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Abstract

In this article, we study the elliptic problems involving (p(x), q(x))-Laplacian in Rn, We apply a

result by [1] to prove the existence of multiple nontrivial solutions.
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1 Introduction

In this article, we study the following two nonlinear problems:

− div(a(x)|∇u|p(x)−2 ∇u) + b(x)|u|p(x)−2u = λ f(x, u) + µ g(x, u) in RN

u ∈ W
1,p(x)
0 (RN )

(1.1)

and

−div
(
a(x)∇u|p(x)−2∇u

)
+ b(x)|u|p(x)−2u = λfu(x, u, v) + µgu(x, u, v) in RN

−div
(
a′(x)|∇v|q(x)−2∇v

)
+ b′(x)|u|q(x)−2u = λfv(x, u, v) + µgv(x, u, v) in RN

u ∈ W
1,p(x)
0 (RN ), v ∈ W

1,q(x)
0 (RN )

(1.2)
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For the one equation problem (1.1), we assume that 3 ≤ N ; p : RN −→ R is Lipchitz continuous with
2 ≤ p− ≤ p(x) ≤ p+ < N. λ and µ are positives parameters, and a is a measurable function such
that a ∈ L∞(Rn) with infx∈Rn a(x) > 0. The two functions f(x, t) and g(x, t) having subcritical
growth with respect to t, more precisely, we assume that f is a Carathéodory function satisfying
the following condition

|f(x, t)| ≤ m(x)|t|γ ∀x ∈ RN and ∀t ∈ R, (1.3)

where m is a positive function such that m ∈ L

p∗−
p∗−−1 (Rn)∩L

ν
ν−1

(
p∗−

p∗−−(γ+1)
)
(Rn), with p+ < γ+1 <

ν < p∗−, p
∗
− denotes the critical Sobolev exponent, i.e., p∗− =

np−

n− p+
.

The function g = g(x, t), need to be a measurable function with respect to x in Rn for every t in R,
and is continuous with respect to t in R for almost every x in Rn. Such that g(x, 0) = 0, and there
exists a positive function h(x) ∈ L∞(Rn), satisfying

sup
(x,t)∈Rn×R−{0}

|g(x, t)|
h(x)|t|p

∗
−

< +∞ (1.4)

The function b(x) needs to satisfy the next condition:

b(x) > b0 > 0 ∀x ∈ RN (1.5)

Problems involving p(x)-growth conditions, such as (1.1), have been given a special attention since
they are important in modelling some physical phenomena. For example their applications to the
study of electrorheological fluids and in elastic mechanics (see [2], [3], [4], [5]). The case of the
degenerate equation −div(a(x)|∇u|p−2∇u) = λf(x, u) in Rn, was studied by many authors, we
mention the work of P.[6], and others like [7], [8], [9]. Existence results for p(x)-Laplacian Dirichlet
problems on bounded domains we refer to [[10], [11]] while for the study of p(x)-Laplacian problems
in RN we refer to [[12], [13], [14], and [15] ]. In both investigation i.e bounded and unbounded, the
authors used a standard approach by applying the Mountain Pass Lemma for finding critical points
of associated variational formulations of Ambrosetti and Rabinowitz [16].

Since the appearance of the abstract result proved by Ricceri in [17]and its revisited note established
in [18] dealing with variational equations with both Dirichlet and Neumann conditions, they have
extensively been investigated. In [1], Ricceri obtained a general three critical points theorem, that
has been applied for a class of elliptic operators involving nonlinearities of polynomial growth. We
mention that the result proved in [1], will be an essential tool for the study of the existence of at
least three weak solutions for problems (1.1) and (1.2), when the nonlinearities have a maximal
growth.

This article is organized as follows. In section 2 we introduce the generalized weighted Lebesgue-
Sobolev spaces L

p(x)

b(x)(R
N ) and W 1,p(x),b(x)(RN ) , and some imbedding results. In section 3 we treat

the the case of the one elliptic equation involving p(x)-Laplacian (1.1) and we will prove multiple
results by applying Ricceri’s principle in [18]. Finally, in section 4, we extend the result of the last
section to general elliptic systems of two nonlinear partial differential equations governed essentially
by the (p(x),q(x))-Laplacian (1.2)). Let us first recall the crucial theorem

Theorem 1.1. [1] Let X be a separable and reflexive real Banach space; Φ : X → R, a coercive,
sequentially weakly lower semicontinuous C1 functional, belonging toWX , bounded on each bounded
subset of X, and whose derivative admits a continuous inverse on X∗; J : X → R a C1 functional
with compact derivative. Assume that Φ has a strict local minimum x0 with Φ(x0) = J(x0) = 0.
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Finally, set

