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This article proposes a two-layer collaborative stochastic optimizationmodel of

a hybrid combined heat and power system to determine the optimal capacities

and operational strategies of components for minimizing the total cost, which

includes investment, operation, and CO2 emission costs. Hybrid optimization

algorithms, in genetic algorithm and particle swarm optimization, are employed

to solve the two-layer optimization, respectively. Typical scenarios with

probability distributions are generated in Monte Carlo simulations and a

clustering approach, which demonstrate the influences of the uncertainties

of renewable energies and electrical and thermal loads. The simulation results

validate the effectiveness of the proposed optimization model. When

considering the CO2 emission cost, the renewable energy penetration

resulting from the larger capacities of renewable power technologies

reaches 30%, which is 11.5% higher than the optimal case without

considering the emission cost. This optimal integration increases the fossil

energy utilization efficiency by 2.5% and the revenue from excess electricity

sales by 2.7 times. The levelized capital cost, however, increases by 33.0%, and

the utility grid integration and the net interaction also increase by 1.1% and

21.5%, respectively.
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1 Introduction

A hybrid combined heat and power (CHP) system utilizes

advanced technologies for transmission, storage, and consumption

of energy, as well as the conversion of renewable energies, natural

gas, and other resources to multiple energy forms, such as cooling,

heating, and electricity, for consumers (Wang Y. et al., 2019). In

this regard, the comprehensive integration of various technologies

is among the important development orientations for future

energy systems that aim to improve the overall energy

utilization efficiency, promote cost effectiveness, increase

renewable energy penetration, resolve environmental problems,

and improve energy sustainability (Fonseca et al., 2021). However,

a variety of energy streams, units, and uncertainties complicate the

design andmanagement of a hybrid CHP system (Wu et al., 2020).

The design of a hybrid CHP system aims to select suitable

components with ideal capacities to achieve optimum

performance from different types of units. The undersized or

oversized capacity imposes the system into low performance in

economics, energy, or reliability. The utilization of optimization

algorithms with computer-aided design (e.g., iterative methods

and heuristic algorithms) is widely recognized as a common and

effective method to find a satisfactory solution by comparing

various alternatives as well as improving performances (Gao

et al., 2019). For example, the hybrid micro-grid systems of

photovoltaics (PV), wind turbine (WT), battery, and diesel

generators were optimized using multi-objective particle swarm

optimization (Azaza and Wallin, 2017) and grasshopper

optimization algorithm (Bukar et al., 2019); the capacities of

PV, WT, CHP, and gas boiler in power/heat grids were

determined in NSGA-II (Wang Y. et al., 2019); different

components of hybrid renewable energy systems in India were

integrated by employing a numerical iterative algorithm (Kanase-

Patil et al., 2011). In these studies, the optimal capacities were

strongly dependent on energy-management strategies of

components, in which these operational rules were usually

predefined. If the operational management is together

optimized with the capacity optimization, more benefits will be

achieved. Consequently, this article integrates the optimal energy

management of components into design optimization.

The optimal energy management in this article is specified to

control the operational states of components and adjust their

respective instantaneous outputs to satisfy the energy demands

of users and achieve certain objectives, not considering demand

side management and demand side response. Typically, the power

and heat generation units are instantaneously adjusted with the

variations of loads and renewable resources, and the coordinated

dispatch between components (Wang M. et al., 2020), power and

heat systems (Wang Y. et al., 2019), energy hubs (Mohammadi

et al., 2018) and electricity, heat, and gas networks (He et al., 2020)

are optimized. However, most studies on operational optimization

of hybrid energy systems focused on day-ahead or online energy

dispatch and did not consider the design of components. The

integration between system design and instantaneous operational

management results in difficulties in modeling and solution.

To comprehensively optimize system design and operation,

some methodologies were proposed and developed. A mixed

integer nonlinear programming model was modeled to

determine the optimal combination, capacity, and operation

strategies for energy technologies (Zhu et al., 2020). The

configuration, size, and operation of urban energy systems are

rigorously optimized from both time-dependent demand and

supply perspectives considering component sizes and part load

characteristics (Zheng et al., 2017). But the detailed and

complicated models consume more computation cost and time.

A typical alternative method is to characterize the operation

management in the simplified decision variables. For example,

the hybrid operation of the absorption chiller and electric chiller

was represented in a fixed (Wang J. J. et al., 2010) or variable (Liu

et al., 2012) ratio, the hourly operation of the heat pump was

simplified to change with the electricity price (Ren et al., 2019), and

the hourly load ratio of electricity and heat was optimized to denote

the energy management (Li et al., 2017). These studies presented

various integrated designs with operational management. However,

theymainly concentrate on deterministic optimization regardless of

multiple uncertainties during the hybrid CHP operation. If the

uncertainties are not adequately included in the optimization, the

actual operational performance may deviate from the optimal one.

