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Abstract 
 

We introduce the seemingly new concept of a rigid matrix based on the comparison of its sparsity to the 
sparsity of the natural powers of the matrix. Our results could be useful as a usage guide in the scheduling 
of various iterative algorithms that appear in numerical linear algebra. Especially in Sparse matrix-vector 
multiplication and they could also be used in matrix norm error analysis. 
 

 
Keywords: Sparse matrix; diagonalizable matrix; matricial limits; matrix norms. 
 
MSC 2010: 15A12. 
 

Introduction 
 
Any algorithm   intended   to be implemented   on a computer has a computational cost that   depends upon 
the amount of resources that will be used. For simplicity here the terms cost and complexity load, refer only  
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to the number of floating  point  operations (additions, subtractions, multiplication  and divisions) performed  
during  one  run of the algorithm,  together  with a count of the number of square roots; note that we do not  
taking  into account  memory  usage. Then we could predict cost and load before  a  chain of algorithmic 
computations  have taken  place, but  only  ideally since, in  reality,  we obtain results that are not  accurately 
achievable. In   this paper we do not attempt to calculate   a cost and all samples data is given in the form of 
square matrices preferably diagonalizable. By asymptotic computation cost of an algorithm, we refer to the 
behavior of the cost C(n) for n→+∞. Note also  that  the case of the “big O” description  is closely related 
except  that in our cases  we consider the order of magnitude of small quantities while  our concern with cost 
leads to consideration of the order of magnitude of large quantities, Finally we would like to  emphasize that 
 

(i) Whenever the spectrum of a matrix is to be calculated using a PC program one has to take into 
account the sensitivity of eigenvalues to tiny perturbations. 

(ii) There exist   many situations in scientific and engineering   computations   that cannot be 
comprehended and/or explained by using a single number though, when a decision is needed, it 
often amounts to distilling one number out of many (see e.g. [1]). 

(iii)  When we attempt   iterative refinements   the effort could be in vain since we may encounter too ill-
conditioned matrices within too few rounding errors or plainly inaccurate from the start. 

(iv) In all cases,  trial and error is the best guidance for   the “ideal  time to terminate”  an approximating  
sequence of matrices ,independently  if  the calculations are  performed by hand or  using a 
scientific PC  programs (like  in this paper that we use the  matlab). 

 

Chapter 1. Shrincable Matrices 
 
We will focus exclusively upon diagonalizable (mainly but not   necessarily real), matrices the set of which 

for nxn matrices we will denote by nM and in order to avoid trivialities we will exclude the zero matrix. It is  

well  known  that the concept of   sparsity  of a matrix refers to the presence of  zero entries ; in order to 
characterize as sparse a matrix we  usually demand much  more than  half of  its elements  to be  zero. Sparse 
matrices play a key role in numerical linear algebra (see e.g. [2,3] and [4]) and in recent years have many 
pleasant and sometimes even unexpected applications (see e.g  [5],  or [6]). 
 
We   engineer   the following definition which is purely technical in order   to facilitate the introduction of 
the new concepts to be presented later on. Note  that  Def, 1.1 could had  been applied to any square matrix  
and that Def. 1.2 can be  extended even to non diagonalizable square matrices under weaker conditions but 
we will not pursue these issues. 
 
Definition 1.1: A square   matrix with n² elements will be called   m/ n²- sparse,1≤ m≤ n²-1, whenever m of 
its elements are zero. 
 

Definition 1.2: For A∈ nM , A will be called   m/ n² shrinkable if the matrix  κ

κ
lim A

→∞
 exists (pointwisely)  

and is m/ n² sparse. In particular, if κ

κ
lim A

→∞
 is the   zero   matrix  we call A totally shrinkable . 

 

Definition 1.3: For A∈ nM , A will be called   rigid if the matrix  κ

κ
lim A

→∞
 exists and has no zero elements 

at all;in particular, if A is such that  κA   has no   zero  elements for all  natural numbers   κ  we  call  A 
totally  rigid .  
 
Note that im Chapter 3 we examine the rigidness of the DFT matrix. 
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Remarks 1.1: 
 

(i) It is rather   straightforward to conclude that  if  the absolute values of the n eigenvalues of a nxn  
matrix are in [0,1] and the  eigenvalues  are  all  distinct (which is a sufficient  but not necessary 

condition so that A∈ nM ) , then A is  totally shrinkable.  

