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Abstract

We introduce the seemingly new concept of a rigid matrix basetie comparison of its sparsity to the
sparsity of the natural powers of the matrix. Our resudtdd be useful as a usage guide in the scheduling
of various iterative algorithms that appear in numericeddr algebra. Especially in Sparse matrix-vegtor
multiplication and they could also be used in matrix nonmrareanalysis.

Keywords: Sparse matrix; diagonalizable matrix; matricial tsnimatrix norms.

MSC 2010:15A12.

Introduction

Any algorithm intended to be implemented on a compaera computational cost that depends upon
the amount of resources that will be used. For simplicitg tee terms cost and complexity load, refer only
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to the number of floating point operations (additionstrsigions, multiplication and divisions) performed
during one run of the algorithm, together with a cadrthe number of square roots; note that we do not
taking into account memory usage. Then we could pgredit and load before a chain of algorithmic
computations have taken place, but only ideally sinceeality, we obtain results that are not accurately
achievable. In this paper we do not attempt to cakeulatcost and all samples data is given in the form of
square matrices preferably diagonalizable. By asymptoticputation cost of an algorithm, we refer to the
behavior of the cost C(n) for# +. Note also that the case of the “big O” descriptisrclosely related
except that in our cases we consider the order of magrifuseall quantities while our concern with cost
leads to consideration of the order of magnitude of largetijies, Finally we would like to emphasize that

(i) Whenever the spectrum of a matrix is to be catedlaising a PC program one has to take into
account the sensitivity of eigenvalues to tiny perttions.

(i) There exist many situations in scientific and engimge computations that cannot be
comprehended and/or explained by using a single number thobgim, avdecision is needed, it
often amounts to distilling one number out of many ésge[1]).

(iii) When we attempt iterative refinements tff@re could be in vain since we may encounter too ill-
conditioned matrices within too few rounding errors orrplainaccurate from the start.

(iv) In all cases, trial and error is the best guidaoce the “ideal time to terminate” an approximating
sequence of matrices ,independently if the calculatames performed by hand or using a
scientific PC programs (like in this paper that we thee matlab).

Chapter 1. Shrincable Matrices

We will focus exclusively upon diagonalizable (mainly bot necessarily real), matrices the set of which
for nxn matrices we will denote byl | and in order to avoid trivialities we will exclude theaenatrix. It is

well known that the concept of sparsity of a matrieneto the presence of zero entries ; in order to
characterize as sparse a matrix we usually demand mnach than half of its elements to be zero. Sparse
matrices play a key role in numerical linear algebra €sg. [2,3] and [4]) and in recent years have many
pleasant and sometimes even unexpected applicationsds€sl e or [6]).

We engineer the following definition which is purelghaical in order to facilitate the introduction of
the new concepts to be presented later on. Note that Defpdld had been applied to any square matrix
and that Def. 1.2 can be extended even to non diagonalizpldeesmatrices under weaker conditions but
we will not pursue these issues.

Definition 1.1: A square matrix with n2 elements will be called/ n2- sparsel< m< n2-1, whenever m of
its elements are zero.

Definition 1.2: For ALl M |, A will be called m/ n2 shrinkable if the matrix lim A* exists (pointwisely)

and is m/ n2 sparse. In particuladifh A “ is the zero matrix we call atally shrinkable.

Ko

Definition 1.3: For ALJ M |, A will be called rigid if the matrix lim A* exists and has no zero elements

Ko

at all;in particular, if A is such thatA* has no zero elemerftsr all natural numbersk we call A
totally rigid .

Note that im Chapter 3 we examine the rigidness of fHE Datrix.
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Remarks 1.1:

(i) Itis rather straightforward to conclude that tife absolute values of the n eigenvalues of a nxn
matrix are in [0,1] and the eigenvalues are afitimit (which is a sufficient but not necessary

condition so that Al M ) , then A'is totally shrinkable.