There are various uncertainties in the optimization, such as

renewable energies, user loads, prices of fuel or electricity from the

public grid, and component technical parameters (Mavromatidis

et al., 2018). The stochastic optimization of design and operation for

energy storage in hybrid renewable energy systems demonstrated

that various uncertainty methods lead to different results (Yu et al.,

2019). Uncertainty modeling is critical to capture the actual

scenarios (Zakaria et al., 2020). The existing techniques include

probabilistic approaches, possibilistic approaches, interval-based

analysis, robust optimization, and information gap decision

theory (Aien et al., 2016). Numerous studies have revealed how

uncertainties affect energy plants. Uncertainties in any energy

system can be represented in the probabilistic or possibilistic

method. The probability method is typically implemented to

express the renewable energy uncertainties, such as the Weibull

and Rayleigh distributions of wind speed and the normal and beta

distributions of solar radiation (Mavromatidis et al., 2018) and the

sampling in Monte Carlo (Zhou et al., 2013). The robust

optimization for uncertainties was considered to strengthen the

robust performance of the CHP system under demand response

(Majidi et al., 2019). The information gap decision theory was

employed to model the uncertainty of energy sources in the

integrated electricity, gas, and district heating networks without a

probability distribution function (Mirzaei et al., 2020). A hybrid

stochastic-interval optimization model was developed to realize the

risk-constrained self-scheduling of a hybrid energy system (Khaloie

et al., 2021). A decentralized robust–stochastic security-constrained

unit commitment model was constructed for the collaborative
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operation of networked energy hubs and the renewable power

system (Oskouei et al., 2021). The approaches for characterizing

each uncertainty category differ; however, among these, a simple

technique that is commonly employed is the probability density

functionmethod (Mavromatidis et al., 2018). Furthermore, handling

the uncertainties on both supply and demand sides is a challenge.

Wang et al. (2021) developed modified stochastic programming to

capture both demand and supply sides’ scenarios and constructed a

co-optimization to optimize both sides of the integrated energy

system. The accurate assessments of both sides are the fundamental

works in the system design (Canziani et al., 2021). This article

introduces the uncertaintymodel of both sides of renewable energies

and user loads in a scenario-based method with probability

distributions to the collaborative optimization of design and

operation of the hybrid CHP system, which is novel in

comparison to the previous studies on integrated optimization.

As mentioned above, most of those studies concentrate on

deterministic optimization and optimizing the capacities of

components in the predefined operational strategies or in the

simplified parameters to represent operation strategies in the

system optimization considering operational strategies of hybrid

CHP systems. However, the instantaneous operational

management considering the uncertainties of supply and

demand is significant to further improve system performances.

Departing from previous studies, this study aims to

comprehensively and collaboratively optimize the capacities and

instantaneous energy-management strategies of components in

the hybrid CHP system involving electricity, heat, and gas

considering the uncertainties of both supply and demand. The

contributions of this work are summarized as follows.

⁃ A two-layer collaborative optimization model is proposed to

optimize the design and operation of the hybrid CHP system.

The capacities of components are determined to minimize

investment cost in the first-layer optimization using genetic

algorithm (GA), and the instantaneous operational

management of components is optimized to minimize energy

andmaintenance cost, andCO2 emission cost in the second-layer

optimization using particle swarm optimization (PSO).

⁃ The uncertainties in both renewable energy resources and user

loads aremodeled inMonte Carlo simulation, and the scenario-

generation-based stochastic optimization is implemented in the

integrated optimization of design and operation of hybrid CHP

systems, which is novel in comparison to existing contributions.

⁃ The schemes considering different objectives are optimized.

The integrated performances are assessed and compared in

indicators of the annual total cost, energy utilization

efficiency, integration level of the grid, renewable energy

index, and to indicate economic, energy, flexibility, and

sustainability, respectively.

This article is organized as follows: Section 2 constructs the

thermodynamic models. Section 3 proposes scenario generation

and collaborative optimization methods. Section 4 presents the

application of the proposed methods by a case study. Section 5

obtains some conclusions.

2 System description

Figure 1 shows the hybrid CHP system. The power-generation

system consists of a gas turbine (GT) CHP plant, PV panels, aWT,

and an electricity grid. The heat-production system includes waste

heat recovery units in the CHP plant, a gas boiler, and a heat

pump. The flexible operation is dependent on the cooperative

interactions and conversions between electricity and heat. The heat

pump is the key power-to-heat component for utilizing excess

power from renewable energies and for improving energy

utilization efficiency (Bloess et al., 2018). The battery and

thermal tank are energy-storage devices to alleviate the unbalances.

2.1 Combined heat and power system

The electrical and thermal outputs of the CHP plant (ECHP

andQCHP) can be generally expressed as a function of natural gas

input (FCHP) (Wang J. J. et al., 2019):

ECHP,t,s � ηe,GTFCHP,t,s,∀t ∈ Μ,∀s ∈ Ω, (1)
QCHP,t,s � (1 − ηe,GT)ηt,recFCHP,t,s,∀t ∈ Μ,∀s ∈ Ω, (2)

where t represents the hour;Μ is the set of all hours in a year; s is

the scenario; Ω is the set of all scenarios; and ηe,GT and ηt,rec are

the GT power generation and waste heat recovery and utilization

efficiencies, respectively. ηe,GT varies with the part load factor (f)

and is fitted as follows (Wang et al., 2015):

ηe,GT � (2.8725f5 − 9.0468f4 + 11.1760f3 − 6.9889f2

+ 2.3782f − 0.000002) × 100%. (3)

The heat and power outputs are interdependent in a special

feasible region because the CHP cannot be adjusted freely in all

ranges of installed capacity. Generally, the start-up coefficient is

set, which is less than the load factor in the actual operation.

2.2 Solar PV panels

The electrical outputs of solar PV panels (EPV) with a specific

type of solar cell are generally estimated as follows (Ren et al.,

2019):

EPV,t,s � ηe,PVGt,sAPVNPVηe,inv,∀t ∈ Μ,∀s ∈ Ω, (4)

where G is the solar irradiation; APV is the area of a single PV

panel; NPV is the total number of panels; ηe,PV is the electrical

efficiency; and ηe,inv is the conversion efficiency of the inverter.

