS £SQ

(Q+p) (Q+u)(a+p+y)

Introducing Eigen values and solving the determinant gives two Eigen values as follows A = 0 and

BSQ . . . pSQ .
= . The most dominant eigenvalue is A = which forms
(Q+pﬂa+u+7) (Q+uxa+u+7)
. : . - PAQ
our basic reproductive number. At disease free equilibrium R, =
y@)+pﬂa+p+y)

Theorem 2
Disease free equilibrium is locally asymptotically stable if less than unity and unstable if greater than unity.

Proof
BAQ

y@)+uﬂa+u+y)

Basic reproductive number is RO =
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BAQ

,u(Q+|,t)(a+|,t+7/) <

At Disease Free Equilibrium R < 1 pence

Making £ the subject

w (atp+y)

Q< :
,BA—u(a+|,t+7)

p(a+p+y)

Therefore if Q<
PAN—u ((x +u+ ]/)

, disease free equilibrium will be locally stable.

Lemma 1

1 (0t p+y)
ﬂA—u(a+u+7/)

BAQ

,u(Q+u)(a+u+7)
which means that DFE is locally asymptotically unstable.

If Ry >1 then it follows that >1 . This implies that {3>

5 Endemic Equilibrium Point (EE).

At Endemic equilibrium point (E; ) disease exists. The variables are all nonzero, evaluating the state

variables of equations of the system 2, the endemic equilibrium points of dynamical systems given as
follows according to authors [4,17].

S**:(Q+y)(7+a+,u)
Qp

E**:(;/+a+y)(5+,u){AQﬂ - u{(Q+u)(y+a+p)}

P{(5+u)(Q+u)(y+a+u) |- 0
o (6+u)  AQB —,u{(Q+,u)(7+a+,u)}
B {(+u)(Q+u)(y+a+u)}— x5
{Uﬂﬁﬂ — yu{(Q+u)(y+a+u))
(6+u)(Q+u)(y+atp)j- 20

1

ok

R =

==

6 Global Stability of the Disease Free Equilibrium

This stability is obtained by using Castillo-Chavez et al. (2002) approach, whereby the model is first
rewritten as follows according to many researchers [15,18,4].
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am
dt

=H(M,N)andil—];]=G(M,N) ,G(M,0) =0

Where M = (S ) and N = (E i )with components of M € R denoting the susceptible population and
components of N €& R denotes the unprotected (E) and infected ([ ) E =G (M *,O) Represent

disease free equilibrium.

The following are conditions.) i) ddﬂ =H (M ,0),M *is globally asymptotically stable (GAS) ii)
t
G(M,N)ZAN —G(M,N),G(M,O) = Ofor (M,N) EQ

Where G(M ,N ) A=D,G (W*, O) is M- matrix (the off diagonal elements of 4 are non-negative) and

@ 1is the region where the model lies.

NE —yl —al —ul
At disease free equilibrium (DFE); E=0, I=0 and R=0 while ¢ =R’

Further am
dt

= H(M,O) which is also equal to A + OR — uS .

M*=(S*, 0, 0, 0) is globally stable hence condition 1 satisfied.
For condition 2

- SI —a-A S *

GM,N)= P andA = p .

0 Q -b-1
—g— *®]_
AN- G (M, N) = (-a—A)E+pBS*I1-pSI
QF + (—b - /1) 1-0

{(—a—z)m ﬁ]SJ

QE+(-b-A)1 ©

Replacing a and b, the equation 9 become

( BSI —QF — uE

This also gives G (M, N)
QF —yl —al —ul

Hence G (M ,N ) is satisfied and proofed to be globally asymptotically stable
7 Global Stability of Endemic Equilibrium

Proof: By the use of lyapunov function defined by LaSalle [1976] and also in many researchers
[19,16,14,20], we have determined global stability as follows
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o ok s

ek gk ok sk ek ek S** Sk Pk E sk ek I sk ok R
LIS ,E ,I ,R |=5-S -SIn(—)+| E-E —E In(— |+I-1 -1 In(—)+R—R — R In(—
( )=( ) [ (- ] () ()
computing the derivative of L along the solutions of the system is directly:
dL (s-s \dS (E-E"\dE (I-I"\dl (R—R" \dR
—= —+ —+ —+ — (10)
dt s dt E dt 1 dt R dt

Substituting the equations of system 1 in equation 10, the equation becomes

AL 525\ sr—(pr+u)s |+ | E2E- | psi—(+u)E |+
(=) (B Jpr-t@ene]

dr | s
(11)

H]_I] jQE—(;/+a+y)l}+KR_RR jy[—(éﬂ;)R}
Expanding equation 11, it produces
dL S** S** . k%
—=A+§R—(ﬂ1+y)S—A?—§R?+(ﬂI+/¢)S +/3Sl—(Q+,u)E—ﬂS17+

dt
(Q+/¢)E**+QE—(7/+a+y)1—QE17+(7/+a+y)1**+7/1—(§+y)R—7/1%+(5+y)R**

Further simplification result to

dL [A+5R+(ﬂl+,u)S**+,BSI+(Q+;¢)E**+QE+(;/+a+,u)I”+;/I+(§+y)R**]

