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Abstract

Cholera, a water-borne disease characterized by intense watery diarrhea, affects people in the
regions with poor hygiene and untreated drinking water. This disease remains a menace to public
health globally and it indicates inequity and lack of community development. In this research,
SIQR-B mathematical model based on a system of ordinary differential equations is formulated
to study the dynamics of cholera transmission with health education campaign and treatment
through quarantine as controls against epidemic in Kenya. The effective basic reproduction
number is computed using the next generation matrix method. The equilibrium points of the
model are determined and their stability is analysed. Results of stability analysis show that
the disease free equilibrium is both locally and globally asymptotically stable R0 < 1 while
the endemic equilibrium is both locally and globally asymptotically stable R0 > 1. Numerical
simulation carried out using MATLAB software shows that when health education campaign
is efficient, the number of cholera infected individuals decreases faster, implying that health
education campaign is vital in controlling the spread of cholera disease.
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1 Introduction

Cholera infection is caused by ingestion of water and food contaminated with the bacterium V ibrio
cholerae. Its dynamics depend on the interaction between human, the bacterium V ibrio cholerae
and the environment, hence the disease is transmitted through human-to-human and environment-
to-human, Nelson [1].

Cholera cases mostly are experienced in Sub-Saharan Africa, Asia and some parts of South America
where accessibility of clean water and basic sanitation infrastructure cannot be guaranteed. According
to WHO [2], in 2016, 132,121 cholera cases with 2420 associated deaths were reported to WHO by
38 countries. Whilst in Kenya, from 1st January to 29th November 2017, 596 cholera cases with 76
associated deaths were reported to WHO by the Ministry of Health.

Mathematical models are very important tools for understanding the dynamics of infectious disea-
ses, Anderson [3]. Modelling of cholera with simple deterministic model was started by Capasso [4],
this was to research 1973 outbreak of cholera in the Mediterranean. Since then, several mathematical
models have been developed and analyzed: e.g [5, 6, 7, 8, 9, 10].

Accoding to CDC [11], cholera is a quarantinable disease. However, to our knowledge, there are
few models of cholera with quarantine. Nirwani [12] proposed SIQR model for cholera transmission
which was analysed and found that disease free equilibrium and endemic equilibrium are locally
asymptotically stable if a quarantine reproduction number Rq < 1 and Rq > 1 respectively. In this
study, we extend the work of Nirwani [12] by investigating the effects of education campaign and
treatment through quarantine in cholera transmission.

2 Description and Formulation of the Model

We formulate a mathematical model with V ibrio cholerae population NB(t) which is denoted
B(t) and human population NH(t). Human population is divided into four compartments; S(t)-
Susceptible, I(t)- Infected, Q(t)- Quarantined and R(t)- Recovered with natural death rate µ in
all compartments and δ the rate of death from cholera infection, in the infected and quarantined
compartments. The model assumed that human population is recruited to susceptible compartment
at the rate Λ and become infected with cholera through human-to-human transmission at the rate
βhIS or through environment-to-human transmission at the rate βeBS

κ+B
where βh and βe are the rate

of human-to-human interaction and the rate of Vibrios ingetion from the environment respectively,
ωβh(0 < ω < 1) is the reduced rate of human-to-human interaction due to education campaign and
treatment and ωβe(0 < ω < 1) is the reduced rate of Vibrios ingetion from the environment due
to education campaign and treatment, where ω is a measure of education campaign and treatment
efficacy, κ is the concentration of the bacterium V ibrio cholerae that bear 50% chance of contracting
cholera. Furthermore, the rate of quarantine of infected individuals is ε and quarantined individual
will recover through treatment at η rate. Finally, the rate of contribution of infected human to
V ibrio cholerae concentration in the environment is α and on the other hand, decay rate of V ibrio
cholerae from the environment is σ.

Based on the above description we have the following assumptions and flow chart;
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Assumptions:

i. Human birth and natural death takes place at different rates.

ii. Quarantined individuals do not shed V ibrio cholerae into the aquatic environment.

iii. There is lifetime immunity on recovery.

iv. All identified individuals with cholera infection are quarantined.

