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Abstract

Back Ground: The branching patterns and the subsequent elongations of two shrub Psychotria

species, Pyschotoria rubra and Psychotoria manillensis, in Okinawa Island, the Ryukyu Islands,

Japan, were examined by Watanabe. His results showed that Hamilton’s classification for

Psychotria species in the South American continent is also applicable to the same species in

Okinawa Island. After Watanabe’s research, the author of the present paper introduced branching

pattern models for same species to simulate their branching patterns theoretically. He also

determined the branching pattern models in earlier growth stages and calculated their occurrence

probabilities. To proceed with the analyses, a systematic construction of the branching pattern

models has been required.

Aims: To refine our earlier branching pattern models of P. rubra and P. manillensis in view of

vector representation and to introduce a deterministic algorithm which produces the branching

pattern models systematically.
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Methodology: Introducing vector representations, we refine previous branching pattern models

for Psychotria species in Okinawa Island. We also study the properties of branching pattern

models in view of computational methods. Finally, we describe a deterministic algorithm for

branching pattern models of P. rubra and P. manillensis by a pseudo-code.

Results: By studying properties of branching patterns of Psychotria species in mathematical way,

we systematize the construction of our branching pattern models as a deterministic algorithm.

Running this algorithm, we also succeed in the determination of the third branching pattern

models.

Conclusion: A systematic determination algorithm which produces the branching pattern

models inductively has been successfully established.

Keywords: Pyschotoria rubra; Psychotoria manillensis; branching patterns; mathematical model;
Okinawa Island.

2010 Mathematics Subject Classification: 92B99.

1 Introduction

For a long time, tree architecture has been attracting many scholars. Plant body aboveground
consists of reputations of module structures which called shoots ([1]). Namely, tree architecture is
formed by reputations of branching and subsequent elongations of branches ([2]). So it is important
for the understanding of tree architecture to know the branching patterns and elongation patterns.
In this paper, we focus our attention on branching pattern of certain subtropical tree species.

Hallé et al. [3] studied the structure of branching patterns of tropical trees and classified their
branching patterns into twenty three patterns. Hamilton [4] showed that Psychotria species in the
South American continent have three patterns in the classification. In the point of view of taxonomy,
Sohmer and Davis [5] indicated the effectiveness of the Hamilton’s results for Psychotria species
in Philippines. Watanabe [6] studied the branching patterns and the subsequent elongations of
Psychotria rubra and Psychotria manillensis in Okinawa Island. His results showed that Hamilton’s
classification of branching patterns for Psychotria species was also applicable to those in Okinawa
Island. To simulate branching patterns of P. rubra and P. manillensis theoretically, in [7], the
author of this paper introduced branching pattern models based on Watanabe’s static datum. He
also determined the branching pattern models in earlier growth stages and argued the properties of
the branching patterns of P. rubra and P. manillensis. To proceed with our analyses, we need to
construct further branching pattern models. However, there are some difficulties in the construction.
Further branching pattern models are more complicated and the total number of these is so big.
To overcome such difficulties, we introduce a deterministic algorithm for our branching pattern
models in the present article. It is expected that the algorithm enable us to give a quantitative
evaluation for the difference between branching patterns of P. rubra and P. manillensis. Indeed,
we plan to calculate occurrence probabilities of further branching pattern models. Furthermore,
by using these probabilities, we will also calculate Shannon-Wiener diversity indices for branching
pattern models of P. rubra and P. manillensis. Finally, we will measure the difference between the
branching patterns of two Psychotria species. It is an expected advantage of our algorithm.

This paper is organized as follows: In Section 2, we first recall fundamental features about branching
patterns of Psychotoria species including Watabe’s results. Taking these facts into consideration,
we set ideal growth conditions. Furthermore, under these conditions, we introduce our branching
pattern models for P. rubra and P. manillensis, which are called vector models. We also explain
our intent of introducing vector models and compare them with other models. In particular, with a
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famous theory for plant development, called L-system. In Section3, we constructed a deterministic
algorithm which produce vector models inductively. By using the algorithm, we determine the first,
second and third vector models in Section 4. Finally, we give the conclusions of this paper in Section
5. We also list all graphs associated with the third vector models in Appendix.