(ii)  On the other hand it is obvious that   for the nxn   matrix A=( ija ) with  ija =1, κA =( ijb ) where ijb
=nκ-1 , has  no zero entries. We can also easily check that   spA   consists   of the eigen value 0 with 
algebraic and geometric multiplicity n-1 and   also of the eigenvalue n and so it is diagonalizable 
.Thus A is a totally rigid matrix. 

(iii) Examples like the above   may have an   independent interest but they do not offer any promising 
use of the concepts of a rigid or a shrinkable. matrix. The utility of these concepts will be discussed 
in Chapter 2 (where a new concept , that of  the index of rigidity   will be introduced)  and  mainly  
in Chapter 4 when we will attempt to connect the estimation of the induced  Euclidean norm of 

powers of A∈ nM with a possible   shrinkable matrix  structure. 

               
We will presemt below six examples: the first is a general one classifying the matrices in M2   according to 
shrincability and/or rigidness. The other  two being numerical examples that we wanted to carry out all 
necessary calculations without using any PC program, will be  restricted within the low size case  of n=3. 
The fourth is a nxn example, for any n≥2 and it is the motivation to introduce the concept of the index of 
rigidness presented in Chapter 2:                                                                                                                                                                  
 

Example 1.1: Let A=
a b

c d

 
 
 

 be a real) matrix. Set ∆=(a-b)²+4cd. 

(i) If   ∆>0  then   evidently   A∈ 2M . If   in addition ∆trA ± <1 then A is totally shrinkable. 

 (ii) If ∆=0 and in addition either b and c≠0 A is not diagonalizable and we will not pursue any 
classification within our approach. If   on the other hand a=d and either b or c=0 once again A is not 

in 2M .Finally if b=c=0 and a <1 then A is totally shrinkable, while for a≤-1 or a>1 κ

κ
lim A

→∞
  does 

not exist and of course for a=1 A=I which is trivially ½ shrinkable.  

 (iii)  If   ∆<0 then once more A∈ 2M . If in addition a²+d²+2bc<1 then A is totally shrinkable and in 

case that a²+d²+2bc=1 then κ

κ
lim A

→∞
 does   not exist. 

 

Example 1.2: The matrix A=

1 3 / 2 3 / 2

0 1/ 2 0

0 0 1/ 2

−

−

−

 
 
 
 
 

 is evidently 4/9  sparse  and spA ={-1/2. -1/2, 1}. 

 
It is easy to check that the multiple  eigenvalue  -1/2 has geometric multiplicity 2 and that a pair of its linearly 
independent eigenvectors  cossists of  (1,0,-1)t and (0,1,1)t .It is also easy to check that (1,0,0)t  is an 
eigenvector for 1. 
 
Then via the diagonalization A=EDE-1, where 
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E=

1 0 1

0 1 0

1 1 0−

 
 
 
 
 

  D=

1/ 2 0 0

0 1/ 2 0

0 0 1

−

−
 
 
 
 
 

and E-1=

0 0 1

0 1 0

1 1 1

−

−

 
 
 
 
 

, we obtain that B= κ

κ
lim A

→∞
 exists and 

B=

1 1 1

0 0 0

0 0 0

− 
 
 
 
 

 which is 2/3 sparse. Thus A is 2/3 shrincable. 

 

Example 1.3: The matrix A=

λ 0 1 λ

0 λ 1 λ

0 0 1

−

−
 
 
 
 
 

, where λ <1 is 4/9 sparse fοr λ≠0.and 7/9sparse fοr λ=0, so 

let us focus oνly on the family A(λ) when the parameter λ (real or not) is mot zero. 
 
 
It is easy to check that the geometric multiplicity of λ also 2 and then we have the diagonalization A=EDE-1,  
 

 where  E=

1 0 1

0 1 1

0 0 1

 
 
 
 
 

  D=

0 0 0

0 0 0

0 0 1

 
 
 
 
 

 and E-1=

1 0 1

0 1 1

0 0 1

−

−
 
 
 
 
 

                                                                                                                                                                                                                                

 
We thus obtain  
 

κ

κ
lim A

→∞
=

0 0 1

0 0 1

0 0 1

 
 
 
 
 

 which is a 2/3 sparse matrix. Note that the result is independe3nt of the parameter λ, 

something that we will be useful for us in the context of Chapter 1. 
 