Fig. 1. Flow chart

From the flow chart, Figure 1, we obtain the following differential equations of the model with
S(0) > 0, I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0 and B(0) ≥ 0, non-negative initial conditions.

dS

dt
= Λ− (1− ω)

[
βeB

κ+B
+ βhI

]
S − µS

dI

dt
= (1− ω)

[
βeB

κ+B
+ βhI

]
S − (ε+ δ + µ)I

dQ

dt
= εI − (η + δ + µ)Q

dR

dt
= ηQ− µR

dB

dt
= (1− ω)αI − σB

(2.1)

3 Model Analysis

Since the system (2.1) describes human population and V ibrio cholerae population, all the solutions
of state variable with non-negative initial conditions are non-negative ∀ t > 0 and they are bounded
in the feasible region Γ = {(S, I,Q,R) ∈ R4

+;B ∈ R+;S > 0; I,Q,R,B ≥ 0;NH ≤ Λ
µ
;NB ≤

Λ(1−ω)α
µσ

}

Since the variable R(t) does not appear in the first three and last equations of the model (2.1), it
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suffices to consider the following model:

dS

dt
= Λ− (1− ω)

[
βeB

κ+B
+ βhI

]
S − µS

dI

dt
= (1− ω)

[
βeB

κ+B
+ βhI

]
S − (ε+ δ + µ)I

dQ

dt
= εI − (η + δ + µ)Q

dB

dt
= (1− ω)αI − σB

(3.1)

3.1 Disease-free Equilibrium(DFE) Point

The disease free equilibrium point denoted by E0 is the steady state solution of the model in the
absence of disease. To obtain the DFE of the system (3.1), we equate the right hand side of the
system (3.1) to zero and let S = S0 I = I0 = 0, Q = Q0 = 0, and B = B0 = 0. By doing so, we
remain with one equation;

Λ− µS0 = 0

From which we have E0 = (S0, 0, 0, 0) = (Λ
µ
, 0, 0, 0)

3.2 The Basic Reproduction Number (R0)

R0 refers to the number of secondary infections generated by a single infective individual in
a completely susceptible population. We use next generation matrix, the approach by [13] to
determine R0. Using this method the basic reproduction number is given by ρ(F0V

−1
0 ) ( the

dominant eigenvalue of F0V
−1
0 ) where F0 is the Jacobian of fi at E

0, where fi is the rate at which
new infections appear in compartment i and V0 is the Jacobian of vi at E

0, where vi is the rate of
transfer of individuals into and out of compartment i. The infected population is captured in the
following system of equations.

dI

dt
= (1− ω)

[
βeB

κ+B
+ βhI

]
S − (ε+ δ + µ)I

dQ

dt
= εI − (η + δ + µ)Q

dB

dt
= (1− ω)αI − σB

(3.2)

From system (3.2), we have

fi(I,Q,B) =

 (1− ω)(βeBS
κ+B

+ βhIS)

0
0

 and vi(I,Q,B) =


(ε+ δ + µ)I

(η + δ + µ)Q− εI

σB − (1− ω)αI


It follows that

F0 =

 (1− ω)βhΛ
µ

0 (1− ω)βeΛ
µκ

0 0 0
0 0 0

, V0 =

 (ε+ δ + µ) 0 0
−ε (η + δ + µ) 0

−(1− ω)α 0 σ
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and

F0V
−1
0 =


(1−ω)βhΛ
µ(ε+δ+µ)

+ (1−ω)2αβeΛ
µκ(ε+δ+µ)σ

0 (1−ω)βeΛ
σµκ

0 0 0

0 0 0


Thus

R0 = ρ(F0V
−1
0 ) =

(1− ω)βhΛ

µ(ε+ δ + µ)
+

(1− ω)2αβeΛ

µκ(ε+ δ + µ)σ
(3.3)

3.3 Endemic Equilibrium Point

This refers to a spreading point of disease in the population. Let E∗ = (S∗, I∗, Q∗, B∗) be the
endemic equilibrium point, where S∗, I∗, Q∗, B∗ > 0.

Theorem 1. A unique endemic equilibrium point of system (3.1) exists if R0 > 1.

Proof. Equating the right hand side of the system (3.1) to zero and replacing (S,I,Q,B) with
(S∗, I∗, Q∗, B∗), the third equation and fourth equation of the system gives

Q∗ =
εI∗

η + δ + µ
(3.4)

and

B∗ =
(1− ω)αI∗

σ
(3.5)

respectively, and adding first and second equations of the same system, we have

S∗ =
Λ− (ε+ δ + µ)I∗

µ
(3.6)

In view of equation (3.5) and (3.6), the second equation of system (3.1) at endemic equilibrium
becomes;

(1− ω)

[
βe(1− ω)α

σκ+ (1− ω)αI∗
+ βh

] [
Λ− (ε+ δ + µ)I∗

µ

]
I∗ − (ε+ δ + µ)I∗ = 0 (3.7)