2 Branching Pattern Models for Psychotoria species

In this section, we first recall fundamental features of branching patterns of Psychotoria species.
We also refine our branching pattern models for same species which were introduced in [7]

2.1 Fundamental Features of Branching Patterns

It is known that Psychotoria species flower at apices of their shoots. After flowering, new branches
are produced directly under the apices. Hamilton [4] indicated that the three types Type 1
(Chamberlain), Type 2 (Leeuwenberg) and Type 3 (Koriba) occur as the branching patterns of
Psychotoria species (see Fig. 1 below). In Type 1, a new branch appears directly under the apex
and grows preserving the direction of the original branch. On the other hand, in Type 2, two new
branches appear and both of them grow with new directions (i.e., they do not preserve the original
direction of the old branch). In Type 3, we also have two new branches and one of them keeps the
original direction and the other does not.

Fig. 1. Three fundamental branching patterns of Psychotoria species

In [6], Watanabe examined the branching patterns and the subsequent elongations of P. rubra
and P. manillensis in Okinawa Island. They are two shrub Psychotoria speices spread in the
Ryukyu Islands. Though they are allied species, they possess some different features. For example,
their soil palatabillities are different. P. rubra prefers limestone area. By contrast with this, P.
manillensis is widely distributed over non-limestone area. It is known that they are important
component tree species in two different types of evergreen broad-leaved forests in the Ryukyu
Islands, limestone forests and non-limestone forests respectively (see [8]). The research in [6] was
conducted at two mountains in Okinawa Island, Mt. Nago-take (26352N, 128002E, 230m a.s.l.) for
P. rubra and Katsuudake (26372N, 27562E, 320m a.s.l.) for P. manillensis. For both species, ten
samples were randomly selected and their branching patterns were analyzed. Watanabe concluded
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that Hamilton’s classification of branching patterns of Psychotoria species is applicable to two
Psychotoria species in Okinawa Island. He also found that the appearance rates of three branching
patterns for two species were very different. P. rubra is formed by the reputations of the branching
pattern Type 2. On the other hand, there is no bias in the branching patterns for P. manillensis.

2.2 Growth Conditions and Branching Pattern Models

In the construction of our mathematical models for Psychotoria species, we only pay attention to
the branching patterns and ignore the other growth factors (e.g., elongations of branches, how to
grow leaves etc.). Taking account of the fundamental features of branching patterns of Psychotoria
species in Subsection 2.1, we always suppose that the growth of Psychotoria species satisfies the
following ideal conditions:

Condition and Definition 2.1 (The growth conditions for Psychotoria species in Okinawa
Island). The growth of Psychotoria species always satisfies the followings:

1. The germination always occurs. The sprout is described as one stem (see Fig. 2).

2. After the first flowering at the apex of the sprout, one of Type 1, Type 2 and Type 3 always
occurs directly under the apex. We call plant bodies just after the first branching the first
branching pattern models of Psychotoria species.

3. Inductively, for l ≥ 2 , we always have the lth branching after the lth flowering. It also occurs
directly under the latest apices of an (l− 1)th model. Here latest apices are defined to be the
apices of shoots arose from the (l − 1)th branching. We also call plant bodies just after the
lth branching the lth branching pattern models of Psychotoria species.

4. Branches are never lost by abortion, withering and any other reasons.

Remark 2.1. In [4], Hamilton showed that the transformations of Types 1, 2 and 3 were also
occurred as the branching patterns of Psychotoria species in South American continent. However,
Watanabe excluded these transformations in [6], because of the ambiguous of their definitions. We
follow Watanabe’s philosophy in this paper.

Remark 2.2. It is known that the frequency of flowering of Psychotria species depends on the
regions where they live (see [9]). P. rubra and P. manillensis in Okinawa Island flower once a year.
On the other hand, it was indicated that Psychotria species in Taiwan make flowers more than one
time in a year.