(i) On the other hand it is obvious that for the nxmatrix A=(a; ) with a;=1, A" =(b;) whereb;

=n*', has no zero entries. We can also easily check 8A consists of the eigen value 0 with
algebraic and geometric multiplicity n-1 and also of ¢éigenvalue n and so it is diagonalizable
.Thus A is a totally rigid matrix.

(i) Examples like the above may have an independeatesit but they do not offer any promising
use of the concepts of a rigid or a shrinkable. matrix. Uktigy of these concepts will be discussed
in Chapter 2 (where a new concept , that of inldex of rigidity will be introduced) and mainly
in Chapter 4 when we will attempt to connect the egtonaof the induced Euclidean norm of

powers of A1 M with a possible shrinkable matrix structure.

We will presemt below six examples: the first is a gehene classifying the matrices in,Maccording to
shrincability and/or rigidness. The other two beingnetical examples that we wanted to carry out all
necessary calculations without using any PC progranh,beil restricted within the low size case of n=3.
The fourth is a nxn example, for anyZand it is the motivation to introduce the concept ofitidiex of
rigidness presented in Chapter 2:

a
Example 1.1:Let A:(
C

b
dj be a real) matrix. Set=(a-b)2+4cd.

<1 then A is totally shrinkable.

() If A>O then evidently AIM,.If in addition|trA +/A

(i) If A=0 and in addition either b and‘@ A is not diagonalizable and we will not pursue any
classification within our approach. If on the other hand a=ceihdr b or c=0 once again A is not
in M, .Finally if b=c=0 and|a| <1 then A is totally shrinkable, while ford or a>llim A* does

K — 00

not exist and of course for a=1 A=I which is trivialyshrinkable.
(iii) If  A<O then once more A M, . If in addition a?+d2+2bc<1 then A is totally shrinkable and i

case that a2+d2+2bc=1 théim A * does not exist.

Ko

1 -3/2 3/2
Example 1.2:The matrix A4 0 -1/2 0 | is evidently 4/9 sparse and spA ={-1/2. -1/2, 1}.
0 0 -1/2

It is easy to check that the multiple eigenvalue -1/Zjeasnetric multiplicity 2 and that a pair of its linkar
independent eigenvectors cossists of (1,0atdl (0,1,1).It is also easy to check that (1,6,0)s an
eigenvector for 1.

Then via the diagonalization A=EDEwhere
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1 01 -1/2 0O O 0O 0 -1
E={ 0 1 0| b={ 0O -1/2 Oland E'=|{0 1 O |, we obtain that BEm A" exists and
110 o o0 1 1 -1 1 o
1 -1 1
B=|0 O O whichis 2/3 sparse. Thus A is 2/3 shrincable.
0O 0 O
A 0 1-2
Example 1.3:The matrix A 0 A 1-24 |, where|k| <1 is 4/9 sparseof A+0.and 7/9sparsef A=0, SO
0 0 1

let us focus dy on the family A{) when the parameter(real or not) is mot zero.

It is easy to check that the geometric multiplicity.aflso 2 and then we have the diagonalization A=EDE

1 0 1 0O 0 O 1 0 -1
where E¥0 1 1| D={0 O O|andE=l0 1 -1
0 0 1 0 0 1 0 0 1

We thus obtain

which is a 2/3 sparse matrix. Note that the resuttdepende3nt of the parameter

K — 00

B R e

00
limA®=|0 O
0 0

Wi

something that we will be useful for us in the context lo&@er 1.

A1 1
Example 1.4: The matrix A 0 1 0], Wherem <1 (A not necessarily real), is 4/9 sparse 0.
0 1

0

Evidently we have spA#{. 1, 1}. It is again easy to check that the multiptgeavalue 1 has geometric
multiplicity 2 and that a pair of its linearly independeigenvectors cosista of (1,G,)- and (0,1,1).It is
also easy to check that (1,0,8 an eigenvector for.