Example 1.4: The matrix A=

λ 1 1

0 1 0

0 0 1

 
 
 
 
 

, where λ <1 (λ not necessarily real), is 4/9 sparse fοr λ≠0. 

Evidently we   have   spA={λ,. 1, 1}. It is again easy to check that the multiple eigenvalue 1 has geometric 
multiplicity 2 and that a pair of its linearly independent eigenvectors cosista of (1,0,1-λ)t  and (0,1,1)t .It is 
also easy to check that (1,0,0)t .is an eigenvector for λ.      
                                                                                                                                                                                                                                                                                                                      

Then via the diagonalization A=EDE-1, where E=

1 0 1

0 1 0

1 λ 1 0− −

 
 
 
 
 

, D= 

λ 0 0

0 1 0

0 0 1

 
 
 
 
 

 and  

 

E-1=
1

λ 1−

1 0 1

0 1 0

1 λ 1 0− −

 
 
 
 
 

, we obtain that B= κ

κ
lim A

→∞
 exists and B=

0 0 0

0 1 0

0 0 1

 
 
 
 
 

. Thus A is 7/9 shrincable 
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Example 1.5: Let zm , 1≤ m≤n  be the n roots of unity, as  they were introduced by Euler i.e. zm =
2πmi/ne . 

 

We set A the following  nxn upper triangular matrix for  n≥2 : 
 

A=

1

2

n 1

n

m

z 1 0 ... 0

0 z 1 0 0

... ... z ... 0

0 0 ... z 1

0 0 0 ... z
−

 
 
 
 
 
 
 
 

 which is diagonalizable since its spectrum {zm ,1≤ m≤n} consists of  

distinct  numbers (note that zn =1). The diagomalization A=EDE-1 , where  E is the eigenvectors matrix and 
the diagonal elements of D are the n roots of unity  lead to An =E E-1 =I Τhus for  κ=ρn+υ, 0≤ υ<n ,Aκ = Aυ 

and   κ

κ
lim A

→∞
 does not exist. and the maximum index of sparsity  of Aκ  is (n-1)/n  Nevertheless an 

interesting  feature of A which we will examone among others  in Chapter 2 is estimating t the maximum  
sparsity of  Aυ .. 
 

Example 1.6: Let A=

1 0 0 0

0 1 0 ζ

0 0 1/ 2 0

0 0 0 1/ 2

 
 
 
 
 
 

 with ζ any parameter. Since spA={1/2.1/2,1,1} and the 

geometric multiplicity of the eigenvalues  1 and ½ is 2 we know that A is diagonalizable and A=EDE-1 . 
where D=diag(1,1,1/2,1/2) and the corresponding  eigenvectors matrix is  
 

E=
2

1 0 0 0

0 1 0 ζ

0 0 1 0

0 0 0 1

−

 
 
 
 
 
 

.We find also that E-1 = 

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 
 
 
 
 
 

 and finally we obtain that 

                                                                                                                                                                     

κ

κ
lim A

→∞
=

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

 which is a 7/8-sparse matrix   free of the parameter something worth revisiting 

when we will examine   norm approximations in Chapter 4. 
                                                                                                                                                                     
Remark 1.2:  
 

Foe A∈ nM  the condition spA <1 produces a   rather narrow family of shrinkable matrices. On the other 

hand if A∈ nM  and spA  ∩ (1, +∞) ≠∅   then evidently κ

κ
lim A

→∞
 will not exist. So it is natural to slightly 

relax the definition by allowing   1∈spA possibly with an algebraic multiplicity equal to its geometric 
multiplicity (though for very  small n ‘s it is a rather descent exercise to see that we do not have the  case 
described in Def.1.4).The definition  that fpllows substantially  useful as we will see later on: 
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Definition 1.4: Foe A∈ nM  we call A   almost shrinkable if and ony if  κ

κ
lim A

→∞
  is (n² -1)/ n² shrinkable.                                                                                                                              