Fig. 2. The growth of Psychotoria species under the conditions 1-4
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The growth of Psychotoria species in earlier stages is illustrated in Fig. 2. Note that the pictures
in this figure only emphasize the number of shoots and whether new branches preserve the original
directions or not. As mentioned above, the other factors of growth are all omitted. We call
such pictures represent our branching pattern models graphs. All graphs associated with the
first branching pattern models are easily determined as in Fig. 2. Taking account of all possible
combinations of three fundamental branching patterns and latest apices of first branching pattern
models, we can also obtain all graphs for the second branching models as in Fig. 3.

Fig. 3. All graphs associated with the second branching pattern models for

Psychotoria species.

Fix a positive integer r. Let M be an rth branching pattern model for Psychotoria species. We
denote by mr(M) the number of latest apices of M . If bi is the number of Type i branching pattern
occurrences in lth branching (i = 1, 2, 3 and 1 ≤ l ≤ r), then we say the lth branching is given the
vector b = (b1, b2, b3).

Definition 2.1. We call a vector b which gives a branching pattern as above a branching vector.

Example 2.2. For some branching pattern models in Figs. 2 and 3, we have

m1(M1,1) = 1, m1(M1,2) = 2, m1(M1,3) = 2, m2(M2,1) = 1, m2(M2,3) = 2

m2(M2,5) = 3, m2(M2,6) = 3, m2(M2,9) = 4, m2(M2,10) = 2, m2(M2,13) = 4.

Example 2.3. Type 1, Type 2 and Type 3 branching patterns in the first branching are expressed
by the branching vectors b1 := (1, 0, 0), b2 := (0, 1, 0) and b3 := (0, 0, 1) respectively.

Example 2.4. Since m1(M1,1) = 1, one of b1 = (1, 0, 0), b2 = (0, 1, 0) and b3 = (0, 0, 1) can
occur on the model M1,1 as the second branching. On the other hand, only branching vectors
(i, j, k) with i + j + k = 2 can be occurred on M1,2 and M1,3 as the second branching ,because
m1(M1,2) = m1(M1,3) = 2. We determine all branching vectors that can occur as the second
branching in Subsection 4.1.

Note that an rth branching pattern model is yielded by successive r branching pattern occurrences.
Let M be an rth branching pattern model which is yielded by bil as its lth branching (1 ≤ l ≤ r).
We identify M with the set of branching vectors {bi1 , · · · , bir}. In particular, we formally express
the sprout M0 by the set {∅} which consists of an empty set. The growth of M is illustrated by the
following sequence:

{∅}
bi1−−→ {bi1}

bi2−−→ · · ·
bil−−→ {bi1 , · · · , bil}

bil+1−−−→ · · ·
bir−−→M = {bi1 , · · · , bil , · · · , bir}

Definition 2.2. Such branching pattern models as M = {bi1 , · · · , bir} are called rth vector models.

From now on, we always consider the vector models.
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Example 2.5. We have the first vector models M1,1 = {b1}, M1,2 = {b2} and M1,3 = {b3} where
bi (i = 1, 2, 3) are branching vectors defined in Example 2.3. Furthermore, a second branching b1
on M1,1 yields a second vector model M2,1. So we have the following sequence:

{∅} b1−→M1,1 = {b1}
b1−→M2,1 = {b1, b1}

2.3 Vector Models Versus other Models

Plenty of methods has been proposed by many scholars to model the growth processes of plants (cf.
[10] and references there in). In particular, geometrical models are plant architectural models
described as algorithms of simulation which produce the forms and patterns of plants. They
appeared in the 1960s with the development of modern computers (cf. Cohen [11], Honda [12] and
Lindenmayer [13]). The topological structure of real plants consists of the genetically determined
forms (described by the 23 patterns in [3]) and the deviations due to environmental factors.
In the nature, environmental factors usually cause plants stochastic features in their growing
process. These features make plants different from each other. Stochastic models are proposed
to capture such phenomena. However, we only focus on genetic features of plants in this paper.
Since vector models excluded environmental factors, they are more primitive than other growth
models. For example, two branching pattern models (graphs) M2,11(a) and M2,11(b) in Fig. 3 are
derived from same vector model, named M2,11. Similarly, pairs of graphs (M2,12(a),M2,12(b)) and
(M2,14(a),M2,14(b)) in Fig. 3 are given by vector models M2,12 and M2,14 respectively (the vector
models M2,11, M2,12 and M2,14 will be treated in Subsection 4.1). It is considered that further
differentiation from one vector model is caused by environment factors. We believe the simpleness
of vector models enable us to capture the essential features which only depend on plants themselves.

Here we compare vector models and a very popular mathematical theory for plant development,
which is called Lindenmayer system (or L-system for short). It was introduced by Aristid Lindenmayer
in [13]. This theory produces geometrical models which involve genetic and environmental informations.
The essential difference between vector models and L-systems appears in the descriptions of generating
branches. Our models produce new branches sequentially, whereas in L-systems branches are
produced in parallel and simultaneously replaced.

3 A Deterministic Algorithm for Our Models

In this section, we explain our computational methods.

3.1 Auxiliary Lemmas

We fix notations and prove some lemmas needed later. We consider an rth vector model M =
{bi1 , · · · , bir} of Psychotria species. Let l be an integer with 1 ≤ l ≤ r . By abuse of notations, we
denote by ml(M) the number of latest apices of the lth vector model {bi1 , · · · , bil} associated with
M .

Lemma 3.1. Let M = {bi1 , · · · , bir} be an rth vector model where bil = (bil1, bil2, bil3) (l =
1, . . . , r). For any integer l with 1 ≤ l ≤ r, the following relation holds:

ml(M) = bil1 + 2bil2 + 2bil3 (3.1)

Similarly, for any integer l with 2 ≤ l ≤ r, we have

ml−1(M) = bil1 + bil2 + bil3. (3.2)
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Proof. We first prove the relation (3.1). If a Type 1 branching occurs in the lth branching, then
one latest apex will be added to the lth vector model. On the hand, if one of the branching patterns
Type 2 and Type 3 occurs in the lth branching, then the lth vector model obtains two new apices.
The relation (3.1) follows from these facts. Next we consider the relation (3.2). Note that, for
bil = (bil1, bil2, bil3), the total bil1 + bil2 + bil3 must coincide with the number of the latest apices
of the (l − 1)th vector model {bi1 , · · · , bil−1}. Namely, the relation (3.2) holds.

Proposition 3.1. An rth vector model M = {bi1 , · · · , bir} exists if and only if the relation (3.2)
holds for any l with 2 ≤ l ≤ r.

Proof. If a branching bil = (bil1, bil2, bil3) satisfies (3.2), then it can occur as the lth branching
on the (l − 1)th vector model {bi1 , · · · , bil−1}. The ”if part” has proven. The ”only if part” is
trivial.

Define two sets Al and Bl to be the set of all branching vectors which can occur as lth branching
and that of all lth vector models respectively. We also set

Cl := {ml(M)|M ∈ Bl}.

Definition 3.1. For a positive integer l with 1 ≤ l ≤ r, we call the triple {Al, Bl, Cl} the data
of the lth branching patterns. We also define {A0, B0, C0} to be the triple with A0 = {∅}, B0 =
{M0 = {∅}} and C0 = {1}.

3.2 Computational Methods

In this subsection, we introduce some computational methods. In particular, Algorithm 3.2 is our
main result.

Proposition 3.2. For l with 2 ≤ l ≤ r, the set Al is given by

Al = {(b1, b2, b3)|bi ∈ Z≥0, b1 + b2 + b3 ∈ Cl−1}

where Z≥0 is the set of all non-negative integers.

Proof. Our assertion follows from the relation (3.2) in Lemma 3.1.