Generally, ηe,PV depends on the environmental conditions of
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irradiance and temperature. Alternatively, the electrical output

with atmospheric parameter variations is estimated according to

the basic performance under standard test conditions (G0 =

1000 W/m2 and G0 = 25 °C). The ηe,PV with variable conditions is

estimated as (Durisch et al., 2000):

ηe,PV �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5613(G

G0
) − 10.6579(G

G0
) 1 /

2 + 45.5265(G

G0
) 1 /

3

−65.2220(G

G0
) 1 /

4 + 29.9336(G

G0
) 1 /

5 + 0.01736(Ta

T0
− 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × 100%, (5)

where Ta represents the atmospheric temperature.

2.3 Wind turbines

The total electrical output considering the number of WTs

(NWT) determined via the power generation performance and

swept area of each WT is expressed as follows:

EWT,t,s � EWT,t,sNWTηWT,∀t ∈ Μ,∀s ∈ Ω, (6)

where ηWT is the inverter efficiency; ~EWT is the WT output

depending on the wind speed at rated power. The hourly ~EWT is

calculated according to the power curve of the specific type of

WT (Hossain et al., 2019):

~EWT,t,s �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 v≤ vci

v3t,s − v3ci
v3r − v3ci

Er vci ≤ v≤ vr

Er vr ≤ v≤ vco

0 vco ≤ v

,∀t ∈ Μ,∀s ∈ Ω, (7)

where Er is the rated power; vr, vci, and vco are the rated, cut-in,

and cut-off wind speeds, respectively; v is the hourly wind

speed.

2.4 Air source heat pump

The air source heat pump (ASHP) uses electrical power

to transfer thermal energy from the heat sources to the heat

sink. The relationship between electrical power (EHP) and

thermal energy (QHP) can be expressed as follows (Ruhnau

et al., 2019):

QHP,t,s � COPHPEHP,t,s,∀t ∈ Μ,∀s ∈ Ω, (8)

whereCOPHP is the coefficient of performance (COP) of the heat

pump. The heat source and heat sink temperatures have

considerable impacts on the COP. In adopting the quadratic

regression method, the COP of each type of ASHP is regressed as

follows (Ruhnau et al., 2019):

COP � 6.08 − 0.09(Tsi − Ta) + 0.0005(Tsi − Ta)2, (9)

where Tsi is the temperature of the heat sink.

2.5 Gas boiler

The heat output of a gas boiler (QGB) that depends on the

boiler’s size and efficiency is estimated as follows:

QGB,t,s � ηGBFGB,t,s,∀t ∈ Μ,∀s ∈ Ω, (10)

FIGURE 1
Hybrid CHP system integrated with renewable energies.
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where FGBis the heat energy input of natural gas, ηGB is the

thermal efficiency and it changes with the load factor as follows

(Rosato et al., 2014):

ηGB � (0.00428f + 0.922716) × 100%. (11)

2.6 Thermal storage

The general model of thermal storage under the constraint of

capacity considering the heat losses is expressed as follows

(Bloess et al., 2018):

QTS,t+1,s � ηstatic,TSQTS,t,s + εηin,TSQin,TS,t,s

− (1 − ε)Qout,TS,t,s

ηout,TS
,∀t ∈ Μ,∀s ∈ Ω, (12)

ε � { 1, charge
0, discharge

, (13)

QTS,t,s ≤NTS,∀t ∈ Μ,∀s ∈ Ω, (14)
0≤Qin,TS,t,s ≤Qmax

in,TS,∀t ∈ Μ,∀s ∈ Ω, (15)
0≤Qout,TS,t,s ≤Qmax

out,TS,∀t ∈ Μ,∀s ∈ Ω, (16)

whereQTS is the stored heat;Qin,TS andQout,TS are the charge and

discharge heats, respectively; and Qout,TS denotes the supplied

heat from thermal storage devices to users. ηstatic,TS is the thermal

efficiency due to the heat loss of the stored heat to the

atmosphere; ηin,TS and ηout,TS are the charge and discharge

efficiencies, respectively. ε denotes the thermal storage

operational status. The thermal storage unit implements long-

term operation and its operational stagey is set to store excess

heat when it is not fully charged. The stored heat is always less

than the capacity (NTS), the charged and discharged heat are less

than the maximum charged, and discharged capacities (Qin,TS
max

and Qout,TS
max), respectively.

2.7 Battery

The general electrical model of the battery can be expressed

as follows (Ren et al., 2019):

EB,t+1,s � ηstatic,BEB,t,s + εηin,BEin,B,t,s

− (1 − ε)Eout,B,t,s

ηout,B
,∀t ∈ Μ,∀s ∈ Ω, (17)

ε � { 1, charge
0, discharge

, (18)

Emin
B ≤EB,t,s ≤Emax

B ,∀t ∈ Μ,∀s ∈ Ω, (19)
0≤Es,in,t,s ≤Emax

s,in ,∀t ∈ Μ,∀s ∈ Ω, (20)
0≤Es,out,t,s ≤Emax

s,out,∀t ∈ Μ,∀s ∈ Ω, (21)

where EB is the stored power; Ein,B and Eout,B are the charge and

discharge power, respectively; ηstatic,B is the power efficiency due

to the power loss; ηin,B and ηout,B are the charge and discharge

efficiencies, respectively. Its control stagey and operational states

are based on its charging and discharging limitations. The stored

electricity of the battery at any time should not exceed its lower

and upper limits (EB
min and EB

max), the charging and

discharging rates must not be respectively larger than their

maximal powers (Es,in
max and Es,out

max).

3 Methodology

Figure 2 illustrates the framework of the two-layer

collaborative stochastic optimization of a hybrid energy

system, whose objectives are to determine the optimal

configurations and short-term operation strategy according to

the generated scenarios. Collaborative optimization is divided to

two-layer optimization, in which the first-layer optimization is to

determine the capacities of components and the second-layer

optimization is to determine the hourly outputs of components.