Example 1.7: Let A= 1 / 2

1 / 3

1 1 1

0 ζ

0 0

 
 
 
 
 

 with ζ any parameter ≠0. Since spA={1/3.1/2,1}.A is 

diagonalizable. Then A= 

1/ 6ζ

1 0 0

0 1 1

0 0

−

 
 
 
 
 

diag(1,1/2.1/3)

1/ 6ζ

1 0 0

0 1 1

0 0

−

 
 
 
 
 

, and we obtain κ

κ
lim A

→∞
=

1

ζ
 G, 

where G=( ijg ) is the 3x3  matrix with 11g =1and ijg =0 for (i,j)≠(1,1). Thus A is almost shrinkable. 

 

Chapter 2. Index of Rigidity 
 
We introduce now the following additional concepts already announced in Chapter 1; 
 
Definition 2.1: Let A be a non zero (not necessarily diagonalizable) nxn matrix that is not totally rigid. We 

call index of rigidity of A, denoted   Aω (or ω when it is clear where it refers to) the number m/n², where m 

is the maximum  number of zero entries for all the matrix power Aκ  , as κ  traces the naturals. 
 

Definition 2.2: For two matrices A, B of the same size we will say that A is   less rigid than B when Aω <

Bω . 

 

In case that Aω = Bω  we will say that And B have the same rigidit.           

                                                                                                                                                         
Remark 2.1: Evidently ω takes values in [0, 1) but in order to preserve compatibility to previous 

considerations we will set  Aω =1  whenever A is  shrinkable. 

 
Let us give now a few characteristic examples for various size matrices   that involve   numerical 
calculations in the quest of ω: 
 

Example 2.1: Let A=
1 1

1 1−

 
 
 

 , which   is the matrix representation of the 2-D   DFT (see also Chapter 3). 

Since A² =2I  we evidently have periodically maximum  sparsity  2/4 and thus we must take Aω =1/2.                                                                                                                             

Example 2.2: Let A=
0

1 1

1

 
 
 

. Through the Cayley-Hamilton theorem, or after the calculation of A² 

directly, 
 
we obtain A²=A+I and thus ,recursively, if we set Aκ =xκ Α+ yκ Ι we obtain that xκ+1= κ x+ xκ-1, for κ≥2 with 

2x = 1x =1 and  yκ= xκ-1,We conclude tha t  Aκ =FκΑ+ Fκ-1Ι =
κ κ 1 κ

κ κ 1

F F F

F F

−

−

+ 
 
 

, where 

 

Fκ is the Fibonacci sequence. Thus Aω =1 something   that it was obvious to comclude in the first place but 

we gave the is proof since similar techniques and/or diagonalization will be needed in the case of matrices of 
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more complicated numerical structure. It is also worth noticing that despite the “initial looks” the matrix of 
Example 2.1 is less rigid than the matrix of this example. 
 

Example 2.3: Let A=

1 1 0

1 0 1

0 1 1

−

−

−

 
 
 
 
 

.It is easy to check that spA={0,±√3 }.In order to study the sparsity  

of Aκ . 
 
which is no longer evident like in the previous examples we can  use Cayley-Hamilton  theorem and apply 
iterations to obtain  Aκ .starting from A3 =3A .We have that A3ρ =3ρΑ, A3ρ+1 =3ρΑ2  and A3ρ+2 =3ρ+1Α, for 

ρ=1,2,…Since it is easy to check that  Α2 has no zero entries at all   we infer that Aω =1/3.Alternatively  one  

could use the  diagonalization  Aκ .= EDκE-1, with  E  the 3x3 matrix with columns the eigenvectors of  the 
eigenvalues 0, √3 and -√3, respectively and Dκ =diag(0, (√3)κ, (-√3)κ) and  then by splitting the result for 
κ=2ρ and  κ=2ρ+1, ρ=1,2,… 
 
This is clearly much more tedious method than the first but sometimes, when there is no reliable (from the 
rounding offs point of view) scientific program in hand, it is necessary in case the characteristic polynomial 
of A is in full form. We demonstrate thiw assertion in the example that follows. 
 