Upon expansion we have I∗ = 0 or

AI∗2 +BI∗ + C = 0 (3.8)

Where

A = −(1− ω)2(ε+ δ + µ)αβh

B = (1− ω)2Λαβh − ((1− ω)2αβe + (1− ω)σβhκ)(ε+ δ + µ)− (1− ω)(ε+ δ + µ)αµ
C = (1− ω)2Λαβe + (1− ω)Λσβhκ− (ε+ δ + µ)σκµ

There exists endemic equilibrium of the system if equation (3.8) has real positive roots. Using
Descartes’ rule of signs as in [14], we determine if there is real positive roots. Since the sign of A
is negative and that of C is positive when R0 > 1, there is atleast one real positive root hence the
endemic equilibrium exists.
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3.4 Local Stability of the Disease Free Equilibrium Point

Now, we investigate local satability of DFE of system (3.1)

Theorem 2. Disease Free Equilibrium Point E0 of the system (3.1) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.

Proof. Evaluating the jacobian matrix (J) system (3.1) at E0, we have

J(E0) =


−µ −(1−ω)βhΛ

µ
0 −(1−ω)Λβe

µκ

0 (1−ω)βhΛ
µ

− (ε+ δ + µ) 0 (1−ω)Λβe

µκ

0 ε −(η + δ + µ) 0
0 (1− ω)α 0 −σ


Clearly −µ and −(η + δ + µ) are the eigenvalues , the remaining eigenvalues are given by reducing
matrix (J(E0)) into 2× 2 matrix as shown below;

D(E0) =

[
(1−ω)βhΛ

µ
− (ε+ δ + µ) (1−ω)Λβe

µκ

(1− ω)α −σ

]
The characteristics equation of matrix D(E0) is given by

λ2 +Bλ+ C = 0 (3.9)

Where

B = [(ε+ δ + µ) + σ − (1−ω)βhΛ
µ

] and C = −[σ(1−ω)βhΛ
µ

− σ(ε+ δ + µ) + (1−ω)2Λαβe

µκ
]

By use of Routh-Hurwitz criterion, all the eigenvalues of D(E0) (roots of equation (3.9)) have
negative real part when B > 0 , C > 0 and BC > 0.

Clearly, B > 0 , C > 0 and BC > 0 are satisfied when R0 < 1. Hence disease-fee equilibrium point
E0 is locally asymptotically stable.

3.5 Global Stability of the Disease Free Equilibrium Point

Considering the approach by [15] Castillo-Chavez theorem, the system (3.1) can be expressed as ;

dX
dt

= F(X,Z)
dZ
dt

= G(X,Z),G(X, 0) = 0

Where X ∈ R = (S), the number of non-infected individuals and Z ∈ R3 = (I,Q,B), the infected
compartments.

The following conditions are for global stability of disease-free equilibrium point E0 = (S0, 0, 0, 0) =
(Λ
µ
, 0, 0, 0) = (X0, 0), for X0 = Λ

µ
:

1. dX
dt

= F(X, 0), X0 is globally asymptotically stable.

2. G(X,Z) = WZ − Ĝ(X,Z),Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω

where W = DZG(X0, 0) is an M-matrix ( in that the off diagonal elements of W are positive) and
Γ is the region where the equations of the model makes epidemiological sense. If conditions 1 and
2 are satisfied by system (3.1), the following theorem holds.

Theorem 3. Provided that R0 < 1 and the conditions 1 and 2 are satisfied, the disease free
equilibrium point E0 = (X0, 0) of the system (3.1) is globally asymptotically stable.
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Proof. Since X=(S) and Z=(I,Q,B), dX
dt

= F(X, 0) (condition 1) can be written as;

dS
dt

= Λ− µS

which gives

Λ− µS(t) = (Λ− µS(0))e−µt

⇒ S(t) = Λ−(Λ−µS(0))e−µt

µ

⇒ S(t) → Λ
µ

as t → ∞

hence E0 is globally asymptotically stable.

In view of G(X,Z) = WZ − Ĝ(X,Z) (condition 2), we have

Ĝ(X,Z) = WZ −G(X,Z)

G(X,Z)=

 (1− ω)
[

βeB
κ+B

+ βhI
]
S − (ε+ δ + µ)I

εI − (η + δ + µ)Q
(1− ω)αI − σB


W = DZG(X0, 0) =

 (1− ω)βhS
0 − (ε+ δ + µ) 0 (1−ω)βeS

0

κ

ε −(η + δ + µ) 0
(1− ω)α 0 −σ


WZ=

 (1− ω)βhIS
0 − (ε+ δ + µ)I + (1−ω)βeBS0

κ

εI − (η + δ + µ)Q
(1− ω)αI − σB


Therefore

Ĝ(X,Z) =

 (1− ω)βh(S
0 − S) + (1−ω)βeB(S0B+κ(S0−S))

κ(κ+B)

0
0


Since all off diagonal entries of matrix W are positive, it implies that W is an M-matrix.