α = max
{
0, lim sup

∥x∥→+∞

J(x)

Φ(x)
, lim sup

x→x0

J(x)

Φ(x)

}
,

β = sup
x∈Φ−1(]0,+∞[)

J(x)

Φ(x)
,

and assume that α < β. Then, for each compact interval [a, b] ⊂]1/β, 1/α[ (with the conventions
1/0 = +∞, 1/∞ = 0) there exists r > 0 with the following property: for every λ ∈ [a, b], and every
C1 functional Ψ : X → R with compact derivative, there exists σ > 0 such that for each µ ∈ [0, σ],
the equation

Φ′(x) = λJ ′(x) + µΨ′(x)

has at least three solutions in X whose norms are less than r.

2 Abstract Framework

for a b(x) ∈ Lloc(RN ) satisfying the condition (1.5) we introduce the generalized weighted Lebesgue-

Sobolev spaces L
p(x)

b(x)(R
N ) and W 1,p(x),b(x)(RN )

L
p(x)

b(x)(R
N ) = {u,

∫
RN

b(x)|u(x)|p(x) < +∞}

equipped with the so called Luxembourg norm

∥u∥b(x),p(x) = inf{ν > 0,

∫
RN

b(x)|u(x)
ν

|p(x)dx < 1}

and
W 1,p(x),b(x)(RN ) = {u ∈ L

p(x)

b(x)(R
N ),∇u ∈ Lp(x)(RN )}

endowed with the norm

∥u∥1,p(x),b(x) = ∥u∥p(x),b(x) + ∥∇u∥a(x),p(x)

variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respect, they are
Banach spaces, the Hölder inequality holds, they are reflexive if and only if 1 < p− < p+ < ∞ with
p− = infx∈RN p(x) and p+ = supx∈RN p(x) and continuous functions are dense if p+ < ∞ ([19]

Theorem 2.8). we denote by Lp
′
(x)(RN ) the conjugate space of Lp(x)(RN ), where 1

p(x)
+ 1

p
′
(x)

= 1

.For any u ∈ Lp(x)(RN ), v ∈ Lp
′
(x)(RN ) The Hölde type inequality

|
∫
RN

uvdx| ≤ (
1

p−
+

1

p′− )∥u∥Lp(x)∥v∥
Lp

′
(x)

(2.1)

holds true.

Let E be the space defined as the completion of C∞
0 (RN ) with respect to the norm ∥u∥1,p(x),b(x),

the condition (1.5) on the function b(x) implies that E ⊂ W 1,p
0 (Rn). Also a simple calculation

shows that the norm ∥u∥1,p(x),b(x) is equivalent to the norm

∥u∥ = inf {ν > 0,

∫
Rn

|a(x)∇u(x)

ν
|p(x)dx+ | b(x)u(x)

ν
|p(x)dx < 1}. (2.2)

set

I(u) =

∫
Rn

a(x)|∇u(x)|p(x)dx+ b(x)|u(x)|p(x)dx

3
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then for all u ∈ E
∥u∥ > 1 =⇒ ∥u∥p

−
≤ I(u) ≤ ∥u∥p

+

(2.3)

∥u∥ < 1 =⇒ ∥u∥p
+

≤ I(u) ≤ ∥u∥p
−

(2.4)

u ∈ E is a weak solution of (1.1) if∫
RN

(
a(x)|∇u|p(x)−2∇u∇v + b(x)|u|p(x)−2uv

)
dx =

∫
RN

λf(x, u)vdx+

∫
RN

µg(x, u)v dx

∀v ∈ E.

Let recall some embedding results concerning variable exponent Lebesque-Sobolev spaces. If p(x)

is Lipchitz continuous and p+ < N , then for any q(x) satisfying p(x) ≤ q(x) ≤ Np(x)
N−p(x)

, the

embedding W 1,p(x)(RN ) ↩→ Lq(x) is continuous ([20] theorem 1.1). Also, the Sobolev inequality,
∥u∥Lp(x)∗ ≤ C∥u∥ holds for all u ∈ E for some constant C > 0.

3 Main Results and Proof

We state and prove the following main result of this paper.