Example 2.4: Let A=

1 1 0

0 1 1

0 0 2

− 
 
 
 
 

. Its characteristic polynomial   is p(λ)=(2-λ)(λ²-1) and the Cayley-

Hamilton  theorem leads to A3 =2A²+A-2I which produces tedious iterations in order to exqamine  the 
sparsity  of  Aκ.  
                                                                                                                                                                      
On the other hand it is easy to check that spA={-1,1,2}, that the eigenvectors   
 

matrix is E= 

1 1 1

0 2 3

0 0 3

 
 
 
 
 

 and that  E-1=
1

6

6 3 1

0 3 3

0 0 2

−

−

 
 
 
 
 

. Since for κ=even and κ=odd  we obtain Dκ 

=diag(1,1,2κ } and = diag(-1,1,2κ }, respectively , we obtain  finally that for κ=even 
 

Aκ =
1

6

κ

κ

κ

6

26 0

0 6 2

0 0

α

α

6α

−

− 
 
 
 
 

  and for κ=odd Aκ =
1

6

κ

κ

κ

6

46 6

0 6 2

0 0 3

α

α

α

−

− − 
 
 
 
 

 with ακ =2κ+1.Thus Aω =1/2. 

                                                                                                                                                                     
Once again, since  1/2 >1/3,  despite the “initial looks” we can say that  our matrix is more rigid than the 
matrix of Example 2.3.The , meaning of such a- bizarre at first glance-  remark  is that  although A has 4/9  
sparsity   one should not expect  to  increase  sparsity  in iterative algorithms  that use  matrix powers. 
 

 Example 2.5: Let A=

1/ 3 α 0

0 1/ 2 0

1 0 1

 
 
 
 
 

 where α is   a random parameter. Evidently sp(A)={1/3, ½. 1}. 
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 The diagonilazion A=Ediag(1/3,1/2.1}E-1,  with E= 

2 6α 0

0 1 0

3 12α 1− −

 
 
 
 
 

,  E-1= 

1 / 2 3α 0

0 1 0

3 / 2 3α 1

− 
 
 
 
 

 

leads     to κΑ =

κ

κ κ κ

κ

κ 1 κ

(1 / 2

(1 1 / 3

1 / 3 6α 0

0 1 / 2 0

3
) 3α(1 1 / 3 1

2

1 / 3 )

4 / 2 )−− +

−

−

 
 
 
 
 
 
 

. Thus for α≠0 and α=0, we can conclude that  

ω=4/9 and  ω=5/9 respectively, 
 
 

We also obtain κΑ →    

1.5

0 0 0

0 0 0

3α 1

 
 
 
 
 

, a .results useful in the norm estimations of κΑ (see Chapter 4). 

 
Example 2.6: An interesting   special class of matrices with applications in telecommunications and signal 
processing is that of Hadamard matrices (see e.g. [7]). A Hadamard matrix Hm is an m×m matrix with 

entries ±1 which satisfies the condition Hm
t
mH  =mI. By convention H1 = (1) and the rest of the class, 

besides H2=
1 1

1 1−

 
 
 

 , consists of matrices of the order m=4n, n=1,2,… 

                                                                                                                                                                    

For example one such Hadamard  matrix  of  the smallest size  is H4 =

1 1 1 1

1 1

1 1

1 1

− −

− −

− −

 
 
 
 
 
 

 

 
(Note that it has been established for Hadamard matrices to write−   instead of -1).                                                                                                                              
                                                                                                                                                                                                                          
In particular,   symmetric   Hadamard matrices Hm  have a known spectrum (see e.g. [7]) which shows that 

their  minimal polynomial is λ² -m.  Then Cayley-Hamilton theorem   leads to 2
mH =mI and thus the index of 

rigidity of  Hm  is ω=
2

2

m m

m

−
. 

 
Remark 2.2: In many engineering applications, it is well known that the order, the complexity, the 
dimension of a model e.t.c can be expressed as the rank of a matrix Since evidently the more sparse a matrix 
is the smaller its rank, the minimizing of the rank in a sequence of matricial powere can facilitate 
calculations in System Theory(see e.g.  the comments concerning MRP in [5]. 
                                                                                                                                                                   

Chapter 3. Sparsity and Rigidity of the nxn DFT Matrix 
 
It is well known that the Discrete Fourier transform when performed on a time sample column nx1 to 
produce anx1 column of frequencies, can be equivalently described via the nxn matrix. 
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Fn =

2

n n n

n n n

n n n

2 n 1

n 2 2(n 2) (n 1)(n 2)

n 1 2(n 1) (n 1)

1 1 ... ... 1

1 z z ... z

... ... ... ... ...