1 0 1 A 0 O
Then via the diagonalization A=EDEwhere Ex 0 1 0,b=/0 1 O]and
1-» -1 0 0 0 1
1 0 1 0 0O
E'1:i 0 1 0}, weobtainthat BHM A" existsand B0 1 0]. Thus A is 7/9 shrincable
i a0 o 001
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Example 1.5;Let z,, 1< m<n be the n roots of unity, as they were introduced by Ij‘-_EzIJE:zn:ez’[mi/n .

We set A the following nxn upper triangular matrix fior2 :

z 1 0 0
0 z 1 0 o0
A= Z, 0| which is diagonalizable since its spectrum, {< m<n} consists of
o 0o .. z, 1
0 0 0 .. 7z

distinct numbers (note that z1). The diagomalization A=EDE where E is the eigenvectors matrix and
the diagonal elements of D are the n roots of unity leakl &€ E*=I Thus for k=pn+v, 0< v<n ,A"= A"

and lim A" does not exist. and the maximum index of sparsity ©ofi#\ (n-1)/n Nevertheless an

K — 00
interesting feature of A which we will examone among ather Chapter 2 is estimating t the maximum
sparsity of A

1 0 O 0
01 o0 ¢
Example 1.6: Let A= with { any parameter. Since spA={1/2.1/2,1,1} and the
0 0 1/2 O
00 0 1/2

geometric multiplicity of the eigenvalues 1 and ¥2isve know that A is diagonalizable and A=EbE
where D=diag(1,1,1/2,1/2) and the corresponding eigenveoiarix is

100 O 1 0 0 O
0 1 0 -2¢ 01 01
E= .We find also that E= and finally we obtain that
0 01 O 0 010
0 0 0 1 0 0 0 1
1 0 0 O
. 01 0O o _ ) o
ImA*“= . which is a 7/8-sparse matrix free of the par@msbmething worth revisiting
0 0 0O

when we will examine norm approximations in Clesgt

Remark 1.2:

Foe ALl M, the condition|spﬂ4 <1 produces a rather narrow family of shrinkatlgtrices. On the other

hand if A M, and |SpA{ N (1, +0) £ then evidentlylim A* will not exist. So it is natural to slightly

relax the definition by allowing [1/spA possibly with an algebraic multiplicity equal its geometric
multiplicity (though for very small n ‘s it is ather descent exercise to see that we do not havecase
described in Def.1.4).The definition that fpllossbstantially useful as we will see later on:
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Definition 1.4: Foe ALJ M, we call A almost shrinkableif and ony if lim A* is(n2-1)/ n2 shrinkable.

Ko

1 1 1

Example 1.7: Let A=|0 1/2 ( | with { any parameter#0. Since spA={1/3.1/2,1}.A is
0 0 1/3
10 O 10 O

diagonalizable. Then A0 1 -1 |diag(1,1/2.1/3)0 1 -1 |, and we obtaifim A“:} G,
00 1/& 00 1/& s

where G:gij ) is the 3x3 matrix withg, ;=1and gij =0 for (i,j)#(1,1). Thus A is almost shrinkable.

Chapter 2. Index of Rigidity

We introduce now the following additional concegli®ady announced in Chapter 1;

Definition 2.1: Let A be a non zero (not necessarily diagonaliZatoka matrix that is not totally rigid. We
callindex of rigidity of A, denoted ®, (or o when it is clear where it refers to) the numivén2, where m
is the maximum number of zero entries for all riegrix power A , ask traces the naturals.

Definition 2.2: For two matrices A, B of the same size we will sagt A is  less rigid than B whem, <

(OF
In case thaiw, = wg we will say that And B have the same rigidit.

Remark 2.1: Evidently o takes values in [0, 1) but in order to preservengatibility to previous
considerations we will seto, =1 whenever A is shrinkable.

Let us give now a few characteristic examples farious size matrices  that involve  numerical
calculations in the quest of

11
Example 2.1:Let A= (1 lj , which is the matrix representation of the 2-DFT (see also Chapter 3).
Since A2 =2| we evidently have periodically maximusparsity 2/4 and thus we must takg =1/2.