The optimal design decomposition method to divide the whole

optimization into different stages has been validated in similar

studies on energy systems (Jing et al., 2019). This section

introduces scenario generation, a two-layer optimization

model, a solution algorithm, and evaluation indicators in the

framework of Figure 1.

3.1 Scenario generation of supply and
demand uncertainties

Scenario generation is in stochastic programming, which

discretizes the random process. It is not only important in

terms of improving computation but also includes events of

particular interest without affecting the optimization process

(Mitra and Domenica, 2010). Moreover, the scenario

generation method is a decision-planning tool in itself by

reducing a large number of random factors to a small number

of outcomes. Based on these advantages, the scenario generation

method is employed to characterize the uncertainties of both

supply and demand sides.

The uncertain factors such as renewable energy sources and

loads are from the simulated data in DesT. The scenario-based

method is employed for estimating the probability of occurrence of

each category. The hybrid system runs over the entire year, and the

profiles of 24 h in the most representative days are generated. Based

on data on the hourly hierarchy, each hour’s probability density

function is fitted on the primary distribution characteristics. The

wind velocity (v) is expressed in the Weibull probability density

function, the solar irradiation is in the Beta probability density

function, and the users’ load (L) is expressed by the normal

probability density function. The probability of the interval

[xdow, xup] can be determined as follows:
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δ(xdow, xup) � ∫xup

xdow

f(x)dx, (22)

where δ is the probability, x is the uncertain variable and f(·) is
the probability function.

The discretization method and Monte Carlo simulation are

employed to sample from the continuous probability density

function. To obtain accurate results, massive scenarios are

generated. But the computational cost for optimization will be

increased. Then, the k-means clustering method is utilized to

reduce the number of scenarios. The ten scenarios and their

probabilities are generated and shown in Figure 3. The load

profiles seem to be similar such as trends, and peak and valley

locations, which mainly resulted from the similar settings in DesT

building simulations, such as occupations and human behaviors.

The generated scenarios in Figure 3 with their probabilities

represent the uncertain supply and demand sides, which convert

the uncertainty problem of parameters to a deterministic

problem. Thus, the optimization and solving will become

easier with the specific boundary conditions.

3.2 Optimization model

It is seen in the modeling components in Section 2 that this

optimization problem is nonlinear because of the coupled

relationship between component output and variable

efficiency. Also, optimization involves capacity determination

and operational management, and the optimized capacities

directly influence the solutions of operational management.

FIGURE 2
Framework of two-layer collaborative stochastic optimization.
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Thus, the optimization problem is constructed as a two-layer

collaborative optimization as follows:

min
Ρ1(N)

{cTN + min
Ρ2(O)

bTO}, (23)

where N and O represent the decision variables of capacities

and operation, respectively, Ρ1(N) and Ρ2(O) indicate their

respective feasible solution spaces. The solution space of

Ρ2(O) is closely related to the solutions of N. It is noted

that the two-layer optimization model is different from the

traditional two-phase model of solving a linear programming

problem.

3.2.1 First-layer optimization
The first-layer optimization aims to obtain the optimal

capacities of components to minimize their investment costs.

The decision variables of component capacities (N) can be

expressed as follows:

N � [NCHP,NPV,NWT,NHP,NGB,NTS,NB,NGRID]. (24)

To consider the initial capital cost (ICC) of components into

the economic feasibility of the IES, this cost is expressed in terms

of interest rate (i0) and service life (n) with respect to the levelized

capital cost during a specific period of time:

Min ∑
t∈Μ

ICC(t, s) � ICC0
i0(1 + i0)n
(1 + i0)n − 1

∑
t∈Μ

t

k
,∀s ∈ Ω, (25)

ICC0 � ∑
i∈Ψ

NiCi, (26)

where I represents component i; Ψ denotes the set of all

components; Ci is the unit capital cost; and k is the total

operating hours throughout the year.

3.2.2 Second-layer optimization
The energy-management strategies and operational

conditions of components are optimized to achieve better

daily performances. The decision variables can be expressed as

follows:

Ot,s � [OCHP,t,s , OPV,t,s , OWT,t,s , OHP,t,s , OGB,t,s , OTS,t,s , OB,t,s , OGRID,t,s],∀t ∈ Μ,∀s ∈ Ω,
(27)

where O represents the hourly output. The optimization

objective is to minimize the maintenance and operational

costs during a specified period and in certain scenarios:

Min ∑
t∈Μ

TOCt,s � ∑
t∈Μ

(OCCHP,t,s + OCGB,t,s + OCGRID,t,s),∀s ∈,Ω,
(28)

where TOC is the total operational cost; OCCHP, OCGB, and

OCGRID are the operational costs of CHP, gas boiler, and grid,

respectively. The operational cost includes fuel (natural gas) cost,

maintenance cost, and start-up cost of components; OCCHP and

OCGB can be estimated as follows:

FIGURE 3
Generated scenarios of loads and weather parameters.
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OCCHP,t,s � CNGFCHP,t,sΔt + OMCCHP,t,s

+ SCCHP,t,s,∀t ∈ Μ,∀s ∈ Ω, (29)
OCGB,t,s � CNGFGB,t,sΔt + OMCGB,t,s + SCGB,t,s,∀t ∈ Μ,∀s ∈ Ω,

(30)
where CNG is the unit cost of natural gas (US$/kWh); Δt is the
energy-management time step; OMC denotes the maintenance

costs, which are usually estimated to be proportional to the

generated products as follows:

OMCi,t,s � λiICCi
Δt
k
,∀t ∈ Μ,∀s ∈ Ω, (31)

where λi is the coefficient of maintenance and SC is the start-up

cost, which is frequently influenced by the lengths of run and stop

times of components. The general formula on SCi is written as

follows (Pourmousavi et al., 2010):

SCi,t,s � (σ i + δi(1 − e−τoff,i/τi ) · (1 − εi(t − 1)),∀t ∈ Μ,∀s ∈ Ω,

(32)
ε � { 1, on

0, off
, (33)

where σ i and δi are the hot start-up and cold start-up costs of

the ith component, respectively. τoff,i is the cooling time

constant and τi is the time that the ith component has been

off, and εi shows the status of the component at time step t-1.