1 z z ... z

1 z z ... z

−

− − − −

− − −

 
 
 
 
 
 
 
 

, where zn =
2πi/ne , n≥2. 

 
 
It is known that given any n the complete description of the n independent eigenvectors of Fn is still an open 
problem (see e.g. [8]). Even the question whether Fn  is diagonalizable or not was settled rather recently 
Nevertheless ,without  resorting to any  diagonalization , with straightforward calculations, we  will examine 

the index of rigidity and  the sparsity  of  κnF  for every n  and every κ. 

           
We start with an evident lemma   based on the definition of the n roots of unity: 
 
Lemma: Let w be one of the n roots   of unity with w≠1(and n≥2 to avoid trivialities). Then  
 

(i) 
1

0

n
m

m

w
−

=
∑ =0. and from (i) we also get that 

(ii) For n odd 2
nF =nG, where G=( ijg ) is the nxn  matrix with 11g =1and ijg =0 for (i,j)≠(1,1). 

                                                                                                                                                                   

(iii) For n odd 3
nF =nH, where H=( ijh ) is the nxn matrix  with 1jh =1and ijh =0 for i≠1. 

(iv) For n even 2
nF =nI 

 
Proposition: Lenna’s (ii),(iii ) & (iv) imply that 
 

(i)  For n odd , n>1 and ρ=1,2,…  

(a) 2ρ
nF   =nρ G, (b) 2ρ 1

nF + = nρ Η 

(ii) For n  even.  

(c)  2ρ
nF   = nρ I, (d)  2ρ 1

nF + = nρ Fn 
 
Corollary: For n=odd and for n=even, the indices of rigidness of Fn are ω= 1/3 and ω=1/2 respectively. 
 

Chapter 4. Sparsity and Rigidity in Matrix Norm Considerations 
 
A matrix norm is a number defined in terms of the entries of the matrix. The norm is a useful quantity which 
can give important information about a matrix. 
 

We   give   a concise account of the pertinent theory and   limit   ourselves to concepts and results tht directly 
or indirectly can be connected to the nature of a shrinkable and/or a rigid matrix. 
 

(I ) Matricial norms 
 
The norm of a matrix is a measure of how large its elements are. The norm of a square matrix A is a non-

negative real number denoted   A . There are several different ways of defining a matrix norm, but they all 

share the following properties: 
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1.  A  ≥ 0 for any square matrix A. 

 

2.   A = 0   if and only if the matrix A = 0. 

 

3.  kA = .|k | A  , for any scalar k. 

 

4.  A B+  ≤ A  + B
 

 

5.  AB  ≤ A B  

 
We   restrict   ourselves   to nxn   matrices A. The norm of a matrix is a measure of how large its elements 
are. It is a way of determining the “size” of a matrix that is not necessarily related to how big n is. In  an 
abstract approach the norm of  a  nx1 column vector x induces the so called a natural norm of A through the 

“Operator Norm”   formula A =sup Ax / x  for x ≠0, which  actually  has the same value with max

Ax  when x =1..Naturally the scalars ||x|| and  ||Ax|| have  to be computable  at a “realistic” cost.  

 
Remarks: 
 

(a) All errors of th same norm are more or less equally significant or in significant. 
(b) By definition,   for any eigenvalue  λ of A we have  Av= λv for some eigenvector v (≠o) and thus  

|λ| ≤ ||A|| |for every (compatible!) ||. ||, including  every Operator Norm. Therefore  a simple but very 
useful sufficient condition for our shrinkable matrices  is the inequality ||A|| <1. 