11
Example 2.2: Let A= [l Oj' Through the Cayley-Hamilton theorem, or after ttadculation of A2

directly,
we obtain A2=A+| and thus ,recursively, if we sét=#%,. A+ y, I we obtain that .= X+ X1, for «>2 with
F+R. K
X,=X;=land y= X.1,We conclude that AFA+ F.l= . .t where
K k-1

Fis the Fibonacci sequence. Thag, =1 something that it was obvious to comcludehimfirst place but
we gave the is proof since similar techniques andifgonalization will be needed in the case ofrivas of
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more complicated numerical structure. It is alsattvanoticing that despite the “initial looks” theatnix of
Example 2.1 is less rigid than the matrix of thiaraple.

1 -1 0
Example 2.3:Let A=| -1 0 1 |.Itis easy to check that spA={0{2 }.In order to study the sparsity
0o 1 -1

of A*.

which is no longer evident like in the previous exdes we can use Cayley-Hamilton theorem andyappl
iterations to obtain Astarting from A=3A .We have that & =3A, A¥*"* =A% and A"*?=3""!A, for

p=1,2,...Since it is easy to check that has no zero entries at all we infer tat =1/3.Alternatively one

could use the diagonalization® & ED'E?, with E the 3x3 matrix with columns the eigertees of the
eigenvalues 0y3 and /3, respectively and 'D=diag(0, (/3)", (-V3)") and then by splitting the result for
k=2p and k=2p+1,p=1,2,...

This is clearly much more tedious method than ite but sometimes, when there is no reliable (fitbm
rounding offs point of view) scientific program firand, it is necessary in case the characteristimpmial
of Alis in full form. We demonstrate thiw assertiorthe example that follows.

-1 1 0
Example 2.4:Let A=| 0 1 1. Its characteristic polynomial is¥)&(2-\)(A>-1) and the Cayley-
0O 0 2

Hamilton theorem leads to®A2A2+A-21 which produces tedious iterations in arde exqamine the
sparsity of A

On the other hand it is easy to check that spA4{2t, that the eigenvectors

111 6 -3 1
matrix is E=| 0 2 3| and that I':lzE 0 3 -3|. Since fork=even andc=odd_we obtain D
6
0 0 3 0 0 2

=diag(1,1,2} and = diag(-1,1,2}, respectively , we obtain finally that fa=even

6 0 a -2 6 6 o -4
AK:l 0 6 Zn -6| andforc=odd A‘:E 0 6 2 _-6] witho,=2""Thusm, =1/2.
6 6
0 0 6a, 0 0 «

Once again, since 1/2 >1/3, despite the “inibaks” we can say that our matrix is more rigidritthe
matrix of Example 2.3.The , meaning of such a- oezat first glance- remark is that although as l4/9
sparsity one should not expect to increasesgpain iterative algorithms that use matrixysss.

1/3 o O
Example 2.5:LetA=| O 1/2 0| whereais arandom parameter. Evidently sp(A)={1/31%.
1 0 1
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2 6o 0 1/2 -3n O
The diagonilazion A=Ediag(1/3,1/2.13& with E=| 0 1 0|, E=| 0O 1 0
-3 -120 1 3/2 2 1
1/3 61/ 2" -1/3") 0
leads toA"= 0 1/ 2 0|. Thus fora#0 ando=0, we can conclude that

3
E(1—1/3“) o(1+1/31=-4/2) 1

®=4/9 and ®=5/9 respectively,

0O 0 O
We also obtainA* - 0 O 0}, a.results useful in the norm estimationsof (see Chapter 4).
15 30 1

Example 2.6:An interesting special class of matrices withleagions in telecommunications and signal
processing is that dladamard matrices (see e.g. [7]). A Hadamard matriy {4 an mxm matrix with

entries 1 which satisfies the condition, H|:n =ml. By convention H = (1) and the rest of the class,

1
besides Izlz(l j _consists of matrices of the order Mi=4=1,2,...