Usually, the SC has no obvious impact on optimization results

because the start-up time is often much shorter than the

calculation time step.

The operational cost of the grid is the difference between the

purchase and sale costs of electricity.

OCGRID,t,s � εCPE,GRID,t,sEGRID,t,s

+ (1 − ε)CSE,GRID,t,sEGRID,t,s,∀t ∈ Μ,∀s ∈ Ω, (34)

ε � { 1, purchase
0, sell

, (35)

where CPE,GRID andCSE,GRID are the purchase prices of electricity

from the grid and to the grid, respectively; ε denotes the control

factor of calculating the electricity cost or income from

interactions with the grid.

When the penalty cost for CO2 emission is considered, the

CO2emissions from the natural gas CHP and gas boiler should be

obtained. The CO2 emission that occurs with the purchase of

electricity from the grid (EGRID ≥ 0) is calculated using the CO2

conversion factor of electricity. If excess electricity is to be sold

back to the grid (EGRID < 0), both the power generation

connected with the grid and CO2 emission are decreased.

Thus, the penalty cost will be negative to profitable if more

power from renewable energies is sold back grid to reduce the

CO2 emission on the grid side.

The CO2 emission cost (EC) during a specified period can be

estimated as

∑
t∈Μ

ECt,s � CCO2 ∑
t∈Μ

(μNG(FCHP,t,s + FGB,t,s)
+ μGRIDEGRID,t,s),∀s ∈ Ω, (36)

where CCO2 is the unit penalty cost of CO2 emission (US$/kg

CO2) μNG is the CO2 emission factor of natural gas; μGRID is the

CO2 emission factor of electricity from the grid. The

optimization objective in the operation can be expressed as

Min ∑
s∈Ω

δs ∑
t∈Μ

(TOCt,s + ECt,s), (37)

where δs is the probability of the scenario.

3.3 Constraints

1) Electrical and thermal balances:

ECHP,t,s + EPV,t,s + EWT,t,s + (1 − ε)Eout,B,t,s + EGRID,t,s �
EHP,t,s + EL,t,s + εEin,B,t,s,∀t ∈ Μ,∀s ∈ Ω , (38)

QCHP,t,s + QGB,t,s + QHP,t,s + (1 − ε)Qout,TS,t,s �
QL,t,s + εQin,TS,t,s + Qexh,t,s,∀t ∈ Μ,∀s ∈ Ω , (39)

ε � { 1, charge
0, discharge

, (40)

where EL and QL are the electrical and thermal loads,

respectively. The negative EGRID indicates that there is excess

electricity to be sent back to the grid, whereas the positive EGRID

shows the electricity supplementary from the grid. In addition, at

the priority of satisfying the electrical load, there may be excess

heat exiting into the atmosphere (Qexh ≥ 0) when the thermal

storage tank is at full capacity.

2) Capacity constraints:

Ni,minεi,t,s ≤Oi,t,s ≤Niεi,t,s,∀t ∈ Μ,∀i ∈ ψ,∀s ∈ Ωε ∈ (0, 1),
(41)

where the output of each component is always less than its

capacity (N), and larger than its minimum or allowable capacity

(Nmin) when it runs (ε � 1). When the component does not run,

the ε is equal to zero. In addition, the ε � 1 means the charge of

storage components and the buying of electricity from the grid.

3.4 Solution algorithms

The optimization model is a typical high-dimensional

problem involving multiple decision variables and two-layer

optimization. The hybrid optimization methods are more

suitable than the two-layer optimization in this context. Many

hybrid optimizations have been attempted to effectively improve

the computation efficiency, such as the hybrid implementation of

lexicographic optimization and normal boundary intersection

method (Khaloie et al., 2021), PSO with linear programming,
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PSO with differential evolution, and the combination of GA,

PSO, differential evolution and simulated annealing. Since the

heuristic algorithms have a strong ability to obtain global

solutions, the hybrid optimization employs the GA to

optimize the configurations in the first layer and the PSO to

obtain the optimal operational strategy in the second-layer

optimization. It is noted that the single optimization

algorithm can be selected to implement twice for the two

optimization problems in different parameters. Based on the

foregoing, the flowchart of the hybrid two-layer optimization

model is shown in Figure 4. The computation procedures are

summarized as follows:

1) Load the necessary parameters (e.g., technical performance

of components, market information on equipment, fuel, and

electricity) and emission factors of fuel and the

electrical grid

2) Load the hourly historical or simulated data of loads, solar

irradiance, atmospheric temperature, and wind speed;

thereafter, generate typical scenarios

3) Perform configuration optimization using the GA in the

generated scenarios

4) Implement the following PSO sub-programming to optimize

the energy-management strategies of components and obtain

the operational cost of Eq. 13 and the CO2 emission penalty

cost of Eq. 14

5) Evaluate the fitness of each individual with the total cost,

considering the initial capital, operational, and emission

penalty costs, and select the best-ranking individuals to

reproduce, and produce new generations through crossover

and mutation

6) Continue the steps of GA until convergence is achieved, and

then decode the decision variables to output the optimal

configurations and energy-management strategies

From the overall optimization procedures of Figure 4, the

large-scale coupled problem of capacity determination and

operational management can be divided into small-scale

problems that are easier to solve. If the single-layer

optimization considering both system design and operation

management is constructed, too many decision variables are

simultaneously optimized and the problem will be difficult to

solve.