Theorem 3.1. Let us suppose 2 < p(x) < N and (1.3) . Furthermore, suppose for 1 < τ < p−

and some positive function α(x) ∈ L(
p∗−
τ

)′(Rn) that

lim sup
|u|→+∞

F (x, u)

α(x)|u|τ ≤ M < +∞ uniformly x ∈ RN (3.1)

and

sup
u∈E

{
∫
RN

F (x, u)dx} > 0

where F (x, t) =
∫ t

0
f(x, s) ds

If we set

ω =
1

p+
inf

{∫
Rn a(x)|∇u|p(x) +

∫
Rn b(x)|u|p(x)dx∫

Rn F (x, u) dx
: u ∈ E,

∫
Rn

F (x, u) dx > 0

}
(3.2)

Then for each compact interval [a, b] ⊂ ]ω,+∞[, there exists r1 > 0 with the following property: for
every λ ∈ [a, b], and every function g : RN × R → R which is measurable in RN and continuous in
R satisfying (1.4), there exists δ > 0 such that for each µ ∈ [0, δ], the one equation problem (1.1)
has at least three nonzero weak solutions in E whose norms are less than r1.

To prove our result we need to define the following functions Φ, J,Ψ : E −→ R

Φ(u) =

∫
Rn

1

p(x)

(
|∇u|p(x) + b(x)|u|p(x)

)
dx

and

J(u) =

∫
Rn

F (x, u) dx

and

Ψ(u) =

∫
Rn

G(x, u) dx

the function ϕ(u) satisfy the following inequalities

I(u)

p+
≤ ϕ(u) ≤ I(u)

p−
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then using (2.3) and (2.4) ,

∥u∥p
−

p+
≤ Φ(u) ≤ ∥u∥p

+

p−
if ∥u∥ ≤ 1 (3.3)

∥u∥p
+

p+
≤ Φ(u) ≤ ∥u∥p

−

p−
if 1 ≤ ∥u∥ (3.4)

for each u ∈ E It is well known that Φ is well defined and continuously Gâteaux differentiable with

Φ
′
(u)v =

∫
Rn

a(x)|∇u|p(x)−2∇u∇v +

∫
Rn

b(x)|u|p(x)−2uv dx

for all u, v ∈ E. Note also that Φ is clearly coercive, weakly lower semi-continuous and bounded on
each bounded subset of E. By the standard uniform convexity algebraic inequality of the function
l(x) = |x|p(x), x ∈ Rn, we deduce that Φ is uniformly monotone operator in E Moreover, a classical

result on uniformly convex spaces ensures that Φ
′
admits a continuous inverse on (E)∗ (Theorem

26. A) of [21], i.e. Φ ∈ WE .
It follows from (1.3),

|F (x, u)| ≤ 1

γ + 1
m(x)|u|γ+1 (3.5)

for all (x, u) ∈ Rn ×R. Then by standard argument we have F is in C1(Rn ×R), hence we see that
J is well defined and continuously Gâteaux differentiable with

J
′
(u)v =

∫
Rn

f(x, u)v dx

for all u, v ∈ E.

Lemma 3.2. J ′ is a compact map from E to (E)∗.

Proof.

Let {uk} be a sequence in E which converges weakly to u. On one hand, in view of Hölder’s
inequality and Sobolev embedding, we obtain for all 0 ≤ R ≤ +∞,

∫
|x|≥R

f(x, u)v dx ≤

(∫
|x|≥R

|m|p1 dx

) 1
p1

(C1∥u∥)γ∥v∥p
∗
− ,

for all u, v ∈ E, and p1 =
p∗−

p∗−−(γ+1)
∈
[

p∗−
p∗−−1

, ν
ν−1

(
p∗−

P∗
−−(γ+1)

)
]
. Since m ∈ Lp1(Rn), we have

lim
R→+∞

∫
|x|≥R

|m|p1 dx = 0. This implies with the fact that {uk} is a bounded sequence, for any ε,

there exists Rε > 0 such that∫
|x|≥Rε

f(x, uk)v dx ≤ ε and

∫
|x|≥Rε

f(x, u)v dx ≤ ε (3.6)

holds for all k.