1

. o 1

For example one such Hadamard matrix of thelsstadize is = 1
1

(Note that it has been established for Hadamardiceatto write- instead of -1).

In particular, symmetric Hadamard matricgs kave a known spectrum (see e.g. [7]) which shiat t
their minimal polynomial i32 -m. Then Cayley-Hamilton theorem IeadsHﬁl =ml and thus théndex of

m?-m

m2

rigidity of H,, is =

Remark 2.2: In many engineering applications, it is well knowmat the order, the complexity, the
dimension of a model e.t.c can be expressed awitkeof a matrix Since evidently the more sparsea#rix

is the smaller its rank, the minimizing of the raimk a sequence of matricial powere can facilitate
calculations in System Theory(see e.g. the comsranicerning MRP in [5].

Chapter 3. Sparsity and Rigidity of the nxn DFT Matrix

It is well known that the Discrete Fourier transfiorvhen performed on a time sample column nx1 to
produce anxl1 column of frequencies, can be equitlgldescribed via the nxn matrix.
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1 1 1
1z z? ..z
=1 B ,where z=€"" | 2.
1 Znn—z an(n— 2) Zn(rr D 2)
1 Znn—l Zn2(n—1) Z1(rr 1%

It is known that given any n the complete desariptf the n independent eigenvectors pfsFstill an open
problem (see e.g. [8]). Even the question whethelisFdiagonalizable or not was settled rather rdgent
Nevertheless ,without resorting to any diagorian , with straightforward calculations, we vwékamine

the index of rigidity and the sparsity df, for every n and eveny.

We start with an evident lemma based on the iefinof the n roots of unity:
Lemma: Let w be one of the n roots of unity with*®(and 2 to avoid trivialities) Then
n-1

0] z w™ =0. and from (i) we also get that
m=0

(i) Fornodd Fn2 =nG, where G:gij ) is the nxn matrix withg, ; =1and gij =0 for (i,j)#(1,1).

(iii) For n odd Fr? =nH, where H:hij ) is the nxn matrix witH’lljzland hij =0 for 1.

(iv) Forn evenFn2 =nl

Proposition: Lenna’s (ii),{ii) & (iv) imply that

(i) Fornodd, n>1anp=1,2,...
@ F?* =G, () F*™M=rH
(i) Forn even.

© F* =r1,@ F""=rF,

Corollary: For n=odd and for n=even, the indices of rigidn&ds, areo= 1/3 andw=1/2 respectively.

Chapter 4. Sparsity and Rigidity in Matrix Norm Considerations

A matrix norm is a number defined in terms of tnéries of the matrix. The norm is a useful quanitityich
can give important information about a matrix.

We give a concise account of the pertinentrthead limit ourselves to concepts and regultslirectly
or indirectly can be connected to the nature dfrankable and/or a rigid matrix.

(I Matricial norms
The norm of a matrix is a measure of how largeeiésnents are. The norm of a square matriis A non-

negative real number denoteHiA". There are several different ways of defining drinaorm, but they all
share the following properties:
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1. |A] =0 for any square matrix A.

2. |A]|=0 ifand only ifthe matrix A= 0.
3. |kA||= 1k |||A] . for any scalar k.

4. |a+B] <|A] + 8|

5. || <[Al]B]

We restrict ourselves to nxn matrices Ae Tiorm of a matrix is a measure of how large isnents
are. It is a way of determining the “size” of a mathat is not necessarily related to how big .nlis an
abstract approach the norm of a nx1 column vecinduces the so called a natural norm of A thiotige

“Operator Norm” formul;4|A||:sup"AX"/”X” for ||X||¢O, which actually has the same value with max

||AX|| when ||X||:1..Naturally the scalars ||x|| and ||Ax|| havdet computable at a “realistic” cost.