3.5 Evaluation indicators

1) Energy utilization efficiency

As the primary energy consumption of electricity from the

grid (FEGRID) is considered, the energy utilization efficiency

without considering renewable energies is expressed as follows:

FIGURE 4
Flowchart and procedure of two-layer optimization in hybrid GA–PSO.
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ηsys � ∑
s∈Ω

δs ∑
t∈Μ

EL,t,s + QL,t,s

FCHP,t,s + FGB,t,s + FEGRID,t,s
× 100%. (42)

2) Grid integration level

The electricity grid is perceived as virtual electric storage.

The interaction of purchasing or injecting electricity between

the hybrid system and the grid could result in grid

destabilization. Grid integration (GI) and net interaction

(NI) are employed according to the dependency of the

hybrid system on the grid. The less GI and NI means the

less dependence of the hybrid system on the grid and larger

operational flexibility.

GI � ∑
s∈Ω

δs

∑
t∈T

εEGRID,t,s

∑
t∈T

EL,t,s
× 100%, ε � { 1 EGRID,t,s ≥ 0

0 EGRID,t,s < 0
, (43)

NI � ∑
s∈Ω

δs

∑
t∈Μ

∣∣∣∣EGRID,t,s

∣∣∣∣
∑
t∈Μ

EL,t,s
× 100%. (44)

3) Renewable energy index

The generated electricity from PV panels and WTs satisfies

the electrical demand of users and heat pumps, in which more

inputs of renewable energy indicate a higher sustainability index

of the energy system. The renewable energy index is defined as

follows:

REI � ∑
s∈Ω

δs

∑
t∈Μ

EPV,t,s + EWT,t,s

∑
t∈Μ

EL,t,s
× 100%. (45)

4 Results and discussion

4.1 Initializations

The programming was implemented and simulated in

MATLAB (R2017b) software in a personal computer with a

1.60-GHz Intel Core i5-8250U processor and 8-GB RAM. The

following assumptions were set:

1) The maximum capacities of CHP, PV panels, andWTs are set

according to the maximal electrical load, whereas the

maximum capacities of the heat pump and gas boiler are

set according to the maximal thermal load.

2) The maximum capacity of the thermal storage tank is

assumed to satisfy the thermal demand in 4 h, which is

four times that of the maximal hourly thermal load. The

maximum capacity of the battery is set to 10% of the peak

electrical demand in an hour, and its initial electrical charge is

set to 50% of the maximum.

3) It is assumed that the optimal numerical capacities are in a

continuous range without considering the discrete sizes of

components in the market. The technical and emission

constraints of components are indicated in Table 1. Their

investment costs are shown in Table 2, in which the scale

effects are ignored.

4) As shown in Table 3, the price of natural gas is taken to be

0.36$/Nm3. The hourly purchased electricity price from the

grid is different. The price of injecting electricity from the

hybrid system to the grid is set to half of the hourly

purchased electricity from the grid and CSE,GRID �
0.5CPE,GRID.

5) The parameters of GA and PSO are listed in Table 4. The

higher crossover probability in GA is set to be 0.9 and the

lower mutation probability is taken to be 0.1, which aims to

obtain the diversity of populations. The inertia weight in the

PSO is set to 1.0, which avoids premature convergence or too

slow convergence.

The following two cases are optimized to demonstrate the

proposed optimization model.

Case 1: To minimize the total investment, operational, and CO2

emission costs.

Case 2: To minimize the total investment and operational costs

without the emission cost.

4.2 Optimal capacities

Parallel computation in MATLAB is adopted for the PSO to

optimize the operation. The duration of the whole optimization

is approximately 5 h and 30 min, whereas that of the PSO of each

scenario is only 0.37 s on average. The fitness of operational cost

quickly drops to the lowest value after only eight to nine

iterations. However, the fitness of total cost converges more

gradually, and this results from the repeated coupling

computations (1 billion times) between the main GA program

and the PSO sub-program.

Table 5 summarizes the optimum capacities under different

objectives (Case 1 with CO2 cost and Case 2 without CO2 cost).

4.2.1 Energetic analysis
It can be seen in Table 5 that the capacity of electric

components in Case 1 (considering CO2 emission cost) is

larger than that in Case 2 without considering the CO2

emission cost. The sizes of PV panels and WTs account for

52% of installed power capacity in Case 1, demonstrating that

renewable energy technologies are prioritized to reduce

CO2 emission costs. Table 6 indicates that the electricity

from PV and WTs in Case 1 reaches 20.3%, which is 5.7%

more than that in Case 2. Although the CHP capacity in Case
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2 is less than that in Case 1, the latter case outputs more

electricity, which exceeds 4.0%. Thus, the renewable energy

index in Case 1 reaches 29.5% whereas that in Case 2 is only

18.0%, as shown in Table 5. As a result, the energy utilization

efficiency in Case 1 (93.0%) is also larger than that in Case

2 (80.5%).

The optimal integrations of a heat pump, gas boiler, and

thermal storage tank for satisfying the thermal load vary with

different objectives. Analyzing their construction as sources,

the CHP is the key source of heat supply because of its larger

waste heat and electricity generation that exceed 79.0%.

Considering CO2 emission, although the heat pump size

TABLE 1 Technical and emission parameters (Ren et al., 2019; Ruhnau et al., 2019).