(c) In   (II) we present  the  three more  commonly used  natural norms; actually there are  so many that 
can be defined  that  emerges frequently  the question how to   chose an appropriate one .                                                    

(d) In (III) we will see some aspects of numerical analysis, mainly   stemming from linear algebra 
techniques, where the concept of a matrix norm is heavily used; there it will be clear -especially 
when time and cost of computer use are key factors - possibly thelp one moght get examining in 
parallel the rigidity index and the potential for shrinkage of the matrices involved.   

(e). Evidently property (I)5  leads to the inequality 
nA ≤ 

n
A  for all natural powers but, in general , 

this provides us with  a very crude upper bound for 
nA .especially when n is large and A >1.In 

(III) and even more so in Chapter 5  we will see how rigidity could be used in order to improve this 
upper bound. 

 
(II ) For a square matrix A, with real or complex entries we define now (i) the 1-norm, (ii ) the infinity- norm, 
and (iii ) the Euclidean norm, respectively, as follows: 
 

(i)  
1

A =
j
xma

i
ijα∑ (also called the p=1  norm) 

(ii)  A
∞

=
i
xma

j
ijα∑

 

(iii) 
2

A =[
12 2[ αij ]∑∑  (also called the p=2 norm) 
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Remarks: 
 

(g) Though self evident it is useful  to point out that   the  more sparse a matrix A the more easy  the 
calculation of amy of  the above norms; we will return to this state of affairs  in (III) when A=Bκ 

with B a shrinkable  matrix or one with a  very low index of rigidity.                                                                                                                                                                
(h) Another useful for our future   considerations result of the theory is that all naturally inducrd matrix 

norms are equivalent in the sense that for any two   such norms   
α

 and 
β

there exist positive 

constants  1c  and 2c  such  that 1c
α

A ≤
β

A ≤ 2c
α

A  for every square matrix A. 

(II ) Matricial sequences and Limits 
 

Example: Let A= 

a 1 0

0 b 0

1 0 1

 
 
 
 
 

 and for simplicity set A  for 
2

A  and   ( nµ )= nA .Using  random  

matlab  trials, under the restriction ab≠0   (in order to avoid trivialities), we obtain ,among others.: 
 

Trial 1: For (a , b )= (1/3, 1/2)  sequence ( nµ ) is increasing and thus  not  any  essential numerical   

advantage over n

2
A ≤ n

2
( )A  could be obtained. 

On the other hand the next four trials produce a decreasing sequence ( nµ ): 
 

Trial 2:  (a, b) = (-0.7,-0.2) with 50A = √1, 586322338                                                                                                                             

Trial 3:  (a, b) =( -0.85,-0.38) with 100A = √1, 445612382 

Trial 4:  (a, b) = (-0.6, -0.4) with 50A = √1, 589924745 

Trial 5:  (a, b) = (-0.55,-0.5) with 500A = √1, 601226038 
 

The most   advantageous  feature in the above four trials is that  for n>50,100, 50 and 500, respectively when 

rounding off  at the 9th decimal place the values 0f  the termin  each  corresponding  ( nµ ) remains constant.                                                                                                                      

 

Chapter 5. A Sample of Certain Matricial Classifications  
 
In this section, as a case study,  with the assistance of matlab, we classify small size parametric families of 
matrices within the frame of all the theoretical concepts presented  so far. We  have avoided on purpose  the 
large size matrix examples,  but it is rather evident that when there is a reliable computer  programming in 
hand we could  classify all of them that are diagonazible along the same lines. 
 
Example 5.1: We can directly check by hand that the following one-paramete familiies of 2x2 matrices are 
rigid under the given restructions 
 

               

1 a

2

1

2

a

1

− 
 
 
  
 

for  
1 3

2 2
1 a ,a 1− < < ≠  and 

2

1

b 1

b

1

−

−

 
 
 
 

for 23 b 1− < < − . 
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Example 5.2: Let A=A(x,y)=
0

1

x

y xy−
 
 
 

, with the  restriction the two real parameters x,y to  be non zero 

and also xy≠1 (to avoid trivial cases. Directly  by hand wecan check  that 2A   has no zero entries and bt 

random  matlab trials all nA have no zero elements and  also that there is a 0n = 0n (x,y) such that for n≥

0n  nA  does not change. A heuristic result is also that the smaller or larger the value of x y+  the  

smaller or larger  the value of 0n    
 

Example 5.3: 