Proposition 3.3. For l with 2 ≤ l ≤ r, the set Bl is constructed from Al and Bl−1 by the following
algorithm:

INPUT Al and Bl−1

OUTPUT Bl

DEFINE Bl = ∅
FOR each pair (b = (b1, b2, b3),M) ∈ Al ×Bl−1

IF ml−1(M) = b1 + b2 + b3 THEN put Bl = Bl ∪ {M ∪ {b}}
ELSE do nothing

Proof. The necessary and sufficient condition for the occurrence of an lth branching pattern b =
(b1, b2, b3) on an (l − 1)th vector model M is ml−1(M) = b1 + b2 + b3 by Proposition 3.1. In other
words, an lth vector model M ∪{b} exists iff ml−1(M) = b1 + b2 + b3 holds. Furthermore, it is clear
that this algorithm terminates in finite steps.

The language described Proposition 3.3 is a pseudo-code. Pseudo-codes are not computer programs,
but are more structured than usual prose. In particular, they are mixture of natural language and
familiar structure from programming language. About pseudo-codes, refer to [14]. Pseudo-codes
are not only used in information theory, but also in mathematics (cf. [[15], Appendix B]).
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Proposition 3.4. We have

Cl = {b1 + 2b2 + 2b3| (b1, b2, b3) ∈ Al}.

Proof. Our assertion follows from the definition of Cl and (3.1) in Lemma 3.1.

Algorithm 3.2 (Deteministic Algorithm for Vector Models). Let {A0, B0, C0} be the triple defined
in Definition 3.1. For a given positive integer r, the data {Ar, Br, Cr} of the rth branching patterns
is completely determined by the following finite steps:

Step l - (i) (l = 1, . . . , r) : Determine Al by Proposition 3.2 (i.e. collecting all triples (b1, b2, b3) of
non-negative integers which satisfy b1 + b2 + b3 ∈ Cl−1 ).

Step l - (ii): Determine Bl from Al and Bl−1 by Proposition 3.3.

Step l - (iii): Determine Cl by Proposition 3.4.

Proof. Our assertion follows from Proposition 3.2, 3.3 and 3.4.

4 Application of the Algorithm

In this section, we determine all the first, second and third vector models by Algorithm 3.2. Though
the first and second vector models already had obtained in [7], we revisit them in view of our new
computational methods.

4.1 First, Second and Third Vector Models

For r = 3, we run Algorithm 3.2. We first do Step 1-(i) in Algorithm 3.2. By Proposition 3.2 with
C0 = {1}, we easily obtain A1 = {b1, b2, b3} where b1 = (1, 0, 0), b2 = (0, 1, 0) and b3 = (0, 0, 1)
(see Example 2.3). Next we add branching pattern bi (i = 1, 2, 3) to the sprout M0 = {∅} as Step
1-(ii). Consequently, we obtain

M1,1 := M0 ∪ {b1} = {b1},M1,2 := M0 ∪ {b2} = {b2},M1,3 := M0 ∪ {b3} = {b3}.

Namely, we have B1 = {M1,1,M1,2,M1,3}. All first vector models are determined. As the final part
of Step 1, we do Step 1-(iii). It follows from Proposition 3.4 and b1 = (1, 0, 0), b2 = (0, 1, 0) and
b3 = (0, 0, 1) that C1 = {1, 2}. Step 1 has finished.

Similarly, we proceed with Step 2. As Step 2-(i), we determine the set A2 of branching vectors which
can appear in second branching. Same as Step 1-(i), the number 1 ∈ C1 yields the branching vectors
b1, b2 and b3. On the other hand, for 2 ∈ C1, we consider all combinations of three non-negative
integers b1, b2 and b3 with b1 + b2 + b3 = 2. It follows that the following 6 branching vectors:

b4 := (2, 0, 0), b5 := (1, 1, 0), b6 := (1, 0, 1), b7 := (0, 2, 0), b8 := (0, 1, 1), b9 := (0, 0, 2)