Equipment Parameter Value Equipment Parameter Value

CHP ηe,GT 39% PV ηe,PV 16%

ηt,rec 80% ηe,inv 90%

WT vr 14 m/s Heat pump COP 5.23

vci 4 m/s ΔT 10 °C

vco 25 m/s Battery ηstatic,B 96%

ηWT 90% ηin,B 95%

Thermal storage ηstatic,TS 90% ηout,B 95%

ηin,TS 90% Gas boiler ηGB 93%

ηout,TS 90% Grid ηe 36%

CO2 emission factor kg/kWh μNG 0.220 μGRID 0.968

TABLE 2 Economic parameters.

Unit capital
cost, $/kW

Component Value Source Component Value Source

CHPa 1,535 Ren et al. (2019) WT 1230 Zhou and Gu, (2019)

PV 2039 Guo et al. (2013) Thermal storage 56 Wang et al. (2020a)

Heat pump 373 Wang et al. (2020a) Battery 881 Guo et al. (2013)

Gas boiler 46 Wang et al. (2010a) — — —

Life service, year 20 Ren et al. (2019) Interest rate, % 6 Ren et al. (2019)

Coefficient of maintenance cost, % 2 Ren et al. (2019) — — —

aThe CHP cost considers the total cost of GT and waste heat recovery units.

TABLE 3 Unit price of electricity from the grid, natural gas, and CO2 emission.

Parameter Symbol Value Time period Source

Natural gas, $/Nm3 CNG 0.36 - Ren et al. (2019)

Purchased electricity, $/kWh CPE,GRID 0.0547 23:00–7:00 Ren et al. (2019)

0.1285 7:00–10:00, 15:00–16:00; 17:00–18:00, 21:00–23:00

0.2060 10:00–11:00, 13:00–15:00; 18:00–21:00

0.2252 11:00–13:00, 16:00–17:00

CO2 emission, $/million kg CCO2 12,600 Zhang and Vesselinov, (2017)

TABLE 4 GA and PSO parameters.

Algorithm Item Value

GA Population size 50

Maximum iteration number 200

Crossover probability 0.9

Mutation probability 0.1

PSO Population size 50

Maximum iteration number 200

Inertia weight 1.0

Cognitive and social parameter 1.5
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in Case 1 is larger than that in Case 2, the former can only

supply approximately 9.3% of the heat demand compared to

the latter (10.5%), as shown in Table 6. The large size of the

CHP between the two cases leads to more waste heat output,

and thermal storage is necessary to store the excess waste

heat. The heat storage ratio is more than 27.5%, and the

contribution of thermal storage to compensate for the heat

deficiency is only approximately 4.4% (Case 2) or 5.9% (Case

1). In evaluating the economic performance of the size of the

thermal storage tank, the amount of excess heat that exits the

tank to the atmosphere is taken into account; the smaller

tank size in Case 1 results in more excess heat, i.e., up to

20.6%. For both cases, the gas boiler contribution for

supplementing heat deficiency is more than 5.0%.

In analyzing the proportions of purchased electricity from

the grid and injecting electricity into the grid (Table 6), the

former accounts for 15.9% (Case 1) and 17.6% (Case 2) of the

electricity demand. Thus, the grid integration levels are relatively

high, i.e., 23.4% in Case 1 and 22.3% in Case 2, as shown in

Figure 5. The excess electricity remaining to be sent back to the

grid in Case 1 is 11.2% more than that in Case 2 because the CO2

emission factor of this hybrid system is less than that of the

electricity from the grid. Moreover, surplus electricity could

supplement the CO2 emission penalty cost. This also results

in the higher net interaction of the hybrid system with the grid in

Case 1, i.e., 70.6%. These indicators demonstrate the importance

of the grid as virtual electricity storage to improve the operational

performance of IES.

4.2.2 Cost analysis
Compared to the compositions of the total cost of the two

cases considering different objectives (Table 7), the levelized

capital cost in Case 1 (considering the CO2 emission cost) is

larger than that in Case 2. This is because of the larger sizes of

components in Case 1 that account for approximately 43.4% and

34.4% of the total cost, respectively; hence, higher contributions

lead to higher costs. The CHP operational cost in Case 1 reaches

71.0% of the total operational cost, and the required overpayment

TABLE 5 Optimum configurations of the hybrid system considering various objectives.

Objectives CHP PV WT Battery Heat
pump

Gas
boiler

Thermal
storage

Grid Fitness

kW kW kW kWh kW kW kWh kW US$

Case 1 212 218 11 20 186 1111 453 271 530.7

Case 2 194 116 7 20 161 1158 673 270 502.6

TABLE 6 Sectors of electrical and thermal sources and consumers in two cases.

Electricity Case 1 Case 2 Heat Case 1 Case 2

Sources CHP 62.4 66.4 CHP 79.7 79.1

PV 19.9 14.2 Heat pump 9.3 10.5

WT 0.4 0.4 Boiler 5.1 5.9

Grid 15.9 17.6 Thermal storage 5.9 4.4

Battery 1.3 1.4

Consumers Electric load 62.3 72.2 Heat load 46.2 65.3

Battery 1.2 1.3 Thermal storage 33.2 27.5

To grid 30.7 19.5 Excess 20.6 7.1

Heat pump 5.8 7.0

FIGURE 5
Performance comparison between two cases with and
without CO2 emission costs.
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of CO2 emission from the CHP and gas boiler is approximately

5.2%. In Case 1, the greater the amount of electricity injected into

the grid, the higher the revenue derived from selling electricity;

the total cost is reduced when the investment and CO2 emission

costs are higher.