0
1 1

2 4

1
0 0

2

1
1 0

2

 
 
 
 
 
 
 
 

 No matter what the n is nA will never excibit more than 5 zeros µηδενίζεται 

ενώ  
                                                                                                                                                                

Example 5.4: 

3
1 0

2

3
1 1

2

3
0 1

2

−

− −

−

 
 
 
 
 
 
 
 

, 2A has already no zeros and nA  “blows up” for n>664.                                                                                                                             

 
Example 5.5: We will firstly examine, in the frame of the previous discussion, whether is  suitable to use in 
iterative powers  algorithms  the following one-parameter family of 4x4 real matrices: 
 

Α(α)=

α 1 0 0

1
1 α α 0

2
1

0 α α 1
2

1 1
α 0 1

2 2

− −

− −

− −

 
 
 
 
 
 
 
 

− 
 

, where α≠
1

2
−  in order to avoid a “convenient “ 50% sparsity  from  

starts. Since it is rather evident (by hand)  that 
1

2
−  is an   eigenvalue of  A(α) for all α, dividing the 

characteristic polynomial by α
1

2
+  we conclude that spA(α)={

1

2
− ∪  S(α), 

where   S(α),is the set {λ: q( λ)=λ³ +(1-3α)λ² + (2α² -4α -7/4)λ +4α² +3 α/4 -6/4 =0}. 
 

We are interested as α runs through the real numbers (α≠
1

2
− ) to locate the number of the roots of q( λthat 

either they belong in (-1,1) or in the complex case to locate those that have a modulus <1.Note that on case 

we have, in addition to to  the eigenvalue 
1

2
−  , two  others in (-1,1) or two complex with  a modulus 
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<1,then nA is similar to nD  which for very large n is a good approximation , with respect to the  
2

 

norm of  the diagonal matrix diag (0,0,0,M)) where  M =M(n) very large. We present now a rather 
representative of all cases sample from a large number of matlab  trials:  
                                                                                                                                                                                                                                                                                              

●  a = -0.794593 .Two roots (-0.879679 and -0.21315)  are in  (-1,1) while the third -2.29095 is not. 

There is no increase of zero entries for any nA and actually it ‘blows up” before  1100A  
●  a = -0.835909.  Two roots (-0.788241 and -0.35905) are in  (-1,1) while the third -2.36044,ps not. 

There is no increase of zero entries for any nA and actually it ‘blows up’ before  1100A                                                                                                                              
●  a = -0.916835.Two (conjugate) complex roots 0.626076 + 0.279692i with modulus<1 but 

unfortunately the third one  -2.49835 is not in (-1,1) and we have similar results aw before 
●  a = 0.5 .Only one root = -0.0387099 is in (-1,1),while the two others ( -1.547 and 2.08641) are not 

and of course once again  we have similar results as before 
 

 
 

Example 5.5. Graph 1 
 

 
 

Example 5.5. Graph 2 
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Chapter 6. Conclusions 
 
It is well known that when a (square) matrix is modeling a linear problem (like e.g. solving a  linear system) 
and especially in cases where  an iterative powers algorithm will be involved (see e.g. [9,10] or [11]), there 
are some special numerical features  like the spectrum, the column and/or row norm, the  determinant  the 
system’s  state  index, the sparsity and a  few others  that can be used in order to classify the matrix and/or  
predict if the algorithm is a good one from the aspect of  cost in time , robustness the degree of complexity 
of the algebraic operations that will be  necessary e.t.c.. Im our examples we have   shown (restricting our 
selves mostly to small size matrices for simplicity) tha in some cases the initial matrix could be looking as a 
“ promising  one” but soon or in the long run becomes less and less usable; while, on the other hand some 
looking less promising (e.g. with a small or no spasrsity at all) turn out to be more usable without  eventually 
the need of any remodeling  and any  pertinent  re-scaling of  the initial matrix m the sense of equilibration  
of data in the   linear systems of equations. Thus, the new  numerical  feature that we introduced , namely the 
index of rigidity , is propose to be included  among  the other numbers, for matrix classification textbooks 
(e.g. [12] or [13])  or online manuals (like e.g. KB. Petersen & M S Pedersen’s, Matrix Cookbook, version 
November 2012). 
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