S+AS+§RSS+(Q+,u)E+,BSIb;E+(7/+a+,u)I+QEII+(§+/¢)R+7IR}

o)

From equation it’s clear that ; d—L = A— B Where A are the positive terms and B are the negative ones,
such that;

A=AN+SR+(BI+u)S" +BSI+(Q+u)E" +QE+(y+a+u)l +yl+(5+u)R”

ok ok ok

B:(,HI+,u)S+AS?+5R%+(Q+,u)E+,[)’SI%+(7+0{+,u)I+QE[7+(5+/1)R+)/I?

IfA<B thend—LSO
dt

dt

dL _ 0onlyif S=S",E=E",I=1",R=R"

The largest invariant set in (S. E. I, R) e p: di:o} is a singleton Ez* ,where Ez* is the endemic
L E L =

equilibrium. Therefore, the endemic equilibrium is globally asymptotically stable in the invariant region ¢ if

A<B.
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8 Results

In this research we modeled unprotected human compartment in the spread dynamics of typhoid fever in
human. Global stability of both equilibrium point (Disease Free Equilibrium point and Endemic Equilibrium

point) was carried out. From our findings of stability analysis of equilibrium points is stable whenRO <1

and unstable when R, > 1. This shows that unprotected humans have great impact in the spread dynamics

and need to be considered amongst other protective factors if typhoid fever is to be effectively eradicated
from human population. Our model clearly portrays direct variation between the unprotected and infected
compartment.

w1 (a+p+y)

From our finding if Q<
ﬂA—u(a+p+7/)

, there disease equilibrium will be stable and typhoid disease

1 (a+p+y)
PA—pu(o+p+y)
on the unprotected humans and other prevailing circumstances.

will not have a hand in the population. However if Q> sthen disease will be dependent

Numerical results of this mode is in form of graphs. Some parameters are preset while others are obtained
from other authors for example [11]. A Matlab software (odesolve) was employed to run the test and graphs
below are obtained as shown.
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For Fig 1 parameters A = 750,60 = 0.125, £ =0.0125, 1 =0.15,02=9.25,7 = 0.625, =1.503
S™ =200,E" =25,1" =130,R™ =70

For Fig 2 parameters A =0.75,56 =0.0125,4=0.0125, £ =1.5,Q=0.000295,y = 0.0625,a =1.503
S™=200,E" =100,7" =130,R™ =70



Karunditu et al.; JAMCS, 32(3): 1-11, 2019; Article no.JAMCS.47679

S E, lI,and R

S, E. I, and R

= —--

i i i i
0 005 01 015 02 025 03 03 04 045 05 0 005 01 015 02 02 03 03% 04 045 05
t(Years) t(Years)

For Fig. 3 parameters A =0.75,06 =0.125,4=0.125,4=0.15,2=0.925,y = 0.625, =0.1503
S =200,E" =10, =100,R™ =70

For Fig. 4 A=0.075,6=0.01254=125u=15Q0=02957=625a=0.1503
S§™ =200,E" =100,/" =100,R" =70

The parameters vary within a range of 0 to 1.5.The initial conditions of endemic equilibrium of the
unprotected differ so as to realize the effect of the unprotected in the spread dynamics as shown in. Fig. 1
and Fig. 3 and also in Fig. 2 and Fig. 4.Generally increase or decrease in the unprotected compartment
causes a change in the direct curve.

9 Discussion

In this research we modeled unprotected human compartment in the spread dynamics of typhoid fever in
human. Global stability of both equilibrium point (Disease Free Equilibrium point and Endemic Equilibrium

point) was carried out. From our findings of stability analysis of equilibrium points is stable when R, <1

and unstable when Ro > 1. This shows that unprotected humans have great impact in the spread dynamics

and need to be considered amongst other protective factors if typhoid fever is to be effectively eradicated
from human population. Our model clearly portrays direct variation between the unprotected and infected
compartment.

From our finding if o #(a+p+y) , there disease equilibrium will be stable and typhoid disease will
BA—u(a+p+y)
not have a hand in the population. However if o #*(a+pn+y) then disease will be dependent on the
BA—p(a+p+y)
unprotected humans and other prevailing circumstances.
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10 Conclusion and Recommendation

We conclude that there is direct variation relationship between the unprotected and infectious compartment,
because increasing the unprotected with 10% cause increase in infective; therefore the unprotected humans
contribute significantly to the spread dynamics of typhoid fever disease. Therefore we recommend policy
makers in health sectors to incorporate protection measures to avoid the disease prevailing in the population.
Deaths due to typhoid will be low if the unprotected group is managed properly by providing periodic oral
protection doses or vaccines at birth.
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