Without considering CO2 emission cost, the CHP levelized

capital cost and operational cost in Case 1 increase by 33.0% and

13.4%, respectively, and the revenue from the sale of electricity

increases by 111.3% with respect to those in Case 2. On the other

hand, the gas boiler fuel cost and electricity purchase cost in Case

1 decreased by 23.7% and 8.9%, respectively, with respect to those

in Case 2.

In addition, the cost difference between Case 1 and Case

2 shows that the emission cost has a great impact on the cost

feasibility of CHP. If the proposed model with and without

emission cost is applied in similar plants, their cost

difference presents the guide to deciding the price of an

emission reduction and possible carbon. Optimal energy-

management strategies.

Figure 6 shows the optimal operational strategies of

components in two typical daily scenarios of Case 1 using

the PSO, in which the CO2 emission cost is considered. The

electric power balances clearly show that the CHP, PV, and grid

mainly cover the electrical loads of users and heat pump

electrical demand for supplying the thermal load. The

detailed battery and WT operating states are shown in

Figure 7, in which the WT only supplies 0.9% (Case 1) and

0.3% of Case (2) of electricity because of its small size. The

TABLE 7 Composition of the total cost of two cases considering different objectives (US$/d).

Levelized
capital cost

Operational cost CO2 emission
cost

Total
cost

Natural gas
of CHP

Natural gas of
the
boiler

Purchased electricity
from
the grid

Injected electricity
into
the grid

Case 1 230.1 281.9 37.9 77.4 −113.2 16.6 530.7

Case 2 172.9 248.5 49.7 85.0 −53.6 0.0 502.6

FIGURE 6
Energy-management strategies of components in Scenarios 1 (A) and 2 (B) considering CO2 emission cost.
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charging-discharging behaviors mainly follow the battery’s

charged state to maximize battery life and average stored

electricity; in the two scenarios, they cover 2.6% and 1.3% of

the electrical demand, respectively.

Figure 6 shows that there is an amount of excess

electricity to be sold back to the grid (particularly

between 10:00 and 17:00) which is considerably

dependent on the price of electricity set by the grid. In

scenario 1, the CHP always runs to generate more

electricity to be injected into the grid although the PV

models provide sufficient power for users between 10:

00 and 16:00. The sale of excess electricity generates

more income when the electricity cost is high. The daily

electricity sales income compensates for 61.8% of the CHP

operational cost and CO2 emission cost; it is approximately

four times the utility fee of purchased electricity. The CHP

operation at a higher load factor results in more waste heat,

which is sufficient to satisfy the thermal demand of users.

The excess heat is either stored in the thermal storage tank

or released to the environment, and only 39.9% of the

stored heat is released to supplement the heat deficiency

at 22:00 and 23:00.

Compared to the optimal strategies of components in

scenario 1, the integrated heat pump and gas boiler operation

serves the high thermal load in scenario 2, as shown in

Figure 6B. Therefore, the electrical demand exceeds the

electrical load of users. The heat pump, which consumes

20.7% of generated electricity, operates to supply 34.6% of

the thermal demand throughout the day, except at 15:00 and

19:00. The CHP continues to operate with a higher load

factor to output excess electricity to the grid during daytime

when the electricity price is higher. Nevertheless, there is

practically no excess waste heat to be stored because of the

higher thermal demand. In addition, the gas boiler supplies

10.5% of the thermal demand by consuming approximately

9.9% of natural gas.

5 Conclusion

The proposed two-layer collaborative optimization of

configuration and energy-management strategies was validated by

the simulations, in which the generated scenarios with probability

distributions were adopted to demonstrate the uncertainties of

renewable energies and loads. The following conclusions are obtained:

Renewable energy power technologies with suitable capacities

are beneficial to decreasing the CO2 emission cost of fossil energy

consumption. The renewable energy index reaches 30%, which is

11.5% larger than the case without considering the CO2 emission

cost. However, the interaction level between the hybrid system and

utility grid increases, and the grid integration and net interaction

increase by 1.1% and 21.5%, respectively. This demonstrates that

the utility grid functions as important virtual storage to improve

the renewable energy penetration level. Moreover, the levelized

capital cost resulting from renewable energy technologies with

larger sizes increases by 33.0%. To a certain extent, the revenue

derived from electricity sales compensates for the higher

investment and CO2 emission costs.

Thermal management is considerably dependent on power

management strategies. When the CHP load factor is high, more

waste heat is generated; hence, thermal storage equipment should be

installed to store excess heat. The heat pump can aid in converting

excess power to heat but requires effective integrated strategies. In

addition, the power units output more amounts of excess electricity

and sell these to the grid during the daytime when the hourly prices

of electricity purchased from the grid are higher. In the optimal

scheme, considering the CO2 emission cost, it covers the cost of

purchased electricity because the CO2 emission factor of electricity

from the hybrid system is less than that of electricity from the grid.

The developed framework would be beneficial in terms of

providing a better collaborative decision-making process of

design and operation in the hybrid system influenced by

intermittent energy resources and uncertain loads. In addition,

the PSO sub-programming can be flexibly adapted for the online

FIGURE 7
Operational strategies of battery and WT under Scenarios 1 (A) and 2 (B) considering CO2 emission cost.
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optimization of operational management of operators by

combining certain energy supply and demand techniques as

well as predictions. But there are some limitations in the

scenario generation in this study. The generated scenarios are

crucial to getting accurate results. The validations of the

generated scenarios are difficult in the design period, and

their representations in the limited number of scenarios are

required to analyze. For future work, it would be interesting

and challenging to analyze the impact of some extreme operation

scenarios not considered in the design stage. Also, the proposed

framework is extended to evaluate the effect of the participation

of uncertain market factors on system design and operation.
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