On the other hand, applying Young’s inequality, we get

f
ν

ν−1 (x, t) ≤ m(x)
ν

ν−1 t
γν
ν−1

≤ p∗− − (γ + 1)

p∗−
m(x)

ν
ν−1

(
p∗−

p∗−(γ+1)
)
+

γ + 1

p∗−
t

γν
ν−1

p∗−
γ+1 ,

5
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for all t ∈ R and a.e. x ∈ Bε = {x ∈ Rn; |x| < Rε}. Let us remark that

γν

ν − 1

p∗−
γ + 1

< p∗−,

since γ + 1 < ν. Hence the Nemytskii operator N
f

ν
ν−1

associated with f
ν

ν−1 is continuous from

L
γν
ν−1

p∗−
γ+1 (Bε) in L1(Bε). Then we conclude that∫

|x|<Rε

f(x, uk)
ν

ν−1 dx →
∫
|x|<Rε

f(x, u)
ν

ν−1 dx,

which implies that f(x, uk) converges to f(x, u) in L
ν

ν−1 (Bε). Hence since Lp∗−(Bε) ⊂ Lν(Bε), we
have f(x, uk)v converges to f(x, u)v in L1(Bε), i.e.∫

|x|<Rε

(f(x, uk)− f(x, u))v dx → 0, (3.7)

for all v ∈ Lν(Bε). Finally, in view of (3.6) and (3.7), we get∫
Rn

f(x, uk)v dx →
∫
Rn

f(x, u)v dx.

This completes the proof of Lemma 2.1 and consequently J
′
is compact.

Now in order to prove our result, we prove that the conditions given in Theorem 1.1 are satisfied.
Indeed, using Hölder’s inequality and Sobolev embedding, we have in view of (3.5),∫

Rn

F (x, u) dx ≤ 1

γ + 1

(∫
Rn

|m|p1 dx
) 1

p1

(C1∥u∥)γ+1

∀(x, u) ∈ Rn × E with p1 =
p∗−

p∗−−(γ+1)
.

Then from (3.3) (3.4) we obtain

J(u)

Φ(u)
≤ p+

γ + 1
Cγ+1

1 ∥m∥Lp1

∥u∥γ+1

∥u∥p−
, ∥u∥ ≤ 1

and
J(u)

Φ(u)
≤ p+

γ + 1
Cγ+1

1 ∥m∥Lp1

∥u∥γ+1

∥u∥p+
, 1 ≤ ∥u∥

for all u ∈ E. Hence since p− < p+ < γ + 1 we have for ε > 0 small enough

lim sup
u→0

J(u)

Φ(u)
≤ p+

γ + 1
C1

γ+1∥m∥Lp1 ε. (3.8)

On the other hand, using (3.1), there exists A > 0 such that

|F (x, u)| ≤ Mα(x)|u|τ , ∀|u| > A

where τ < p− < p+ and M > 0. Then, using Hölder and Young inequalities and Sobolev embedding,
we obtain for each u ∈ E\{0} for ∥u∥ > 1

J(u)

Φ(u)
≤

p+
∫
Rn(|u|>A)

F (x, u) dx

∥u∥p−
+

p+
∫
Rn(|u|≤A)

F (x, u) dx

∥u∥p−

≤
p+M

∫
Rn(|u|>A)

α(x)|u|τ dx
∥u∥p−

+
p+

γ + 1

∫
Rn(|u|≤A)

m(x)|u|γ+1dx

∥u∥p−

≤
pMCτ

1 ∥α∥
L

(
p∗−
τ

)′
∥u∥τ

∥u∥p−
+

p+Aγ+1−τ

γ + 1

∫
Rn(|u|≤A)

m(x)|u|τdx
∥u∥p−

6
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Now using the fact that m ∈ L
p∗

p∗−−τ (Rn) since
p∗−

p∗−−τ
∈ [

p∗−
p∗−−1

,
p∗−

p∗−−(γ+1)
], we get

J(u)

Φ(u)
≤

p+MCτ
1 ∥α∥

L
(
p∗−
τ

)′

∥u∥p−−τ
+

p+Aγ+1−τCτ
1

γ + 1

∥m∥
L

p∗
p∗−−τ

∥u∥τ

∥u∥p−

≤
p+MCτ

1 ∥α∥
L

(
p∗−
τ

)′

∥u∥p−−τ
+

p+Aγ+1−τCτ
1

γ + 1

∥m∥
L

p∗−
p∗−−τ

∥u∥p−−τ

Therefore, since τ < p− we obtain

lim sup
∥u∥→+∞

J(u)

Φ(u)
≤ p+Cτ

1

M∥α∥
L

(
p∗−
τ

)′
+

p+Aγ+1−τ

γ + 1
∥m∥

L

p∗−
p∗−−τ

 ε (3.9)

for ∥u∥ > 1 we get

lim sup
∥u∥→+∞

J(u)

Φ(u)
≤ p+Cτ

1

M∥α∥
L

(
p∗−
τ

)′
+

p+Aγ+1−τ

γ + 1
∥m∥

L

p∗−
p∗−−τ

 ε (3.10)

Finally, for an arbitrary ε and in view of (3.10) and (3.8), we get

max

{
lim sup
∥x∥→+∞

J(x)

Φ(x)
, lim sup

∥x∥→0

J(x)

Φ(x)

}
≤ 0

Hence, all the assumptions of Theorem 1.1 are satisfied (with x0 = 0).