Also since 0 < ω < 1 and S0 ≥ S ∀ (X,Z) ∈ Γ, Ĝ(X,Z) ≥ 0.

Therefore, condition 2 can be expressed as

dZ
dt

≤ WZ

Since So = Λ
µ
, the characteristic equation of W is given by

{−(η + δ + µ)− λ}(λ2 +Bλ+ C) = 0

or λ = −(η + δ + µ) and

λ2 +Bλ+ C = 0 (3.10)

Where

B = [(ε+ δ + µ) + σ − (1−ω)βhΛ
µ

] and C = −[σ(1−ω)βhΛ
µ

− σ(ε+ δ + µ) + (1−ω)2Λαβe

µκ
]

Clearly equation (3.10) is the same as equation (3.9). Using Routh-Hurwitz criterion as in section
(3.4), B > 0, C > 0 and BC > 0 are satisfied when R0 < 1.Since the conditions 1 and 2 have been
met and R0 < 1, the proof is complete.
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3.6 Local Stability of the Endemic Equilibrium Point

Theorem 4. The endemic equilibrium point (E∗) of system (3.1) is locally asymptotically stable
when R0 > 1

Proof. The jacobian matrix (J) evaluated at the endemic equilibrium point is given by

J(E∗) =


−X − µ −Y 0 −Z

X Y − L 0 Z
0 ε −M 0
0 N 0 −σ


Where

X = (1− ω)
[

βeB
∗

κ+B∗ + βhI
∗
]

Y = (1− ω)βhS
∗

Z = (1−ω)βeκS
∗

(κ+B∗)2

L = (ε+ δ + µ)
M = (η + δ + µ) and
N = (1− ω)α

The characteristic equation is given by

λ3 + a1λ
2 + a2λ+ a3 = 0 (3.11)

where

a1 = [L+X − Y + µ+ σ] = −Y + L+ σ +X + µ
a2 = [Lµ+ LX + µσ + Lσ +Xσ − Y σ − Y µ− ZN ]
a3 = XYN −XZN + LXσ + Lµσ − Y µσ − ZNµ

Applying Routh Hurwitz criterion, all roots of equation (3.11) are negative when a1 > 0, a2 > 0 ,
a3 > 0 and a1a2 − a3 > 0.

To show that a1 > 0, a2 > 0 , a3 > 0 and a1a2 − a3 > 0, we substitute equation (3.5) in the second
equation of system (3.1) at endemic equilibrium point to get

(1− ω)
[

βe(1−ω)α
σκ+(1−ω)αI∗ + βh

]
S∗ − (ε+ δ + µ) = 0 or

βe(1− ω)2αS∗

σκ+ (1− ω)αI∗
− L = −Y (3.12)

Substituting equation (3.5) and (3.12) in a1, a2 and a3 appropriately, we obtain

a1 = βe(1−ω)2αS∗

σκ+(1−ω)αI∗ + σ +X + µ > 0

a2 = LX + µσ +Xσ + βe(1−ω)2αµS∗

σκ+(1−ω)αI∗ + βe(1−ω)2ασS∗B∗

σ(κ+B∗)2 > 0

a3 = XYN + βe(1−ω)2αµσS∗B∗

σ(κ+B∗)2 + LXσ −XNZ > 0 and
a1a2 − a3 > 0

Since a1 > 0, a2 > 0 , a3 > 0 and a1a2 − a3 > 0, the endemic equilibrium is locally asymptotically
stable.

3.7 Global Stability of the Endemic Equilibrium Point

Theorem 5. The Endemic Equilibrium Point E∗ of the system (3.1) is globally asymptotically
stable if R0 > 1.