After all, we have A2 = {bi| i = 1, . . . , 9}. Next we apply Proposition 3.3 to A2 and B1 as Step
2-(ii). Note that the branching vectors b1, b2 and b3 are only elements in A2 whose totals of all
components are 1 and the vector model M1 is an only element in B1 whose number of latest apices
is 1. So we combine each of b1, b2 and b3 and M1. These combinations yield the following elements
of B2:

M2,1 := M1,1 ∪ {b1} = {b1, b1},M2,2 := M1,1 ∪ {b2} = {b1, b2},M2,3 := M1,1 ∪ {b3} = {b1, b3}.
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On the other hand, branching vectors bi (i = 4, . . . , 9) have their totals of all components are 2 and
two elements M1,2 and M1,3 in B1 have two latest apices. Taking account of all combinations of
these, we obtain the rests of elements in B2 are determined as follows:

M2,4 : = {b2, b4}, M2,5 : = {b2, b5}, M2,6 : = {b2, b6}, M2,7 : = {b2, b7}
M2,8 : = {b2, b8}, M2,9 : = {b2, b9}, M2,10 : = {b3, b4}, M2,11 : = {b3, b5}
M2,12 : = {b3, b6}, M2,13 : = {b3, b7}, M2,14 : = {b3, b8}, M2,15 : = {b3, b9}

Hence, B2 = {M2,i| i = 1, . . . , 15}. We do Step 2-(iii) as the final step of Step 2. It follows from
Proposition 3.4 with bi (i = 1, . . . , 9) that C2 = {1, 2, 3, 4}. Step 2 has finished.

4.2 First, Second and Third Vector Models, Continued

Similar to subsection 4.1, the procedures for Step 3 can be performed. Step 3 yields the data of
third branching patterns. Here we only list them below. We have

A3 = A2 ∪ {bi| i = 10, . . . , 34}

where

b10 := (3, 0, 0), b11 := (2, 1, 0), b12 := (2, 0, 1), b13 := (1, 2, 0), b14 := (1, 1, 1), b15 := (1, 0, 2)

b16 := (0, 3, 0), b17 := (0, 2, 1), b18 := (0, 1, 2), b19 := (0, 0, 3), b20 := (4, 0, 0), b21 := (3, 1, 0)

b22 := (3, 0, 1), b23 := (2, 2, 0), b24 := (2, 1, 1), b25 := (2, 0, 2), b26 := (1, 3.0), b27 := (1, 2, 1)

b28 := (1, 1, 2), b29 := (1, 0, 3), b30 := (0, 4, 0), b31 := (0, 3, 1), b32 := (0, 2, 2), b33 := (0, 1, 3)

b34 := (0, 0, 4).

The set B3 of all third vector models consists of the following 157 vector models:

{b1, b1, bi} for i = 1, 2, 3

{b1, bi, bj} for i = 1, 2 and j = 4, . . . , 9

{bi, b4, bj} for i = 2, 3 and j = 4, . . . , 9

{bi, bj , bk} for i = 2, 3, j = 5, 6 and k = 10, . . . , 19

{bi, bj , bk} for i = 2, 3, j = 7, 8, 9 and k = 20, . . . , 34

We also have C3 = {1, 2, 3, 4, 5, 6, 7, 8}. In Appendix below, we list all graphs associated with the
third vector models.

5 Conclusions

The present paper provides the followings:

a In Section 2, we have introduced vector models for P. rubra and P. manillensis, which are the
refinements of previous versions obtained in [7].

b In Section 3, we have constructed a deterministic algorithm to produce vector models for P.
rubra and P. manillensis systematically.

c In Section 4, we determined all first, second and third vector models by using the algorithm.

Applying the deteministic algorithm, we have succeeded in the determinations of all first, second
and third vector models. The application indicated that our algorithm is effective for the systematic
construction of vector models for P. rubra and P. manillensis.
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Appendix

In this appendix, we list all graphs arisen from the third vector models. As mentioned in subsection2.3,
one vector model may give some graphs. In the determination of graphs, we identify two graphs
which are considered to represent same plant in our real world (three dimensional space). Examples
are given in Fig. 4.

Fig. 4. Examples of identification of graphs
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