Moreover, since the function G : RN ×R −→ R is measurable in RN and C1 in R such that Gu = g
satisfying (1.4). Then using standard arguments the functional Ψ(u) =

∫
Rn G(x, u) dx is well defined

and continuously Gâteaux differentiable on W, with compact derivative, and one has

Ψ
′
(u)v =

∫
Rn

g(x, u)v dx

for all u, v ∈ W. So, by Theorem 1.1, the problem (1.1) has at least two nonzero weak solutions
which are critical points of the functional Φ− λJ − µΨ.
Then the proof of Theorem 1.3 is achieved.

Example

In this example we consider the problem (1.1), where N = 5, p(x) = cos(|x|) + 3, 001 the one
equation problem become,

−div(a(x)|∇u|cos(|x|)+1,001 ∇u) + b(x)|u|cos(|x|)+1,001u = λ f(x, u) + µ g(x, u) in R5

u ∈ W
1,cos(|x|)+3,001
0 (R5),

(3.11)

p− = 2.001; p+ = 4.001; p∗− = 10.01 > 10,

The function p(x) satisfy the theorem conditions then for any fonction

m ∈ L
3,001
2,001 (R5) ∩ L

ν
ν−1

( 3,001
4,001−γ+1

)
(R5), γ and ν satisfying 4, 001 < γ + 1 < ν < 10 < p∗−. For the

function F (x, t), let choose τ such that γ+1
2

< τ < p−, and let 0 < ε < min(1, τ − γ+1
2

) be small
enough. Consider the function F : RN × R → R given by

F (x, u) =
1

τ − ε
m(x)|u|τ−ε ln |u| ifu ̸= 0, F (x, 0) = 0

Then, condition (1.3) is satisfied since ln |u|+ 1
τ−ε

< |u|γ−τ+1+ε. It is not difficult to see that the
remaining hypotheses of Theorem 1.2 are satisfied

7
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4 (p(x),q(x))-Laplacian System

In this section we consider the two-equations nonlinear problems involving the
(p(x), q(x))-laplacian :

−div
(
a(x)∇u|p(x)−2∇u

)
+ b(x)|u|p(x)−2u = λfu(x, u, v) + µgu(x, u, v) in RN

−div
(
a′(x)|∇v|q(x)−2∇v

)
+ b′(x)|u|q(x)−2u = λfv(x, u, v) + µgv(x, u, v) in RN

u ∈ W
1,p(x)
0 (RN ), v ∈ W

1,q(x)
0 (RN )

(4.1)

where 2 < p− < p(x) < p+ < N, 2 < q− < q(x) < q+ < N . λ, µ > 0 are parameters. The functions
a(x), a′(x) are measurable functions in L∞(Rn) with inf(Rn) a

′(x), inf(Rn) a(x) > 0. The functions
b(x), b′(x) are measurable functions in L∞

loc(Rn) with inf(Rn) b
′(x), inf(Rn) b(x) > 0. The functions

f(x, t, t′) and g(x, t, t′) having sub-critical growth with respect to t, t′ More precisely, we assume
that f is a Carathéodory function satisfying the following condition

|f(x, t, t′)| ≤ m(x)
(
|t|γ + |t′|γ

)
∀x ∈ Rn and ∀t ∈ R, (4.2)

where m(x) is a positive function such that

m ∈ L
s−

s−−1 (Rn) ∩ L
ν

ν−1
( s−
s−−(γ+1)

)
(Rn),

with
s+ < γ + 1 < ν < s∗−

where
s+ = max(p+, q+), s− = min(p−, q−), s∗− = min(p∗−, q

∗
−)

with

p∗− =
np−

n− p+
, q∗− =

nq−

n− q+
.

sup
(x,t,t′)∈Rn×(R−{0})2

|g(x, , t, t′)|
h(x)(|t|p

∗
− + |t′|p

∗
−)

< +∞, (4.3)

for some
h ∈ L∞(Rn) and g(x, 0) = 0.