Proof. To prove global stability of E∗ , we apply LaSalle [16] approach by constructing the following
Lyapunov function
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V (S, I,Q,B) = (S − S∗ln S
S∗ ) + (I − I∗ln I

I∗ ) + (Q−Q∗ln Q
Q∗ ) + (B −B∗ln B

B∗ )

Differentiating V , we get

dV
dt

= (1− S∗

S
) dS
dt

+ (1− I∗

I
) dI
dt

+ (1− Q∗

Q
) dQ

dt
+ (1− B∗

B
) dB

dt

Substituting dS
dt

, dI
dt

, dQ
dt

and dB
dt

from system (3.1), we obtain

dV
dt

= (1− S∗

S
){Λ− (1− ω)

[
βeB
κ+B

+ βhI
]
S − µS}+ (1− I∗

I
){(1− ω)

[
βeB
κ+B

+ βhI
]
S − (ε+ δ + µ)I}

+(1− Q∗

Q
){εI − (η + δ + µ)Q}+ (1− B∗

B
){(1− ω)αI − σB}

(3.13)
Rearranging system (3.1) at endemic equilibrium point, we have

Λ = (1− ω)

[
βeB

∗

κ+B∗ + βhI
∗
]
S + µS∗

(ε+ δ + µ) =
(1− ω)

I∗

[
βeB

∗

κ+B∗ + βhI
∗
]
S∗

(η + δ + µ) =
εI∗

Q∗

σ =
(1− ω)αI∗

B∗

(3.14)

Substituting (3.14) in (3.13), we get

dV
dt

= (1− S∗

S
)
[
(1− ω){

[
βeSB∗

κ+B∗ + βhSI
∗
]
−

[
βeSB
κ+B

+ βhSI
]
}+ µ(S∗ − S)

]
+ (1− I∗

I
)(1− ω)

{
[
βeSB
κ+B

+ βhSI
]
− I

I∗

[
βeS

∗B∗

κ+B∗ + βhS
∗I∗

]
}+ (1− Q∗

Q
)ε(I − QI∗

Q∗ ) + (1− B∗

B
)(1− ω)α

[
I − BI∗

B∗

]
When S = S∗, I = I∗,Q = Q∗ and B = B∗, we obtain dV

dt
= 0. Hence by LaSalle’s invariance

principle, every solution of the system (3.1) with initial conditions in Γ = {(S, I,Q,R) ∈ R4
+;B ∈

R+;S > 0; I,Q,R,B ≥ 0;NH ≤ Λ
µ
;NB ≤ Λ(1−ω)α

µσ
} tends to the endemic equilibrium point E∗. It

follows that E∗ is globally asymptotically stable.

4 Numerical Simulation

Using MATLAB, we simulated the system (3.1) to investigate the role of education campaign and
treatment through quarantine. This is achieved by using parameter values in Table 1. Results of
the simulation are presented in the figures below.

Figures 2(a), 2(b) and 2(c) show how education campaign and treatment can reduce the infected
individuals, quarantined individuals and V ibrio cholerae bacterium respectively. As the education
campaign and treatment efficacy increases, the infected individuals, quarantined individuals and
V ibrio cholerae bacterium reduce. This implies that people need to be educated about cholera
infection and how it can be prevented especially those in slums, refugee camps and institutions as
well as treating the quarantined individuals. Education campaign should target both environment-
to-human and human-to-human transmissions. This can be achieved through posters, radio, social
media, television and word-of-mouth communication.
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(a) (b)

(c)

Fig. 2. The impact of education campaign and treatment on (a) infected individuals,
(b) quarantined individuals and (c) Vibrio cholerae

Table 1: Parameter values of the model

Parameters Values Reference

Λ 9.6274× 10−5/day [17]

µ 2.537× 10−5/day [17]

βe 0.75/day Estimate

βh 0.0005/day Estimate

κ 106 cells/ml [5]

η 0.3/day Estimate

δ 4.0× 10−1/day [18]

α 10cells/ml-day [8]

σ 0.23/day [18]

ε 0.3/day Estimate

ω 0 < ω < 1 Assumed

5 Discussion and Conclusion

In this paper, we formulated a mathematical model of cholera transmission with education campaign
and treatment through quarantine. We studied the stability of the disease free and endemic
equilibrium. The results of the disease free equilibrium showed that the model is both locally
and globally asymptotically stable when R0 < 1. This implies that when R0 is below unity, the
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spread of cholera disease reduces. Next we studied the endemic equilibrium which we found to be
both locally and globally asymptotically stable when R0 > 1. Numerical simulation indicates that
when effective health education campaign and treatment are in place as control strategies of cholera,
they lead to a faster reduction of the disease and eventually the disease decreases to zero. While
ineffective health education campaign and treatment leads to increase of infectious individuals and
V ibrio cholerae in the population, which is unfavourable for the elimination of cholera. Since we
have not carried out persistence analysis of the model, we hereby recommend it to be explored for
further studies of SIQR-B model of cholera.
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