Remarks:

(a) All errors of th same norm are more or lessaiysignificant or in significant.

(b) By definition, for any eigenvalué of A we have Av=\v for some eigenvector #¢) and thus
[A] < ||All |for every (compatible!) ||. ||, includimyery Operator Norm. Therefore a simple but very
useful sufficient condition for our shrinkable medts is the inequality [|A|| <1.

() In (Il) we present the three more commardgd natural norms; actually there are so miaaty t
can be defined that emerges frequently the guresbw to chose an appropriate one .

(d) In (lll) we will see some aspects of numeriealalysis, mainly stemming from linear algebra
techniques, where the concept of a matrix normesvitly used; there it will be clear -especially
when time and cost of computer use are key fact@assibly thelp one moght get examining in
parallel the rigidity index and the potential féwriskage of the matrices involved.

(e). Evidently property ()5 leads to the ineqtya"AnHS ||A||n for all natural powers but, in general ,

this provides us with a very crude upper bound"i&P” .especially when n is large arHA||>1.In

(1l and even more so in Chapter 5 we will seevhiyidity could be used in order to improve this
upper bound.

(II') For a square matrix A, with real or complex exgrnive define nowi)Ythe 1-norm (ii) the infinity- norm,
and (ii) the Euclidean norm, respectively, as follows:

(also called the p=1 norm)

0 lAl=mac Yo,
i) |A[,=max Zj:‘“ij‘
(i) [AL=10>] Z|aij|2]}/2 (also called the p=2 norm)

10
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Remarks:

(@) Though self evident it is useful to point ¢t the more sparse a matrix A the more edsy t
calculation of amy of the above norms; we willuret to this state of affairs in (lll) when A=B
with B a shrinkable matrix or one with a very lavdex of rigidity.

(h) Another useful for our future consideratioasult of the theory is that all naturally induengtrix

norms are equivalent in the sense that for any taieh norms || ||0L and || ”B there exist positive

constantsC; and C, such thatC; ||A||a§||A||ﬁ <G ||A||a for every square matrix A.

(1) Matricial sequences and Limits

Example: Let A= .Using random

L, O 9
© T

0
(l) and for simplicity seMA" for ||A||2 and  (@,)= “A”

matlab trials, under the restriction/&b (in order to avoid trivialities), we obtain ,ang others.:

Trial 1: For (a, b )= (1/3, 1/2)sequencd 1,,) is increasing and thus not any essential numerical

advantage oveHAn ,= (||A||2)n could be obtained.

On the other hand the next four trials produceereasingsequencelf,, ):

Trial 2: (a, b) = (-0.7,-0.2) witI'ﬂA5°“: V1, 586322338
Trial 3: (a, b) =(-0.85,-0.38) witlﬂAlOOH =1, 445612382
Trial 4: (a, b) = (-0.6, -0.4) witlﬂAF’OH: V1, 589924745
Trial 5: (a, b) = (-0.55,-0.5) witlﬂAf’ooH: V1, 601226038

The most advantageous feature in the abovetfials is that for n>50,100, 50 and 500, respetyiwhen
rounding off at the'®®decimal place the values Of the termin eactresponding [L,,) remainsconstant

Chapter 5. A Sample of Certain Matricial Classificdions

In this section, as a case study, with the assistancetdbnwe classify small size parametric families of
matrices within the frame of all the theoretical concgpesented so far. We have avoided on purpose the
large size matrix examples, but it is rather evidéat when there is a reliable computer programming in
hand we could classify all of them that are diagonazible albegame lines

Example 5.1:We can directly check by hand that the following-graramete familiies of 2x2 matrices are
rigid under the given restructions

=

-a b -2
1 3
for 1—E<a<5,a¢ Jand 1 |for - 3<b<1—\/5.
1

a

b-1

N e I\)‘

11
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0 ) -

Example 5.2:Let A=A(x,y)= , with the restriction the two real parametersto,ybe non zero
y 1-xy

and also xy1 (to avoid trivial cases. Directly by hand wecdreck thaA® has no zero entries and bt
random matlab trials alA" have no zero elements and also that therengan, (x,y) such that for n