We shall look for a weak-solution of (4.1) in the space W
1,p(x)
0 (RN )×W

1,q(x)
0 (RN ) which is endowed

with the Cartesian norm ∥(u, v)∥ = ∥u∥
W

1,p(x)
0 (RN )

+ ∥v∥
W

1,q(x)
0 (RN )

. We set

E = W
1,p(x)
0 (RN ), E′ = W

1,q(x)
0 (RN ), U = (u, v), f(x, U) = fu(x, u, v) + fv(x, u, v),

g(x, U) = gu(x, u, v) + gv(x, u, v), and F (x, u, v) =
∫ u

0
fu(x, s, v) ds+

∫ v

0
fv(x, u, s) ds

Theorem 4.1. Let us suppose for 1 < τ < s− and some positive function α(x) ∈ L(
s∗−
τ

)′(Rn) that

lim sup
|U|→+∞

F (x, U)

α(x)|U |τ ≤ M < +∞ uniformly x ∈ RN , (4.4)

and

sup
U∈E×E′

(∫
RN

F (x, U)dx

)
> 0

If we set

ω =
1

s+
inf

{ ∫
Rn A(x, U)dx∫
Rn F (x, U) dx

: U ∈ W,

}
, (4.5)
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where A(x, U) =
(
a(x)|∇u|p(x) + a′(x)|∇u|q(x) + b(x)|u|p(x)dx+ b′(x)|u|q(x)

)
and W = {U ∈ E ×

E′,
∫
Rn F (x, U) dx > 0}, then for each compact interval [a, b] ⊂ ]ω,+∞[, there exists r1 > 0 with the

following property: for every λ ∈ [a, b], and every function g : RN × R → R which is measurable in
RN and continuous in R satisfying (4.3) , there exists δ > 0 such that for each µ ∈ [0, δ], the two-
equation system (4.1) has at least two nonzero weak solutions in E whose norms are less than r1.

To prove this result we need to define the following functions
Φ, J,Ψ : E × E′ −→ R

Φ(U) =

∫
Rn

1

p(x)

(
|∇u|p(x) + b(x)|u|p(x)

)
dx+

∫
Rn

1

q(x)

(
|∇v|q(x) + b′(x)|v|q(x)

)
dx

and

J(U) =

∫
Rn

F (x, U) dx

and

Ψ(U) =

∫
Rn

G(x, U) dx

The functions Φ(U), J(U) ,Ψ(U) need to satisfy the conditions of the theorem 1.1, i.e

Φ : E × E′ → R, a coercive, sequentially weakly lower semi continuous C1 functional, belonging
to WE×E′ , bounded on each bounded subset of E × E′, and whose derivative admits a continuous
inverse on X∗; also it not difficult to see that ϕ(U) satisfy;

∥u∥p(x)E

p+
+

∥v∥q(x)E′

q+
≤ ϕ(U) ≤ ∥u∥p(x)E

p−
+

∥v∥q(x)E′

q−

then for ∥u∥E ≤ 1 and ∥v∥E′ ≤ 1 we have:

∥u∥p
+

E + ∥v∥q
+

E′

s+
≤ Φ(U) ≤

∥u∥p
−

E + ∥v∥q
−

E′

s−

then for a very small value of ∥u∥E , and, ∥v∥E′ we have

(∥u∥E + ∥v∥E′)s
+

s+
≤ Φ(U) ≤ (∥u∥E + ∥v∥E′)s

−

s−

witch leads us to an inequality similar to the one (3.3) in section 3,

(∥U∥E×E′)s
+

s+
≤ Φ(U) ≤ (∥U∥E×E′)s

−

s−
(4.6)

Olso for a very big value of ∥u∥E and ∥v∥E′ , we have an inequality similar (3.4) in section 3

(∥U∥E×E′)s
−

s+
≤ Φ(U) ≤ (∥U∥E×E′)s

+

s−
(4.7)

Those inequalities (4.6), (4.7) will play a major role (similar to the one played by (3.3) and (3.4)
in section 3) to prove

α = max
{
0, lim sup

∥U∥→+∞

J(U)

Φ(U)
, lim sup

∥U∥→0

J(U)

Φ(U)

}
,

β = sup
x∈Φ−1(]0,+∞[)

J(U)

Φ(U)
,

with α = 0 < β = ∞ Then, for each compact interval [a, b] ⊂]0,∞[ there exists r1 > 0 such that
the problem (4.1) has at least three solutions in E × E′ whose norms are less than r1.
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