Ny A" does not changeA heuristic result is also that the smaller or &rghe value 01X+y| the

smaller or larger the value of,

1
pa— 0 pa—
4
Example 5.3: 1 No matter what the n i&\" will never excibit more than 5 zer@g)deviletan
0 — 0
2
1
1 0 —
2
EVOD
3
- -1 0
2
Example 5.4: 1 3 1 ,A2 has already no zeros a” “blows up” for n>664.
2
3
0o -1 —
2

Example 5.5:We will firstly examine, in the frame of the preumdiscussion, whether is suitable to use in
iterative powers algorithms the following one-guraeter family of 4x4 real matrices:

o 1 0 0
1 1 0 1
A)= e ey : wherea;é—z in order to avoid a “convenient “ 50% sparsityonfr
0 —ot—1 a 1
2
I
2 2

starts. Since it is rather evident (by hand) thaét is an eigenvalue of A& for all a, dividing the

1 1
characteristic polynomial bzy+§ we conclude that spaj={ —E 0 S@),

where S§),is the set {: q(A)=A3 +(1-3n)A2 + (202 -4do. -7/40 +4a2 +30/4 -6/4 =0}.

1
We are interested asruns through the real numbersb(—z) to locate the number of the roots ofigffat

either they belong in (-1,1) or in the complex caséocate those that have a modulus <1.Note thatase

we have, in addition to to the eigenvaluez— , two others in (-1,1) or two complex with a mbog

12
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<1,thenA"is similar toD" which for very large n is a good approximationithwespect to the” ||2

norm of the diagonal matrix diag (0,0,0,M)) wher®l =M(n) very large. We present now a rather
representative of all cases sample from a largebeuof matlab trials:

a = -0.794593 .Two roots (-0.879679 and -0.2)13%%e in (-1,1) while the third -2.29095 is not.

There isno increaseof zero entries for an!/\n and actually it ‘blows up” beforeA 1100
a = -0.835909.Two roots (-0.788241 and -0.35905) are in (-Wh)le the third -2.36044,ps not.

There is no increase of zero entries for aﬁng'/and actually it ‘blows up’ beforeA 1100

a = -0.916839wo (conjugate)complex roots 0.626076 + 0.279692i with modulus<ut b
unfortunately the third one -2.49835 is not in1)land we have similar results aw before

a = 0.5 Only one root = -0.0387099 is in (-1,1),while theotothers (-1.547 and 2.08641) are not

and of course once again we have similar ressltxeéore

3.5

0.5 ¥

Example 5.5. Graph 2

13
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Chapter 6. Conclusions

It is well known that when a (square) matrix is rlnlg a linear problem (like e.g. solving a linsgstem)
and especially in cases where an iterative poaigarithm will be involved (see e.g. [9,10] or [L1ihere
are some special numerical features like the mp@ctthe column and/or row norm, the determingms
system’s state index, the sparsity and a fewrsththat can be used in order to classify theixnatrd/or
predict if the algorithm is a good one from theexdpf cost in time , robustness the degree ofpbtexity
of the algebraic operations that will be necessaryg.. Im our examples we have shown (restgctur
selves mostly to small size matrices for simplicttya in some cases the initial matrix could bekiog as a
“ promising one” but soon or in the long run beesntess and less usable; while, on the other hame s
looking less promising (e.g. with a small or nospdy at all) turn out to be more usable with@wentually
the need of any remodeling and any pertinensceding of the initial matrix m the sense of edpdtion
of data in the linear systems of equations. Tthesnew numerical feature that we introduceamely the
index of rigidity , is propose to be included amothe other numbers, for matrix classificationtbeoks
(e.g. [12] or [13]) or online manuals (like e.gBKPetersen & M S Pedersen’s, Matrix Cookbook, ivers
November 2012).
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